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Abstract: To develop a green and efficient method to synthesize graphene in relative milder conditions
is prerequisite for graphene applications. A chemical reducing method has been developed to
high efficiently reduce graphene oxide (GO) using Fe2O3 and NH3BH3 as catalyst and reductants,
respectively. During the process, environmental and strong reductive nascent hydrogen were
generated surrounding the surface of GO sheets by catalyst hydrolysis reaction of NH3BH3 and were
used for reduction of GO. The reduction process was studied by ultraviolet absorption spectroscopy,
Raman spectroscopy, and Fourier transform infrared spectrum. The structure and morphology of
the reduced GO were characterized with scanning electron microscopy and transmission electron
microscopy. Compared to metal (Mg/Fe/Zn/Al) particles and acid system which also use nascent
hydrogen to reduce GO, this method exhibited higher reduction efficiency (43.6%). Also the reduction
was carried out at room temperature condition, which is environmentally friendly. As a supercapacitor
electrode, the reversible capacity of reduced graphene oxide was 113.8 F g−1 at 1 A g−1 and the
capacitance retention still remained at 90% after 200 cycles. This approach provides a new method to
reduce GO with high reduction efficiency by green reductant.
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1. Introduction

Graphene has gained large attention because of its excellent mechanical, electrical, thermal and
optical properties. Special electronic structure and outstanding properties provide graphene with great
potential in the applications of sensors [1–3], electronics [4–6], batteries [7,8], and nanocomposites [9–11].
Thus, a facile synthesis of graphene with large quantities is pursued. To date, many techniques have
been introduced to synthesize graphene, such as chemical reduction of GO [12–15], liquid-phase
exfoliation [16,17], micro-mechanical exfoliation [18], chemical vapor deposition [19–21], etc. Overall,
the chemical reduction of GO is believed to be one of the most promising methods to synthesize reduced
graphene oxide (r-GO) with low cost and large-scale productivity [14]. Until now, the graphene oxide
can be large scale prepared by exfoliation of graphite oxide, which is obtained by oxidizing graphite
using oxidants and strong acid [22,23]. GO nanosheets have a lot of functional groups—including
epoxide, carbonyl, hydroxyl, and carboxy groups—which make it hydrophilic [24,25]. Therefore, GO
sheets can be dispersed uniformly in water and many kinds of organic solvent due to electrostatic
repulsion of carboxylate groups on GO sheets that with a negative charge [14]. However, metal ions
can neutralize the charges on the GO sheets and destabilize the resulting dispersions [26]. For instance,
NaCl would make hydrophilic GO aggregate in water [27].

Until now, various inorganic and organic reductants have been exploited for chemical reduction
of GO [13,14]. For instance, hydrazine and its derivatives [24] are effective and efficient reductants
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for GO reduction [14]. However, these reductants are highly toxic to both living organisms and the
environment which limited their usage [28]. Meanwhile, some relatively low-toxicity reductants like
hydroxylamine [29], NaBH4 [12,30], urea [31], sugar [32], L-ascorbic acid [33], and sodium citrate [34]
are developed for reduction of GO. However, most of these reductants should be employed at a
relatively high temperature beyond 90 ◦C, which will increase the defects in r-GO sheets as examined
by Raman spectroscopy and X-ray photoelectron spectroscopy [33]. It is worthwhile to exploit a green
and efficient method to prepare graphene from reducing of GO in relative milder conditions. Recently,
many studies have focused on chemically reducing GO by green reductants at room temperature.
As a strong reducing and environmentally benign agent [14], nascent hydrogen can be used for
efficiently reducing of GO. Usually, nascent hydrogen was generated by reaction of acid solution
with metal powders. Until now, GO has been reported to be reduced by nascent hydrogen generated
by metals of different electrochemical potential (−0.44 V for Fe [35], −0.76 V for Zn [36], −1.66 V
for Al [37], −2.37 V for Mg [38]) However, hydrophobic metal powders and hydrophilic GO cannot
contact well. A great amount of nascent hydrogen generated around metal powders surface would
quickly form non-reducing hydrogen instead to reduce GO, which results in low reduction efficiency.

Ammonia borane (NH3BH3) is a stable material for chemically storing hydrogen and an excellent
reducing agent [14]. Nascent hydrogen can be generated by release of hydrogen atoms from
NH3BH3 through methanolysis [39,40] or hydrolysis [41,42] in solution. Compared to the thermal
dehydrogenation process which requires high temperature, NH3BH3 can release hydrogen at room
temperature by hydrolysis reaction with the presence of noble or non-noble metal catalysts (Co. [43],
Ru [44], Pd [45], etc.). In our previous work, Co3O4 was used as catalyst for high efficient reduction
of GO by the hydrolysis of NH3BH3. The catalytic rate for NH3BH3 hydrolysis of Co3O4 is as high
as 3~5 times of Fe2O3 and about 10~20 times of CuO/Cu2O [46]. However, the high reaction rate
would generate large quantity of nascent hydrogen too fast, thus harming the formation of porous
graphene and reducing the capacitance of graphene nanomaterial, which limits its application in the
fields of supercapacity. Also, the large amount hydrogen produced in a short time may present some
security risks.

Based on the salting out effect of GO, this work describe a mild method for the reduction of
GO using nascent hydrogen generated by NH3BH3 and Fe2O3 as the reducing agent and catalyst,
respectively. UV-vis absorption spectroscopy, Raman spectroscopy, and Fourier transform infrared
spectrum were used to study the reducing process. The structure and morphology of the reduced
graphene oxide were characterized by scanning electron microscopy (SEM) and transmission electron
microscopy (TEM). This method showed higher nascent hydrogen reduction efficiency and relatively
lower defects than metal/acid reduction system. Besides, supercapacitor with the prepared r-GO
materials as electrode was fabricated to study their electrochemical properties.

2. Materials and Methods

2.1. Materials

NH3BH3, FeCl3 and HCl were purchased from Sinopharm Chemical Reagent, Shanghai, China.
GO was prepared by the modified Hummers method [22].

2.2. Reduction of GO

Firstly, as-prepared GO was dispersed in deionized water by ultrasonic treatment for 30 min
to form a homogeneous aqueous solution (0.1 mg/mL). 1 mL of 0.1 M FeCl3 and 10 mg NH3BH3

were added to the 10 mL GO (1 mg) solution in sequence. After a 60 min reaction, a black suspension
solution was obtained. Finally, the product was followed by washing with dilute HCl and deionized
water five times.
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2.3. Characterization

Raman spectra were carried out using a Renishaw Micro-Raman spectrometer System, UK with
an excitation source of 532 nm wavelength incident laser. UV-vis absorption spectroscopy detection
was performed by a LAMBDA 750 spectrometer (PerkinElmer, Waltham, MA, USA). The transmission
electron microscopy (TEM, FEI, Hillsboro, OR, USA) was used to investigate surface morphology
of r-GO/Fe2O3 and r-GO with an accelerating voltage of 200 kV. Fourier transform infrared (FTIR)
spectra of the samples were carried with HYPERION 2000 spectrometer (Bruker, karlsruhe, Germany)
in the range of 600–4000 cm−1.

2.4. Electrochemical Measurements

The electrochemical performances of r-GO and GO were evaluated using a three-electrode setup
in 2 M KOH solution. Pt foil, Hg/HgO, and the as-prepared materials were used respectively as
counter electrode, reference electrode, and working electrode. The working electrode was prepared by
coating a paste onto nickel foam, using r-GO as active material, poly(tetrafluoroethylene) as binder,
and acetylene black as conductive additive with a weight ratio of 80: 10: 10 in NMP. Finally, the nickel
foam was dried at 80 ◦C and the weight of active material on each electrode was about 1.5 mg.

3. Results and Discussion

3.1. Schematic of Reduction Process

Figure 1 shows the schematic of the reducing GO. Due to ionization of the carboxylic acid and
phenolic hydroxyl groups on the GO sheets, GO sheets shows highly negative charge when dispersed
in water. FeCl3 solution would neutralize the negative charge of GO after adding to the GO solution,
thus make GO sheets agglomerate. Then NH3BH3 was added and a black suspension of r-GO/Fe2O3

was obtained. Fe2O3 NPs could catalyze the hydrolysis reaction of NH3BH3 to generate nascent
hydrogen to reduce GO nanosheets. At last, Fe2O3 nanoparticles were removed away by HCl and the
pure r-GO was collected.
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3.2. Structural and Morphological Investigations

Ultraviolet visible spectroscopy was used to study the reduction process. The ultraviolet visible
absorption peak of GO/FeCl3 solution shifted from 232 nm (Figure 2a) to 268 nm (Figure 2b) after
30 min, and the solution color changed from brown to black, indicating that the highly conjugated
structure like that of graphite was formed gradually and GO was reduced to graphene [12,32,35].
Compared to the system of GO/FeCl3, the reduction rate of pure GO without FeCl3 was much slower.
Meanwhile, the solution color did not have obvious change with the reaction time extended even to
60 min (Figure 2d). This result demonstrated that iron salts can work as the catalyst to accelerate the
hydrolysis reaction of NH3BH3 greatly to generate nascent hydrogen and reduce GO. Below showed
the reduction process of GO:

NH3BH3 + 2H2O
Fe2O3−−−→ NH+

4 + BO−2 + 6H (1)

GO + aH −→ r−GO + bH2O + cH2 (2)

In the first step, Fe2O3 NPs were absorbed on the surface of GO and then a mass quantity of
nascent hydrogen formed around the Fe2O3 NPs by the hydrolysis of NH3BH3, which could be directly
used to reduce GO. In the second step, GO was reduced by nascent hydrogen.
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Figure 2. Ultraviolet visible spectroscopy of GO (a) and GO/NH3BH3 with (b for 30 min, c for
60 min) or without (d) FeCl3 during the reduction process. Inset picture is the corresponding photos of
the products.

Figure 3 shows the SEM image of r-GO/Fe2O3 NPs with different magnifications. There are
numerous Fe2O3 NPs decorated on r-GO sheets. Corresponding EDX result indicated the existence of
Fe, O, and C elements. The morphology was also characterized by TEM as shown in Figure 4. It is
clearly seen that the Fe2O3 NPs disperse uniformly on the r-GO sheets (Figure 4b). No nanoparticles
can be seen on pure GO sheets (Figure 4a). After being washed with HCl, Fe2O3 NPs were removed
completely and pure r-GO was obtained (Figure 4c).
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Figure 4. TEM (transmission electron microscopy) images of the (a) GO, (b) r-GO/Fe2O3, and
(c) r-GO sheets.

Raman scattering is an important, non-destructive tool to characterize the change in the molecular
structural of carbon based materials. The reducing process of GO was also investigated by Raman
spectroscopy. The Raman spectrum (Figure 5) of GO showed two prominent peaks at 1355 and
1592 cm−1, corresponding to the D band and G band, and the intensity ratio of D band to G band (ID/IG)
which indicates the degree of the disorder such as defects, ripples, and edges [14] is approximately
0.64. The red curve is the Raman spectrum of r-GO/Fe2O3. Many peaks can be observed, which are
located at 224, 242, 291, 406, 498, 609, and 1311 cm−1, respectively [47]. All these peaks correspond
to α-Fe2O3 phase. The Raman peaks appearing at 224 and 498 cm−1 are assigned to A1g mode,
and peaks at 291, 406, and 609 cm−1 are assigned to Eg modes. Meanwhile the peak observed at
1311 cm−1 is assigned to hematite two-magnon scattering. It is difficult to identify the carbon peak
which should be located at ~1350 and ~1590 cm−1 because it has a strong fluorescent scattering of
α-Fe2O3. After washed by HCl, other peaks between 200~1320 totally disappeared, showing that
Fe2O3 NPs have been removed. On the contrary, the peaks of D and G band of carbon appeared and
the ID/IG ratio of r-GO gradually increased to 1.19, which matches well with the results reported in
the previous reports [12,14], indicating that GO has been reduced to r-GO completely.
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The reduction process can also be detected by FTIR. The FTIR spectra (Figure 6) of GO showed
peaks at 1072/1234 cm−1, 1728 cm−1, and 3449 cm−1 corresponding to the C–O, C=O, and –OH, which
indicates there are lots of oxygenous groups on GO sheets. The FTIR spectra of r-GO showed the
intensity of all peaks corresponding to the oxygenous groups decrease dramatically compared to that
of primal GO, which further indicate GO nanosheets have been reduced to r-GO nanosheets [12].
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3.3. Measure Nascent Hydrogen Reduction Efficiency

During the reduction process, many H atoms generated surrounding Fe2O3 NPs would quickly
form H2. By contrast, H2 has no reducibility at room temperature [14]. Then a simple instrument was
designed to collect H2 produced and measure the content so as to quantify the reduction efficiency, as
Figure 7 shows. The reduction ratios (H %) was calculated to be 43.6 % according to following formula:

H % = 1−
VH2−trapped

VH2−theoretical
(3)
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The reduction efficiency of different metal (Mg/Fe/Zn/Al) and acid reduction systems were also
measured (Table 1). Compared to metal/acid reduction method, our method showed higher efficiency.
It may be due to hydrophobic metal particles in the metal/acid system being unable to contact well
with hydrophilic GO sheets. As a result, the nascent hydrogen which was formed around metal
particles is tough to reduce GO sheets. In our method, much nascent hydrogen could be produced
around the GO sheets surface as Fe2O3 NPs were in-site formed on the surface of GO sheets and could
catalyze the hydrolysis of NH3BH3, thus GO was reduced more efficiently.

Table 1. Reduction efficiency of different metal/acid systems and our method.

Reduction Method Raman (ID/IG) H (%) Reference

Mg/HCl 1.52 10.3 [38]
Fe/HCl 1.38 9.8 [35]
Zn/HCl 1.49 29.6 [36]
Al/HCl 1.32 7.2 [38]

NH3BH3/Fe2O3 1.19 43.6 this paper

3.4. Electrochemical Properties of r-GO

Due to the hydrophilic functional group is removed in the reduction process of GO, graphene
nanosheets were easy to stack or aggregate so that the specific surface area was decreased. As a result,
the capacitance of graphene nanosheets was reduced, which would limit its application in the fields of
supercapacity. By our method, the gas generated in the reduction process could efficiently prevent
nanosheets to aggregate and r-GO with porous structure was obtained (Figure 8).
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The electrochemical properties of r-GO were investigated by cyclic voltammetry (CV) test, in
which 2 M KOH was worked as electrolyte. Figure 9 shows the CV curves of GO and r-GO at various
scan rates of 5, 10, 20, 50, and 100 mV s−1. The rectangular shape of the CV curves belong to r-GO can
be attributed to good capacitive performance of the carbon based materials, and the current density of
r-GO was 20 times as high as that of GO at the scan rate of 100 mV s−1.
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Rate capability test is important to evaluate the power performance of electrodes materials.
Figure 10 shows the current galvanostatic discharge curves of r-GO electrode at different current
densities. With the current density increase, shorter reaction time can be observed. Figure 11 shows
the specific capacities of r-GO electrodes at current density of 1, 2, 5 and 10 A g−1, respectively. It can
be seen with the increase of current density, the capacity decrease from 113.8 F g−1 at 1 A g−1 to
96.25 F g−1 at 10 A g−1. This can be attributed to the surface area of electrode contact with electrolyte
reduced with the increase of current density.
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Cycling stability is another important supercapacitor parameter. Figure 12 shows the cyclic
performances and specific retention of the r-GO electrodes at 1 A g−1. After 200 cycles, the capacitance
retention of the r-GO still remains at 90%, revealing that the electrodes exhibited good stability
behaviors as supercapacitor electrode material.
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4. Conclusions

Nascent hydrogen as an environmentally benign and strong reducing agent was used to efficiently
reduction graphene oxide. In metal (Mg/Fe/Zn/Al) and acid reduction systems, hydrophobic metal
powders and hydrophilic GO cannot contact well, which would result in low nascent hydrogen
reduction ratio. In this article, a chemical method using Fe2O3 and NH3BH3 as catalyst and reductants
was developed for high efficient reduction of GO. During the reduction process, Fe2O3 NPs were
spontaneously formed on GO sheets surface due to the salting effect and catalyze the hydrolysis
reaction of NH3BH3 to general nascent hydrogen at room temperature. The nascent hydrogen reduction
ratio was up to 43.6%. Ultraviolet visible spectra, Fourier transform infrared spectrum, and Raman
spectra demonstrated that almost all oxygenous groups on GO sheets were removed during the
reduction process. As a supercapacitor electrode, the reversible capacity of reduced graphene oxide
was 113.8 F g−1 at 1 A g−1 and the capacitance retention still remains at 90% after 200 cycles. Also the
reaction was conducted at room temperature, which led to fewer defects during the reduction process.
We expect that this method opens up a new way to reduce GO with high reduction efficiency and low
defect under a mild condition.
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