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Abstract: Graphene has been proposed as the current controlling element of vertical transport
in heterojunction transistors, as it could potentially achieve high operation frequencies due to its
metallic character and 2D nature. Simulations of graphene acting as a thermionic barrier between
the transport of two semiconductor layers have shown cut-off frequencies larger than 1 THz.
Furthermore, the use of n-doped amorphous silicon, (n)-a-Si:H, as the semiconductor for this approach
could enable flexible electronics with high cutoff frequencies. In this work, we fabricated a vertical
structure on a rigid substrate where graphene is embedded between two differently doped (n)-a-Si:H
layers deposited by very high frequency (140 MHz) plasma-enhanced chemical vapor deposition.
The operation of this heterojunction structure is investigated by the two diode-like interfaces by means
of temperature dependent current-voltage characterization, followed by the electrical characterization
in a three-terminal configuration. We demonstrate that the vertical current between the (n)-a-Si:H
layers is successfully controlled by the ultra-thin graphene base voltage. While current saturation
is yet to be achieved, a transconductance of ~230 µS was obtained, demonstrating a moderate
modulation of the collector-emitter current by the ultra-thin graphene base voltage. These results
show promising progress towards the application of graphene base heterojunction transistors.

Keywords: graphene; amorphous silicon; vertical transistors

1. Introduction

Electronic devices with vertical transport and architecture have gained attention as a new path
into greater performances. Additionally, the advent of 2D materials and their physics could play a
decisive role for operation levels not yet achieved by traditional semiconductors. Specifically, graphene
has been proposed by Mehr et al. [1] in 2012 to be used as an ultra-thin base electrode to modulate the
vertical transport barrier of heterojunction transistors. Simulations demonstrated attainable operation
frequencies in the THz range. The proposed structure composed of dielectrics embedding graphene is
based on the field emission of hot electrons as the charge transport mechanism. This was experimentally
demonstrated by two different groups in 2013 [2,3]. To achieve the targeted operation frequencies,
the insulators were simulated to be 2–3 nm thin with a low Schottky barrier (0.4 eV) at the metal
contact [1]. However, in the experimental reports, 5 nm oxides with barriers of about 3 eV were used,
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thus showing low current values (<1 µA/cm2) and current gains (<0.1) [2,3]. To alleviate these band
engineering requirements, Di Lecce et al. [4] proposed to replace the dielectrics in the vertical transistor
by n-doped crystalline silicon (n-Si) to embed graphene. In this case, thermionic emission is expected
to be the dominant current transport mechanism. Under the assumption that the graphene monolayer
is undoped or p-doped, the so-called graphene-base heterojunction transistor (GBHT) can be seen as a
variation of the n-p-n Bipolar Transistor [4].

Along with high operation frequencies, mechanical flexibility is another desired feature in the new
generation of bendable electronic devices. In this field, graphene has positioned itself as a promising
candidate [5]. Hydrogen-passivated amorphous silicon (a-Si:H) has also been successfully used for
flexible electronics such as displays [6] and strain sensors [7]. Thus, by replacing the brittle crystalline
n-Si from the original device concept with n-doped a-Si:H for embedding graphene, a flexible GBHT
operating at high frequencies could be realized. Although graphene Schottky diodes with rigid
silicon layers have been studied extensively, see e.g., the review of Di Bartolomeo [8], the interfaces
of graphene with flexible layers such as a-Si:H have been scarcely investigated. The non-trivial
task of growing a-Si:H layers on graphene has been studied in the past by means of electron-beam
deposition [9] and plasma-enhanced chemical vapor deposition (PECVD) [10]. Lupina et al. [11]
reported the use of very high plasma excitation frequencies (140 MHz) instead of the commonly used
radio frequency (13.56 MHz) during PECVD, allowing the deposition of a-Si:H layers on graphene
without inducing damage to the underlying sheet. This was attributed to a reduction of the ion energies
in the plasma due to the increased excitation frequency [12]. The damage-free deposition of a-Si:H by
Very High Frequency PECVD (VHF-PECVD) on graphene allowed the electrical characterization of the
(n)-a-Si:H/graphene junction by Strobel et al. [13], which reported a Schottky barrier of 0.35–0.49 eV
(depending on the substrate) and promising large rectification ratios of up to 105. Here we present the
electrical characterization of a graphene layer embedded between two (n)-a-Si:H layers deposited by
VHF-PECVD and the ability of graphene to modulate the vertical current in the structure up to 40%.

This manuscript is organized as follows. In Section 2, the experimental methods for the deposition
of a-Si:H and the transfer of graphene are explained. In Section 3, the results of the current-voltage
analysis of the two graphene/silicon interfaces will be presented. Afterwards, the three-terminal
operation of the vertical structure in a common emitter configuration will be shown and discussed in
Section 3. Finally, the main results are summarized in Section 4.

2. Materials and Methods

In Figure 1a, the simplified scheme of the embedded graphene in a GBHT configuration is shown.
The collector layer consists of 100 nm (n+)-a-Si:H deposited over a ZnO:Al substrate by VHF-PECVD
(140 MHz) at a constant temperature of 180 ◦C using a gas mixture of silane, hydrogen and 0.1%
phosphine (PH3) as n-type dopant. The deposition system is described in detail elsewhere [14].
By increasing the doping gas ratio in the gas mixture, a thin layer (~10 nm) of highly doped amorphous
silicon was deposited to ensure an ohmic contact with the metallic electrode. This was confirmed
experimentally by a linear IV relation. Afterwards, a 1 cm2 single layer of CVD graphene grown on
Cu foil (by Graphenea S.A.) was transferred onto the surface of the (n+)-a-Si:H (collector) layer by the
polymer-assisted (PMMA) method. To remove any oxide from the surface of the (n+)-a-Si:H layer,
the sample was dipped in 1% HF for 30 s. It was also observed that the HF treatment improved the
quality and integrity of the graphene transfer. After the removal of the sacrificial PMMA layer with
acetone, another 100 nm (n)-a-Si:H layer was deposited on the surface of graphene using a low power
VHF-PECVD regime with 0.0225% PH3 as dopant. A section of the graphene layer was protected
from the a-Si:H deposition to place the metal electrode. Due to restrictions in the fabrication process,
the deposited emitter layer partially exceeds the surface of the graphene layer. The conductivities of
the emitter and collector layers are 5 × 10−5 S/cm and 3 × 10−3 S/cm, respectively. Although heavily
doped emitter is the usual configuration to achieve high gain, the highly doped collector layer was
chosen since an improvement of the cut off frequency has been reported [15]. Aluminum contacts
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were thermally evaporated on the surface of the three layers using a shadow mask under high vacuum
conditions. The electrical characterization was done using a Keithley 4200 system and a PMV chamber
with Cascade micropositioners employing tungsten tips.

3. Results and Discussion

3.1. Diode Characterization

The base-collector (BC) and base-emitter (BE) IV characteristics were analyzed independently
in the same structure by applying a voltage to the graphene contact while leaving the other contact
grounded. Assuming an undoped or p-doped graphene channel, we expected a diode-like behavior
between graphene and both (n)-a-Si:H layers. The assumption of a p-doped graphene layer is in
agreement with reports of transferred graphene grown on Cu foil by CVD [16–18] as being the
prevailing condition. The output characteristics in forward bias are illustrated in Figure 1b,c, while
the insets show the forwards and backwards biased set-up of the BC and BE diodes, respectively.
It can be seen that the BC diode (Figure 1b) exhibits a negligible rectifying behavior with a current
rapidly increasing both in forward and reverse bias. In comparison, the BE interface (Figure 1c) has
a more noticeable diode-like and rectifying behavior. The results of the BE diode can be explained
considering the lower doped emitter substrate, which agrees with the observation that graphene/Si
diodes demonstrated higher rectification on lightly doped substrates [8]. Likewise, the behavior of the
BC interface can be understood as a diode with a reduced barrier caused by the larger force image
on highly doped substrates which lowers the Schottky barrier and reduces the rectification ratio.
By extrapolating the linear part of the IV curves to the voltage axis in forward bias, we extracted a
threshold voltage VF~0.33 V for the BC diode and VF~0.45 V for the BE diode.
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Figure 1. (a) Schematic illustration of a graphene monolayer (black) embedded by two (n)-a-Si:H layers
(the top layer is the emitter and the bottom layer is the collector). Forward-bias output characteristics of
the (b) BC (base-collector) and (c) BE (base-emitter) interfacial diodes. Insets: Forward and backward
bias of the (b) BC and (c) BE diodes.

A non-ideal diode behavior with a dominating thermionic transport mechanism is expected for the
(n)-a-Si:H/graphene diodes [13]. Hence, the forward IV characteristics are given by the Schottky model

J(V, T) = J0(T)
[

exp
(

q(V − JAdRs

nkT

)
− 1

]
, (1)

where J is the current density, Ad the diode area, J0 is the saturation current, n the ideality factor,
k the Boltzmann constant and Rs are the series resistances. Equation (1) was used as a model to
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fit the experimental data in forward bias and to obtain a first approximation of n and Rs for both
diodes. The BC diode demonstrates a larger ideality factor (n = 8.9) compared to that of the BE
diode (n = 3.8), while Rs was larger at the base-emitter interface (~16 kΩ) than at the base-collector
interface (~5 kΩ). The discrepancy of Rs between both junctions can be affected by the bulk resistance
of the corresponding (n)-a-Si:H layer. The BE ideality factor is comparable to values often obtained in
literature for n-Si/Graphene diodes [19,20]. Large n values are symptomatic of defect rich interfaces or
inadvertent thin oxide layers and points towards a non-pure thermionic conduction mechanism [21].
More than 30 BC and BE interfacial diodes were analyzed in forward and reverse bias. A high
dependence of the reverse current on the applied voltage was observed, thus obtaining rectifying
ratios reaching up to 2 for BC and 17 for BE interfaces at ±0.5 V. While a previous analysis of the
(n)-a-Si:H/graphene junction had yielded rectifying ratios up to 5 orders of magnitude [13], it is known
that experimental values of the parameters and the quality of semiconductor interfaces are strongly
affected by the fabrication process.

The devices were further studied by temperature dependent IV measurements to determine the
Schottky barrier heights, qΦb formed at both interfaces. It was observed that the current between base
and collector presented a negligible temperature dependence (not shown). This result, along with
the large n value, suggests that the BC junction does not completely work as a diode, and additional
transport mechanisms such as thermionic-field emission or quantum mechanical tunneling might
be involved. The BE output characteristics in forward and reverse bias measured in the range from
273 K to 333 K are shown in Figure 2a. This rather narrow temperature range is restricted by the
aluminum-induced crystallization of amorphous silicon at elevated temperatures [22]. At low forward
bias, a temperature dependence of the current is observed. The temperature dependence of the
saturation current at zero bias can be approximated as

J0 ∝ T2exp
(
−qΦb

kT

)
(2)

The values of J0 were directly extracted by extrapolating the linear part of the output characteristics
to the interception voltage of 0 V. Based on Equation (2), the base-emitter Schottky barrier, qΦb~0.3 eV,
was determined from the slope of a ln

(
J0/T2) vs 1000/T plot (Figure 2b).
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To corroborate the obtained results, the Cheung and Cheung method [23] was used to extract
the diode parameters from the experimental data in forward bias by rearranging the terms in (1),
to obtain a

dV/d ln J vs J plot
dV

d ln(J)
= Rs J + nkT/q (3)
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and a H(J) vs J plot, where

H(J) ≡ V −
(

nkT
q

)
ln
(

J
A∗T2

)
= Rs Ad J + nΦb (4)

and A∗ the Richardson constant. From the intercept and slope of the dV/dln J vs J plot (Figure 3a) the
ideality factor and Rs can be determined respectively, whereas an approximation of the Schottky barrier
can be extracted from the intercept of the H(J) vs. J plot (Figure 3b). From the plots of the Cheung and
Cheung method, we obtained an ideality factor of n~3.2 and a series resistance of Rs~17 kΩ. Both the
ideality factor and series resistance are similar to the initial approximations. Using n and A∗ obtained
from the intercept of the Richardson plot (Figure 2b) a qΦb~0.27 eV for the BE interface was calculated
which correlates as well with initial approximations.
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Although in principle both BC and BE diodes are based on (n)-a-Si:H/graphene interfaces,
the results of their electrical characterization diverge largely, which could be related to inadvertent
interfacial oxide layers, surface defects and/or contaminants [24]. It must be kept in mind that the
usual study case of graphene/c-Si diodes in literature is based on the transfer of graphene (lower
surface) onto c-Si surfaces. However, due to the nature of CVD graphene grown on Cu foils, the lower
surface of graphene in contact with the Cu foil and the upper surface might not form comparable
interfaces. Lupina et al. [25] reported the presence of residual Cu atoms after the wet transfer of
graphene. Ming Hong et al. [26] analyzed thin film transistors (TFT) of (n)-a-Si:H using Cu contacts
and suggested that variations on the device behavior such as threshold voltage could occur due to Cu
contamination in the TFT channel. Along with this, Alle et al. [27] studied the instability of a-Si:H TFTs,
where water molecules have been proposed as the attacking species breaking the passivated Si bonds
with H and resulting in additional interfacial traps. Thus, albeit the passivation of dangling bonds
in a-Si by H, the contact of the (n)-a-Si:H collector layer with humidity cannot be excluded from the
graphene transfer process which could introduce interfacial states that alter the expected barrier [28].
Therefore, surface states and deep levels in the (n)-a-Si:H induced by humidity and/or Cu residues
due to graphene transfer can result in energy levels within the band gap.

In summary, the Schottky barrier of the BC diode could be largely affected by the presence of
residual elements and/or interfacial states induced during the transfer of graphene onto the a-Si:H layer.
At the BE interface, the (n)-a-Si:H layer was deposited on the upper surface of graphene as in previous
experiments. Nevertheless, limited by the aluminum- and temperature-induced crystallization of
the a-Si:H layers at temperatures larger than 150 ◦C [22,29,30], no annealing step was applied for the
removal of possible polymer residues from the sacrificial layer [31]. This could eventually degrade the
quality of the interface. Indeed, in accordance with other reports of graphene, the poor diode behavior
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of both junctions indicates the presence of additional transport mechanisms and/or unintentional
interfacial layers [32,33].

3.2. Three-Terminal Characterization

Following the individual characterization of the BC and BE diodes, the test device was also
analyzed in a three-terminal configuration. All currents were measured as the collector-emitter voltage
VCE was varied at given base-emitter voltages VBE. In Figure 4a, the measured data are presented
in a semi-logarithmic plot of IC and IE versus the collector-emitter voltage. Likewise, the graphene
electrode current IB vs VCE is shown in Figure 4b.

First, the behavior of the device will be discussed at VBE = 0 V in terms of the currents (IC, IE
and IB) in the voltage range 0 V < VCE < 0.15 V. As presented by the black dashed line in Figure 4a, IC
increases into positive values as VCE increases, while IB increases into negative values (blue dashed
line, Figure 4b). In turn, IE (Figure 4a red line) shows positive values of current decreasing towards
VCE = 0.15 V and reaching a minimum at this VCE voltage. Thus, the electrical behavior of the device in
the range 0 V < VCE < 0.15 V is dominated by a current flow from the base to the collector (IB~IC) with
a small contribution of the base-emitter current as illustrated by the large and small green arrows in
Figure 5b, respectively. The behavior of IE in this voltage range could be defined as an offset of ~0.15 V
in the graphene Fermi level with respect to the emitter. Such a shift could correspond to the BE built-in
potential and/or the screening effect of graphene.

As VCE increases above 0.15 V, the offset of the emitter to base is compensated by the applied
voltage and IE increases exponentially with different slopes, i.e., IE becomes significant. This can be
explained by the observed partial ohmic behavior of the BC interfacial diode, which acts as a resistor
in series with the BE diode. Thus, VCE effectively lowers the BE Schottky-barrier (Figure 5c) and
the exponential growth of IE can be directly attributed to a modulation of the Schottky barrier at
the BE interface. Graphene monolayers have demonstrated outstanding screening capacities [34,35].
Therefore, the applied VCE does not fully drop along the low conductive (n)-a-Si:H layer and at the BC
interface due to the low Schottky barrier. Along with this, the partial coverage of the graphene layer
could act as areas of direct a-Si:H/a-Si:H contact, thus promoting the undesired control of the emitter
current by the collector voltage.
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Figure 4. (a) Collector, emitter and (b) base currents versus VCE. The current dips at IB corresponds to
a leveling of the collector and base Fermi levels (VBC = 0 V).

In an ideal GBHT device, both BE and BC junctions exhibit significant thermionic barrier heights.
The barrier heights, and thus the collector-emitter current, are controlled by the base voltage applied
to the graphene layer. Since VBE = 0 V, the electrical performance of our device demonstrates that
neither low IC (off) state nor saturation could be achieved, meaning that the device does not work as a
conventional bipolar transistor at this point. To exemplify this case, a simplified band diagram of the
GBHT in equilibrium (Figure 5a) illustrates the reduced barrier of the BC interface (the ideal barrier
shown as a dashed line).
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The electrical behavior of the device will now be discussed at VBE 6= 0 V. For 0.2 V < VBE < 1 V.
The current flow is still dominated by a base-collector (IB~IC) current, i.e., IE has a negligible
dependency to the base voltage even during forward bias conditions of the BE diode. This behavior is
caused again by the ohmic behavior of the BC junction, the low bulk resistance of the collector layer
and/or the diode efficiencies of the junctions. At all applied VBE, IC and IB reach a minimum (current
dip) before changing to positive and negative values respectively. The current dip position of IB
corresponds to the applied VBE and can be understood by leveling the Fermi levels, i.e., collector-base
voltage is 0 V. The visible “V” shape characteristics of IB is caused by a change of the current flow due
to the large leakage currents of the BC junction (an ideal diode would allow only a low reverse current).
The current dip of IC demonstrates a different behavior. As VCE raises above 0.5 V, the exponential
increase of IE prevents the IC current dip from coinciding with the applied VBE, i.e., at VBC = 0 V.
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Figure 5. Simplified band diagrams of the graphene-base heterojunction transistor during
(a) equilibrium (BC ideal barrier shown as a dashed line). Band diagram at VBE = 0 V for
(b) 0 V < VCE < 0.15 V and (c) VCE > 0.15 V, and at VBE 6= 0 V for (d) VCE > 0.15 V. The green arrows
indicate the flow of electrons.

At VCE values above 0.5 V, an increment of the emitter current as function of VBE can be observed
(green shade in Figure 4a). This area indicates the collector-emitter current modulation by the base
voltage, and thus demonstrates a first step towards an operational GBHT. The small modulation of the
collector-emitter current is illustrated in Figure 6a, where IC and IB are linearly plotted while varying
the collector-emitter voltage VCE at different constant base-emitter voltages VBE ranging from 0 V to
1.5 V. At VBE = 0 V, the collector current IC is still highly affected by VCE. However, the variation of the
collector current caused by VBE can be highlighted. The increase of the collector current (∆Ic), defined
as the change of IC at VBE = 0 V vs VBE 6= 0 V, can reach up to 40% as seen in the inset of Figure 6a.
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Figure 6. (a) Base (blue dashed lines) and collector (black solid lines) current versus VCE at constant
values of VBE ranging from 0 to 1.5 V in 100 mV steps. Inset: Percentage increase of IC in function of
VBE in respect to IC at VBE = 0 V. (b) Variation of the collector, emitter and base currents extracted at
VCE = 1.46 V in function of the graphene base voltage.
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In Figure 6b, all currents were extracted at VCE = 1.46 V (the largest percent of variation) and
plotted versus the base-emitter voltage. IB steadily decreases as VBE increases, while the collector
and emitter current increases at the same time, i.e., the operation is mainly dominated by a vertical
collector-emitter transport through the base. The observed modulation of the collector-emitter current
by the graphene base voltage, in a purely thermionic transport, could be understood as a further
reduction of the Schottky barrier at the BE interface. However, due to the relatively large electric fields
at which the current gain takes place, additional transport mechanisms, such as Fowler-Nordheim (FN)
tunneling [36], could be involved. Indeed, Mouafo et al. [37] investigated the temperature dependent
IV characteristics of Ti/MoSe2 junctions and found a transition of the main transport mechanism
from thermionic emission to FN tunneling around 1 V bias. Similarly, FN tunneling could occur in
our vertical a-Si:H/graphene structure. However, it must be noted that differently from the gated
Ti/MoSe2 of ref. [37], where the width of the space charge region is limited by the 2D crystal and
controlled by the gate, the space charge region of the a-Si:H/graphene interface is much wider (~44 nm,
as measured by capacitance-voltage characterization by Strobel et al. [13]). Therefore, direct or FN
tunneling mechanisms seem unlikely. Although a more detailed and extended analysis is required in
future work to fully understand the involved current transport mechanisms, the current gain can be
seen as a further reduction of the barrier which promotes purely thermionic and possibly FN tunneling
transport which add an extra electron flow on IE as depicted in Figure 5d. In addition, since the
applied voltages are close to the band gap of a-Si:H (Eg/e~VCE), the transport through the valence
band i.e., band-to-band tunneling or impact ionization could be expected [4,38]. The largest extracted
transconductance value gm = dIC/dVBE was ~230 µS, demonstrating a moderate modulation of the
collector-emitter current by the ultra-thin graphene base voltage.

4. Conclusions

In conclusion, we presented the electrical characterization of the interfacial diodes in
(n)-a-Si:H/graphene/(n+)-a-Si:H heterostructures in the vertical GBHT configuration. We found that
the collector-base diode is characterized by a small Schottky barrier and low rectifying ratios, which
could be caused by atomic residues and/or humidity-induced interfacial states. The base-emitter diode
is characterized by a rectifying ratio of more than one order of magnitude and a small Schottky barrier
qΦb~0.3 eV. The poor diode-like characteristics of the BC junction yield large leakage currents and
thus an unconventional transistor behavior was achieved by the three-terminal operation. Along with
these characteristics, the collector voltage does not completely drop at the interface due to the low BC
Schottky barrier, effectively lowering the BE barrier and generating an undesired emitter current even
in the absence of a base-emitter voltage. Nevertheless, it was experimentally demonstrated that the
bias voltage applied at the embedded ultra-thin graphene base modulates the vertical current up to
40%, due to a modest control of the BE barrier.

Enhancing the current control in vertical transistor structures could be achieved by further
optimizing the diode behavior of the interfaces, specifically the lack of rectification at the base-collector
junction. A possibility to increase the barrier at the BC interface is by reducing the doping of the
collector layer. Along with this, the quality of the BC interface could be improved by avoiding atomic
Cu residues and humidity-related issues. This could be achieved, e.g., by the dry-transfer of graphene
layers grown on germanium substrates [39]. Another route to improve the transistor behavior of
the device, specifically the off-state, could be based on the insulating states provided by bilayer
graphene. These states are caused in bilayer graphene by an electric field applied normal to the
plane [40]. Since such conditions are natural in the vertical architecture of the GBHT, it presents a
feasible and promising object of future investigations. Other 2D materials can be considered without
losing the advantage for flexible electronics. For example, transition metal dichalcogenides, such as
MoS2, MoSe2 or WSe2, have been extensively used in gate-tunable heterojunctions or in field effect
transistor reaching high on/off ratios of up to 107 [37,41]. However, this approach might present other
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challenges such as the drastic reduction of mobility [42], compared to that of graphene, which could
have a great impact on the maximal transition frequency of the vertical transistor.
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