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Abstract: Microstructural evolution and wear performance of Tantalum (Ta) treated by ultrasonic
nanocrystalline surface modification (UNSM) at 25 and 1000 ◦C were reported. The UNSM treatment
modified a surface along with subsurface layer with a thickness in the range of 20 to 150 µm, which
depends on the UNSM treatment temperature, via the surface severe plastic deformation (S2PD)
method. The cross-sectional microstructure of the specimens was observed by electron backscattered
diffraction (EBSD) in order to confirm the microstructural alteration in terms of effective depth and
refined grain size. The surface hardness measurement results, including depth profile, revealed that
the hardness of the UNSM-treated specimens at both temperatures was increased in comparison with
those of the untreated ones. The increase in UNSM treatment temperature led to a further increase
in hardness. Moreover, both the UNSM-treated specimens with an increased hardness resulted in
a higher resistance to wear in comparison with those of the untreated ones under dry conditions.
The increase in hardness and induced compressive residual stress that depend on the formation of
severe plastically deformed layer with the refined nano-grains are responsible for the enhancement
in wear resistance. The findings of this study may be implemented in response to various industries
that are related to strength improvement and wear enhancement issues of Ta.

Keywords: tantalum; hardness; gradient nanostructured layer; grain size; residual stress; dry
wear behavior

1. Introduction

Tantalum (Ta) is a rare, refractable, malleable, and lustrous metal, which is widely used in
various industries, in particular, aerospace, electronic devices, and nuclear applications, owing to its
high ductility at temperatures below 150 ◦C, good forging, and chemical and physical properties [1].
Especially, Ta exhibits a superior corrosion resistance due to a natural protective layer created by oxides
of Ta on its surface [2]. The chemical inertness of Ta makes it an ideal substance for equipment and a
substitute for platinum (Pt) [3]. Ta is a highly bioinert metal to manufacture biomedical components,
such as hip, knee joints, and other orthopaedic implants because it is not harmed by bodily fluids and
also does not irritate the flesh of the implant. The elasticity of Ta helps to avoid stress shielding of hip
and knee replacements as well [4]. Ta is also a candidate material to be used in prostheses instead
of Ti in the near future. In spite of the facts that Ta is a highly corrosion resistant, chemically inert,
etc., but its main advantages are low strength, low wear resistance, and low fatigue strength, which
may prevent its successful potential applications in a wide variety energy and fatigue ranges, starting
from biomedical through chemical process equipment. The realization of components made of Ta
suited for harsh and high-temperature conditions is a challenge since it is problematic to control the
required mechanical properties and the fatigue strength of Ta in aerospace applications, such as gas
turbines or engines where the temperature rises up to 650 ◦C [5]. In general, a usage of Pt is a possible

Materials 2018, 11, 452; doi:10.3390/ma11030452 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://dx.doi.org/10.3390/ma11\num [minimum-integer-digits = 2]{3}\num [minimum-integer-digits = 4]{452}
http://www.mdpi.com/journal/materials


Materials 2018, 11, 452 2 of 18

option due to its high chemical inertness and high temperature stability, where Ta can be substituted
for more expensive Pt, but it is not considerable from the economic and commercial point of view.
Therefore, an increase in strength and wear performance, and also an extension in service life of Ta are
in high demand.

One of the easy and possible ways to control the wear performance of metallic materials by
increasing its strength is controlling its microstructure, in particular, producing nano-grains with grain
boundaries of mostly high angle misorientation via surface severe plastic deformation (S2PD), which
is a cold-forging process [6,7]. A wide range of S2PD processes, such as shot peening (SP) [8], surface
mechanical attrition treatment (SMAT) [9], surface rolling treatment (SRT) [10], and ultrasonic shot
peening (USP) [11], and severe plastic deformation (SPD) processes, such as equal channel angular
processing (ECAP) [12] and high-pressure torsion (HPT) [13] were developed in the past. These
processes develop a severe deformation and high strain, which cause the creation of gradient micro-
and sub-micrometer grains, whose size is gradually increasing with the depth and finally reaches the
actual initial size of matrix and coarse grains in a certain of depth [10,13]. As a consequence, sufficient
S2PD and SPD processes result in the apparent modification in microstructure in terms of highly
misoriented nano-sized grains. The mechanism behind the nanocrystallization and grain refinement
via S2PD and SPD processes lies shear bands associated with the dynamic recrystallization (DRX) [14].
The results of S2PD and SPD processes, such as microstructural state alteration, are strongly responsible
for the subsequent increase in mechanical properties of metallic materials, which in turn has a direct
correlation to the wear performance of metallic materials [6]. S2PD and SPD processes are capable of
increasing the hardness, yield strength, and elastic strain featuring tendency to saturation, but it is not
beneficial in terms of ductility [15]. Generally, nano-sized grains have some benefits in comparison
with the coarse grains, not only in terms of strength of a material, but also superplastic deep drawing.

A wide range of metallic materials such as aluminum [6], titanium [7,9,12], stainless steel [8],
Inconel [11], etc. were subjected to S2PD and SPD processes to achieve a refined nano-grained
and nanocrystalline structure in the past, but only a few limited studies concerning the application
of those processes to Ta can be found in the literature. For example, Huang et al. studied the
effects of HPT on microstructure and the hardness of pure Ta [16]. It was found that the grain size
was refined significantly due to the increase in hardness, but some coarse grains appeared with
increasing the numbers of rotations. Mathaudhu et al. produced a fine grained Ta via multi-pass
equal channel angular extrusion (ECAE) process [17]. It was concluded that the refined nano-grains
with the size of 100–400 nm was found to be beneficial for Nb3Sn superconductor. Another study
by Mathaudhu et al. on grain size refinement of Ta by ECAE process has attracted wide attention in
view of a variety of findings [18]. It was found that ECAE process refined grains at ε = 2.3, which is
more important than initial grain size to occur a recrystallization. Moreover, Zhang et al. reported the
possibility of generating a nanostructured Ta with a grain size of 20 nm via sliding friction treatment
(SFT) [19]. Nevertheless, there are no systematic investigations on the mechanical properties and wear
performance of Ta treated by ultrasonic nanocrystalline surface modification (UNSM) technique [20].
A precision control of UNSM technique is a key advantage to produce a gradient nanostructured
material over other SPD and S2PD processes. The UNSM treatment used to be applied for various
metallic materials, ceramics, Si wafer, various coatings to improve the friction behavior, wear and
corrosion resistance, and fatigue strength through the presence of nanostructured surface layer with
the refined nano-sized grains [21–25]. Furthermore, a high-temperature UNSM treatment along
with local heat treatment (LHT) was developed and recently patented, where the UNSM treatment
temperature can be reached up to 1400 ◦C. Interestingly, so far it was discovered that the hardness and
wear performance of Ti-6Al-4V alloy was improved via UNSM treatment at a high temperature [26].
However, the hardness can be continuously increased with temperature, where a softening may
occur as well. For example, a softening occurred in Ni-based superalloy (Inconel 690 alloy) when the
high-temperature UNSM treatment was performed at 700 ◦C [27]. Moreover, the highest hardness
of α-Ta treated by high-temperature UNSM treatment was found at 800 ◦C [20]. It is therefore of
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interest to further increase the high-temperature UNSM treatment temperature up to 1000 ◦C, and to
investigate its effects on the grain size refinement, hardness, and wear resistance of Ta since the increase
or decrease in hardness and also grain size refinement or grain growth depend on the nature of a
material. In this regard, the main purpose of the investigation is to provide systematic experimental
results on the grain size refinement, hardness, and wear performance of Ta that is treated by UNSM
treatment at room temperature (RT) and high temperature (HT) of 1000 ◦C. It is strongly believed,
according to the results, that the role of a high-temperature UNSM in Ta-related applications, such as
aerospace, nuclear, electrical, etc., will be significantly important.

2. Materials and Methods

2.1. Specimen Preparation

Refractory Ta is rarely used since alloying makes other metals brittle, with an exception of steel,
in which case it increases the ductility and strength. In this study, the specimens with dimensions of
20 × 5 mm2 was prepared from bulk Ta with a hardness of 195± 6 HV (after cold working). Important
properties of Ta are shown in Table 1.

Table 1. Mechanical and physical properties of Tantalum (Ta).

UTS, MPa Yield Strength, MPa Elastic Modulus, GPa Poisson’s Ratio Density, g/cm3 Elongation, %

900 170 186 0.35 16.6 5

2.2. Ultrasonic Nanocrystal Surface Modification (UNSM) and Local Heat Treatment (LHT)

The UNSM parameters that are shown in Table 2 were selected to treat the specimens at RT and HT
(1000 ◦C) temperatures. At HT, the specimens were heated up with a halogen-based high-temperature
heating system, where the actual temperature was measured using a portable pyrometer. More detailed
information about the UNSM technique, including high-temperature heating setting of LHT, can be
found in our previous publications [26,27]. Following the UNSM treatment, both of the disk specimens
were mounted in bakelite and were polished with sand papers down to 2400 grit, and then a colloidal
solution was used with a powder of 1 µm in diameter to achieve a mirror-like surface. Afterwards,
the disk specimens were electrolytically etched in H2O, H2SO4, HF with a couple of drops of H2O2

solution at 5 V for 30 s using an electropolisher-etcher (ElectroMetTM4, Buehler, Uzwil, Switzerland) to
reveal the microstructural features, such as grains, grain boundaries, etc.

Table 2. Ultrasonic nanocrystalline surface modification (UNSM) parameters at room temperature (RT)
and high temperature (HT) (1000 ◦C).

Frequency,
kHz

Amplitude,
µm

Static Load,
N

Speed, mm
ε

Tip Material Tip Diameter,
mm

Interval,
µm

20 40 30 2000 WC 2.38 70

2.3. Wear Behavior in Dry Conditions

A commercially available ball-on-disk tribometer (Anton Paar, Graz, Austria) was used to evaluate
the wear performance of Ta that came into contact with a steel ball under the test conditions, as shown
in Table 3. Each test was replicated three times. The surface roughness (Ra < 0.08 µm) of the specimens
was considered to be nearly close to escape from the influence of surface roughness on the wear
performance under dry conditions.
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Table 3. Wear test conditions under dry conditions.

Applied Normal
Load, N

Reciprocating
Speed, cm/s

Sliding Distance,
m

Temperature,
◦C

Contact Stress,
GPa

10 2.51 30 25 0.82

2.4. Characterizations

The surface hardness of the specimens was measured using a micro-Vickers hardness tester
(MVK E3, Mitutoyo, Takatsui, Japan) at a load of 300 gf for dwell time of 10 s, while the nanoindentation
was performed using a depth sensing tester (MTS, Nanoindenter XP, Eden Prairie, MN, USA), with a
diamond Berkovich indenter at a frequency of 45 Hz, strain rate of 0.05 s−1 with a maximum load of
100 mN. The average surface roughness (Ra) and cross-sectional wear track profiles to quantify the
wear rate were measured using a portable two-dimensional surface profilometer (SJ-210, Mitutoyo,
Japan). X-ray diffraction (XRD) was performed with a CuKα radiation (k = 1.5418 Å) at a wavelength
of 1.54, a tube current of 40 mA, and a voltage of 30 kV using a sin2ψ method over the range of
20–130◦, with a scanning speed of 1◦/min using a Bruker D8 Advance X-ray diffractometer to measure
the residual stress and to identify phases before and after UNSM treatment. The dimension of the
specimen was 10 × 10 × 3 mm3. The residual stress was also measured by using an indentation
method that was based on the nanoindentation results. The obtained residual stress measurement data
with a huge error bar represent the average of three measurements. A gradient nanostructured surface
layer was observed using an electron backscatter diffraction (EBSD: Oxford Instruments HKL Nordlys
Max, Abingdon, UK) installed into a scanning electron microscopy (SEM: JEOL 6610LV, Tokyo, Japan)
at an accelerating voltage of 20 kV with a large beam current of 10 nA. Surface microstructure and
wear tracks, and the chemical composition were characterized by SEM, along with energy-dispersive
X-ray spectroscopy (EDX: EDAX/AMETEK, Mahwah, NJ, USA).

3. Results and Discussion

3.1. Microstructural Evolution by EBSD

Cross-sectional Inverse Pole Figure (IPF) maps of the specimens obtained using an electron
backscattered diffraction (EBSD) are shown Figure 1. The untreated specimen, as shown in Figure 1a,
presents a homogenous microstructure with equiaxed grains at the topmost surface in the range
of 10–30 µm in diameter. Obviously, it was observed that the UNSM treatment at RT generated
a gradient nanostructured surface layer, as shown in Figure 1b. In addition, an effective depth of
UNSM treatment at RT was found to be about 35–40 µm, while some refined grains are also randomly
visible in a depth of about 100 µm between the elongated coarse grains with further increasing the
depth beyond the actual effective depth of UNSM treatment at RT. This irregular deformation may be
attributed to the inhomogeneous of a large amount of plastic deformation that was introduced during
UNSM treatment. Figure 1c shows the IPF color map of the specimen LHT at 1000 ◦C without UNSM
treatment. It can be seen that some elongated coarse grains at the top surface were refined remarkably,
which may be a result of machining and mechanical polishing. Figure 1d shows the IPF color map of
the specimen LHT at 1000 ◦C with UNSM treatment. The modification in microstructure with depth
can be further extended by performing an LHT with UNSM treatment at 1000 ◦C in comparison with
the UNSM-treated specimen at RT. The effective depth was found to be deeper than ~150 µm, which
is about five times deeper than that of the UNSM at RT specimen. Interestingly, elongated coarse
grained was refined due to the results of heat treatment, but both grain size refinement and extension
in effective depth occurred by performing an LHT with UNSM treatment at 1000 ◦C (see Figure 1c).
Moreover, it was observed that a lamellar structure with low-angle grain boundaries (LAGB) is visible
(see Figure 1b,d)). It is worth mentioning here that no banded structures, such as deformation and
shear, were observed in the untreated and LHT at 1000 ◦C without UNSM treatment specimens.
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Microbands are visible feature in the both UNSM-treated at RT and HT specimens, as shown by the
dashed lines in Figure 1b,d. These banded structure produced by UNSM treatment is an important
factor in high stacking fault energy (SFE) metallic materials subjected to deformation [28]. In general,
α-Ta has needle-shape morphology, while β-Ta has a spherical-shaped one [1]. As shown in Figure 1,
the elongated shape of needle-shape grains of α-Ta was changed into the spherical-shaped grains,
owing to ultrasonic-based strikes at a frequency of 20 kHz.
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Figure 1. Cross-sectional electron backscatter diffraction (EBSD) Inverse Pole Figure (IPF) maps of the
untreated (a), UNSM-treated at RT (b) and local heat treatment (LHT) without (c) and with (d) UNSM
treatment at 1000 ◦C specimens.

The grain size distributions with area fraction of the specimens are presented in Figure 2. The grain
size distribution of the untreated specimen (see Figure 2a) shows that the grains in the range of
5–60 µm are distributed uniformly, while the UNSM treatment at RT was capable of producing
a gradient nanostructure layer with a high fraction (~18.8%) of (sub) grains with a size less than
0.1 µm at the topmost surface, which is deliberately increased, as shown in Figure 2b. The fraction
of grains of the specimen treated by solely LHT treatment (without UNSM treatment) was found
to be higher in comparison with the untreated specimen, as presented in Figure 2c. The grain
fraction was increased significantly by high-temperature UNSM treatment at 1000 ◦C, as shown
in Figure 2d and also the slope (angle) of a gradient nanostructure was higher in comparison with
the UNSM-treated specimen at RT. Gradient nanostructured materials have a number of advantages
over the homogeneous nanostructured materials in terms of mechanical properties, especially ductility.
For example, Lu has discovered the possibility of making a balance between the strength and ductility
of materials by producing a gradient nanostructured material [29]. Kang et al. have also demonstrated
the features and importance of a gradient nanostructured material that is produced by high pressure
torsion (HPT) [13]. It was concluded that the gradient nanostructured material had a significant higher
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strength with no loss in ductility in comparison with the nanostructured material. Yin et al. have
also produced a gradient nanostructure surface layer on Cu by SMAT, pointing out that a gradient
nanostructure can exhibit superior strength-ductility synergy [30]. Recently, Wang et al. reported the
possibility of generating a gradient nanostructured surface layer in Cu with a grain size of 85 nm via
rotationally accelerated shot peening (RASP) [31]. This newly developed RASP technology may apply
much higher impact energy in comparison with the conventional SP process. Yang et al. investigated
the role of volume fraction of gradient nanostructures Cu that is produced by SMAT at cryogenic
temperature [32]. It was found that the gradient nanostructure exhibited a great correlation between
strength and ductility. Wu et al. combined gradient nanostructure with transformation-induced
plasticity that is produced by SMAT to synthesized gradient nanostructure in austenitic 304 stainless
steel [33]. As a result, a gradient nanostructured layer provided a good correlation between strength
and ductility. Therefore, it is now desirable to produce a gradient nanostructured material with a thick
layer as much as possible as the homogeneous nanostructured material due to the lack of ductility.
Moreover, AlMangour and Yang improved the mechanical properties of 17-4 steel that was fabricated
by direct metal laser sintering (DMLS), which is a type of additive manufacturing (AM), through grain
size refinement by means of SP [34]. It was reported that severe plastically deformed layer along with
grain size refinement by SP led to an increase in mechanical properties.
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Figure 2. Histogram of the grain size distribution of the untreated (a), UNSM-treated at RT (b) and
LHT without (c) and with (d) UNSM treatment at 1000 ◦C specimens representing the presence of
gradient nanostructured surface layer.

3.2. Residual Stress and XRD Pattern

A comparison in residual stress of the specimens measured at φ0◦ and φ90◦ is presented in
Figure 3a. It is apparent that the untreated and heat up without UNSM treatment specimens exhibited
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a tensile residual stress, while the UNSM treatment at both RT and HT induced a great compressive
residual stress. The value of the compressive residual stress of the UNSM-treated at RT specimens
that were measured both perpendicular and along orthogonal directions was about −600 MPa, which
was reached a greater −1200 and −1375 MPa by using an LHT with UNSM treatment at 1000 ◦C,
respectively. Consequently, the compressive residual stress of both the UNSM-treated at RT and HT
specimens that were measured along orthogonal direction of φ90◦ had a higher compressive residual
stress in comparison with the compressive residual stress measured along orthogonal direction of
φ0◦. This difference is due to the different number of strikes. It is well established that the induced
compressive residual stress is the most crucial property, which determines the strength and fatigue
lifespan of a material [35,36]. It was also reported earlier that SP and USP processes induces high
compressive residual stress in the surface layer thanks to the severe plastically deformed layer [11,34].
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Figure 3. Variation in surface residual stress (a) and X-ray diffraction (XRD) pattern (b) of the untreated,
UNSM-treated at RT and LHT without and with UNSM treatment at 1000 ◦C specimens.

XRD patterns of the specimens are presented in Figure 3b. The relative intensities of all the
diffraction peaks of the untreated specimen were reduced significantly after UNSM treatment at RT.
By treating the specimen by LHT without UNSM treatment at HT led to a negligible reduction in
intensity in comparison with the untreated specimen, but a substantial reduction in intensity was
found for the specimen by LHT with UNSM treatment at HT, which is lower in comparison with
the UNSM-treated specimen at RT. Post-polishing process of the specimens treated by LHT with and
without UNSM treatment at HT was responsible for the absence of any diffraction peaks of the oxide
particles on the surface. The high-temperature UNSM treatment, regardless the treatment temperature,
may result in the formation of thick oxide layer, which is responsible for the deteriorated mechanical
properties [26]. In addition, new diffraction β diffraction peaks {101}, {400} and {410} are detected
after LHT with UNSM treatment at HT (see the inset in Figure 3b), which means that the phase
transformation occurred from α→ β. Beta Ta is a metastable phase that is transformed from α Ta
when it heated up to 900 ◦C [37]. The α phase is tend to have excellent corrosion, thermal ductility
properties, while the β Ta provides additional hardenability, therefore the newly appeared β phases
are expected to beneficially affect the strength, wear performance, and fatigue strength.

A comparison in relative intensity, full width at half maximum (FWHM) and d spacing with
respect to diffraction angle of the specimens is presented in Figure 4. It is clear that the relative
intensity of the primary alpha peak {110} diffracted at an angle of 38.7 was about 25,000, 5000, 16,700,
and 4900 for the UNSM-treated at RT, and LHT with and without UNSM treatment at HT specimens,
respectively. Other secondary {200}, {211}, {220}, {310}, {222}, and {321} peaks also reduced remarkably
by UNSM treatment both at RT and HT, where they were not visible in Figure 4, while those peaks
were reduced as well after LHT without UNSM treatment. In addition, it is noticeable from Figure 4
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that the FWHM of the UNSM-treated specimens at both RT and HT got broadening in comparison
with the untreated specimen, where the FWHM was increased with increasing the diffraction angle.
The highest FWHM of the UNSM-treated specimens at both RT and HT was found to be about 2.5◦ at
a diffraction angle of 108◦, as shown in Figure 4b,d. From this, it is clear that the FWHM depends on
the relative intensity of the peaks, where the lower relative intensity the higher FWHM. As shown
in Figure 4, no significant difference in d spacing of the specimens was found, which is related to
the change of diffraction peak position through Bragg’s law [38], where it was gradually reduced
with increasing the diffraction angle because when the UNSM treatment applied load is removed,
the d spacing returned to normal position unless a compressive residual stress induced by UNSM
treatment controls the original strain. It is worth mentioning here that the changes, such as strain,
work hardening, etc. of the UNSM treatment at both RT and HT specimens can be estimated by
quantitatively analyzing the broadening in FWHM and reduction in relative intensity of diffraction
peaks [39]. Top surface grain size of the specimens quantified based on the Scherer equation was in
consistent with the cross-sectional EBSD IPF maps, where the refinement of coarse grains into (sub)
grains is clearly seen in Figure 1b,d, where the refined (sub) grain size by UNSM treatment at RT
was further refined with increasing the temperature, leading to the highest fraction (~23.8%) of sub
(grains) at the top surface. Apparently, it is expected to achieve more grain size refinement towards
ultrafine grain (UFG) scale with a high-angle grain boundaries (HAGB) by increasing the temperature
of UNSM treatment, which can be reached up to 1400 ◦C so far. In order to confirm the presence of UFG
scale at the top surface since the EBSD method does not allow due to the resolution, some advanced
quantitative surface analysis by transmission electron microscopy (TEM) is in need to determine the
exact nano-sized grain.
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Furthermore, the diffraction peaks of the UNSM-treated specimens at both RT and HT shifted
to a lower diffraction angle (see Figure 5), which is an indicator of the induced compressive residual
stress [40], while on the contrary, the diffraction peak of the LHT without UNSM treatment at 1000 ◦C
specimen shifted to a higher diffraction angle. The presence of uniform compressive strain that was
derived during grain size refinement process is responsible for the diffraction peak shift to a lower
angle [41], while the diffraction peak shift to a higher angle is responsible for the tensile stress [42]. It is
well established that the internal stresses, planar faults (stacking faults or twinning) are responsible for
the changes in relative diffraction peaks (intensity, FWHM, and shift) of the metallic materials that are
subjected to both S2PD and SPD processes [43,44].



Materials 2018, 11, 452 10 of 18
Materials 2018, 11, x FOR PEER REVIEW  10 of 19 

 

 
Figure 5. Comparison in intensity peak {110} shift to lower and higher angles of the untreated, UNSM-
treated at RT, LHT without and with UNSM treatment specimens. 

3.3. Microhardness and Nanoindentation  

A comparison in surface hardness of the specimens is shown in Figure 6. The UNSM treatment 
at RT led to an increase in hardness by about 20% in comparison with the untreated one. In turn, the 
hardness was further increased from 193 to 511 HV by heating up the specimen up to 1000 °C, which 
is corresponding to a 62% increase in comparison with the untreated one. The untreated specimen 
that was treated by the combination of an LHT with UNSM treatment was able to further increase 
the surface hardness by about 16%, 58%, and 70% in comparison with the LHT specimen without 
UNSM, UNSM-treated at RT, and untreated ones, respectively. The increase in surface hardness by 
UNSM treatment at both RT and HT is associated with the grain size refinement, which may be 
explained well by the Hall-Petch relationship, where the grain size is a key factor, in other words, the 
smallest grain size the highest hardness [45], while the increase in hardness by LHT is related to the 
movement of atoms from their original position [46]. However, Chokshi et al. have reported a 
negative slope, where the hardness or strength of a material start dropping with reducing the grain 
size less than 10 nm due to the grain boundary sliding [47]. Therefore, it is always desirable to refine 
the grain size bigger than that critical value.  

 
Figure 6. Comparison in surface hardness of the untreated, UNSM-treated at RT and LHT without 
and with UNSM treatment at 1000 °C specimens. 

Figure 5. Comparison in intensity peak {110} shift to lower and higher angles of the untreated,
UNSM-treated at RT, LHT without and with UNSM treatment specimens.

3.3. Microhardness and Nanoindentation

A comparison in surface hardness of the specimens is shown in Figure 6. The UNSM treatment
at RT led to an increase in hardness by about 20% in comparison with the untreated one. In turn,
the hardness was further increased from 193 to 511 HV by heating up the specimen up to 1000 ◦C, which
is corresponding to a 62% increase in comparison with the untreated one. The untreated specimen
that was treated by the combination of an LHT with UNSM treatment was able to further increase the
surface hardness by about 16%, 58%, and 70% in comparison with the LHT specimen without UNSM,
UNSM-treated at RT, and untreated ones, respectively. The increase in surface hardness by UNSM
treatment at both RT and HT is associated with the grain size refinement, which may be explained well
by the Hall-Petch relationship, where the grain size is a key factor, in other words, the smallest grain
size the highest hardness [45], while the increase in hardness by LHT is related to the movement of
atoms from their original position [46]. However, Chokshi et al. have reported a negative slope, where
the hardness or strength of a material start dropping with reducing the grain size less than 10 nm due
to the grain boundary sliding [47]. Therefore, it is always desirable to refine the grain size bigger than
that critical value.
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Load and depth of penetration curve of the specimens that was obtained by nanoindentation
method is depicted in Figure 7. The UNSM-treated at RT specimen had a shallower depth of penetration
in comparison with the untreated specimen under the same load of 100 mN. The depth of penetration
occurred on the surface of the LHT without UNSM specimen at HT got shallowed at the same load in
comparison with both the untreated and UNSM-treated at RT specimens due to the higher surface
hardness, as shown in Figure 6. It was noticed that the UNSM-treated at HT specimen exhibited two
times shallower penetration depth in comparison with the untreated one. The increase in hardness by
UNSM treatment at both RT and HT thanks to the generation of a gradient nanostructured surface
layer and a relatively high dislocation density [13,19,30,48]. Estimation of residual stress is made by
various measurement methods, such as XRD, ultrasonic, neutron diffraction, strain curve, magnetic,
hole drilling, and Raman spectroscopy as well [49], but these methods have some drawbacks in
terms of spatial resolution, data accuracy, and reliability. Zhu et al. discovered a new method
to measure the residual stress by the nanoindentation method [50]. The inset in Figure 7 shows
the magnified loading curves of the specimen at the onset of the indentation. According to the
conclusion of the study [51], the UNSM-treated at RT and LHT with UNSM treatment at HT specimens
exhibited a compressive residual stress since both of these specimens required a higher load to be
indented in comparison with the untreated and LHT without UNSM treatment at HT specimens, as
shown in Figure 7. In turn, the LHT with UNSM treatment at HT specimen required larger load in
comparison with the UNSM-treated at RT because of the higher induced compressive residual stress,
as shown in Figure 3. In order to validate the results of residual stress that was measured by XRD and
nanoindentation methods, a newly proposed nanoindentation method [51,52], which was adopted
based on the difference between the contact areas of the specimens, was used using the following
equations [51]:
for tensile residual stress

σr = H(1− A0/A) (1)

for compressive residual stress

σr = H
(

1− A0

A

)
/ f (2)

where A and A0 are the indentation contact area of the specimens with tensile and compressive residual
stress (σr), respectively. H is the material hardness. f = sin α is a geometric factor, where α is related to
the indentation angle of the indenter. For a Berkovich indenter, α = 24.7◦ and f = 0.418.
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After obtaining a contact area of the specimens with tensile and compressive residual stresses,
the tensile residual stress of the untreated and LHT without UNSM treatment at HT, and the
UNSM-treated at RT and HT specimens was calculated by Equations (1) and (2), respectively. It was
found that the calculated tensile residual stress of the untreated and LHT without UNSM treatment
at HT was 24.6 ± 9 and 9.4 ± 3 MPa, while the tensile residual stress that was measured by the
XRD method was 20.47 ± 7 and 6.54 ± 2 MPa, respectively. The calculated compressive residual
stress of the UNSM-treated at RT and HT specimens was −636.26±86 and −1284.71 ± 114 MPa,
while the compressive residual stress that was measured by XRD method was −607.44 ± 82 and
−1228 ± 59 MPa, respectively. It is apparent from the residual stress results that were obtained by
the nanoindentation method are in good consistence with the residual stress results obtained by XRD
method ensuring a standard deviation in the range of about 10–14%. It is worth mentioning here
that the residual stress of Au/TiW bilayer was estimated by deflection of double clamped beams,
where the beam deflection was corrected by the indent penetration [53]. This method can also be
adopted to Ta as well. As a consequence, the residual stress measurement results of the specimens by
nanoindentation method are applicable to predict the induced compressive residual stress by UNSM
treatment. Additionally, it is important to mention here that this method can be adopted only to
materials that create a pile-up around the indent after nanoindentation. The cross-sectional profile of
the residual indent on the surface of the UNSM-treated at RT specimen is shown in Figure 8, where
the pile up around the indent after nanoindentation is clearly observed. Hence, the calculated tensile
and compressive residual stress results by nanoindentation method in this study were found to be
absolutely accurate and reliable.

Materials 2018, 11, x FOR PEER REVIEW  12 of 19 

 

After obtaining a contact area of the specimens with tensile and compressive residual stresses, 
the tensile residual stress of the untreated and LHT without UNSM treatment at HT, and the UNSM-
treated at RT and HT specimens was calculated by Equations (1) and (2), respectively. It was found 
that the calculated tensile residual stress of the untreated and LHT without UNSM treatment at HT 
was 24.6 ± 9 and 9.4 ± 3 MPa, while the tensile residual stress that was measured by the XRD method 
was 20.47 ± 7 and 6.54 ± 2 MPa, respectively. The calculated compressive residual stress of the UNSM-
treated at RT and HT specimens was −636.26±86 and −1284.71 ± 114 MPa, while the compressive 
residual stress that was measured by XRD method was −607.44 ± 82 and −1228 ± 59 MPa, respectively. 
It is apparent from the residual stress results that were obtained by the nanoindentation method are 
in good consistence with the residual stress results obtained by XRD method ensuring a standard 
deviation in the range of about 10–14%. It is worth mentioning here that the residual stress of Au/TiW 
bilayer was estimated by deflection of double clamped beams, where the beam deflection was 
corrected by the indent penetration [53]. This method can also be adopted to Ta as well. As a 
consequence, the residual stress measurement results of the specimens by nanoindentation method 
are applicable to predict the induced compressive residual stress by UNSM treatment. Additionally, 
it is important to mention here that this method can be adopted only to materials that create a pile-
up around the indent after nanoindentation. The cross-sectional profile of the residual indent on the 
surface of the UNSM-treated at RT specimen is shown in Figure 8, where the pile up around the 
indent after nanoindentation is clearly observed. Hence, the calculated tensile and compressive 
residual stress results by nanoindentation method in this study were found to be absolutely accurate 
and reliable. 

 
Figure 8. Cross-sectional profile of the residual indent on the surface of the UNSM-treated at RT 
specimen. 

3.4. Friction and Wear Performance 

Friction of metallic materials is usually relatively high under dry conditions due to the frictional 
mating contact inducing plastic deformation in relative motion, leading to a mating surface 
roughening and progressive wear, delamination, or even fatigue. In this regard, the friction of 
metallic materials is a crucial property to improve the performance, reliability, and efficiency of 
metallic materials contacts in various industries. Figure 9 shows the variation in friction coefficient 
of the specimens as a function of sliding distance. The friction coefficient of the specimens was 
increased drastically at the beginning of the test, but the friction coefficient of the LHT with UNSM 
treatment at HT specimen increased gradually. All of the specimens demonstrated running-in, 
transition, and steady-state periods, as partially shown each periods in Figure 9. Obviously, the 
untreated specimen had the highest friction coefficient among other specimens with a friction 
coefficient of 0.72 during running-in period, which reduced gradually till the friction coefficient of 
0.58 in transition period, and then approached a stabilization in friction coefficient of 0.44 in the 
steady-state period. The friction coefficient of the UNSM-treated at RT specimen was also increased 
drastically at the beginning of the test, and then continued to increase to a friction coefficient of 0.62 

Figure 8. Cross-sectional profile of the residual indent on the surface of the UNSM-treated at RT specimen.

3.4. Friction and Wear Performance

Friction of metallic materials is usually relatively high under dry conditions due to the frictional
mating contact inducing plastic deformation in relative motion, leading to a mating surface roughening
and progressive wear, delamination, or even fatigue. In this regard, the friction of metallic materials
is a crucial property to improve the performance, reliability, and efficiency of metallic materials
contacts in various industries. Figure 9 shows the variation in friction coefficient of the specimens as a
function of sliding distance. The friction coefficient of the specimens was increased drastically at the
beginning of the test, but the friction coefficient of the LHT with UNSM treatment at HT specimen
increased gradually. All of the specimens demonstrated running-in, transition, and steady-state periods,
as partially shown each periods in Figure 9. Obviously, the untreated specimen had the highest friction
coefficient among other specimens with a friction coefficient of 0.72 during running-in period, which
reduced gradually till the friction coefficient of 0.58 in transition period, and then approached a
stabilization in friction coefficient of 0.44 in the steady-state period. The friction coefficient of the
UNSM-treated at RT specimen was also increased drastically at the beginning of the test, and then
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continued to increase to a friction coefficient of 0.62 during the running-in period and then reduced
rapidly till the friction coefficient of 0.52 in transition period and then finally approached a stabilization
in friction coefficient of 0.44 in steady-state period. The UNSM treatment was found to be beneficial
in running-in and transition periods, but not in steady-state one, which is attributed to the lack of
change in initial surface integrity of the UNSM-treated at RT specimen under dry conditions, where
the effectiveness of UNSM treatment can be easily lost under severe plastic deformation. It has been
reported earlier that the UNSM treatment reduced the friction coefficient of metallic materials under
both oil-lubricated and dry conditions, due to the features of UNSM treatment, such as improvement
in surface integrity, grain size refinement, the presence of micro-dimples on the surface, etc. [21,22,51].
On the contrary, Chen et al. have pointed out that refining the grain size of metallic materials cannot
reduce the friction coefficient under dry conditions even though its‘ hardness may be increased
significantly [52]. Fortunately, UNSM treatment not only increases the hardness of metallic materials,
but it also reduces the surface roughness and creates a bunch of dimples (dint) that can behave as traps
for wear particles under both oil-lubricated and dry conditions [51,54]. In case of the LHT without
UNSM at HT specimen, the friction coefficient exhibited absolutely the same friction coefficient trend
with the untreated and UNSM-treated at RT specimens, where the friction coefficient was about 0.51
in steady-state period, which was increased continuously throughout the friction test with relatively
high fluctuation (see Figure 9). The continuous rise in friction coefficient is due to the generated wear
particles or debris derived from roughened surface, due to repeated sliding under dry conditions.
Interestingly, in the case of the LHT with UNSM at HT specimen, the friction coefficient slowly
increased first to the highest friction coefficient of 0.59, and then reduced again to a value of 0.42,
and finally approached stabilization in a friction coefficient of 0.39, which reduced slightly throughout
the friction test. In addition, a shift in transition periods can be observed where the running-in and
transition periods were found to be shortened by LHT with UNSM at HT, while a steady-state period
achieved faster than other specimens, as shown in Figure 9.
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The wear resistance of the specimens showing the rate how fast or slow wear occurred is shown
in Figure 10, where the wear rate of the UNSM-treated at RT specimen was increased remarkably by
about 18–20% in comparison with the untreated specimen. The corresponding wear resistance of the
LHT without UNSM at HT specimen increased substantially in comparison with those specimens
due to the increase in hardness, as shown in Figure 6. In turn, the corresponding wear resistance
of the LHT with UNSM at HT specimen was further increased by an additional 36% in comparison



Materials 2018, 11, 452 14 of 18

with the LHT without UNSM at HT specimen. Overall, the corresponding wear rate of untreated
specimen can be decreased by over 90% by the application of thermal-mechanical UNSM treatment at
HT of 1000 ◦C. Wear resistance of a material and its hardness, compressive residual stress, and grain
size have a linear correlation. The enhancement in wear resistance of the UNSM-treated specimen
was attributed to the presence of gradient nanostructured surface layer, along with refined coarse
grains into nano-sized grains, induced compressive residual stress, increased surface, and subsurface
hardness. Furthermore, the wear resistance of the LHT with UNSM at HT specimen was further
enhanced by increasing the UNSM treatment temperature up to 1000 ◦C in comparison with that of
the UNSM-treated specimen. It was found that the combination of LHT with UNSM at HT of 1000 ◦C
was able to produce a thicker gradient nanostructured surface layer, higher and deeper compressive
residual stress, and also higher surface hardness and deeper subsurface hardness in comparison
with that of the UNSM-treated specimen at RT. The development of LHT with UNSM treatment
successfully demonstrated the possibility of further improvement in wear resistance of Ti-6Al-4V
alloy by increasing the hardness, compressive residual stress, refining grain size in comparison with
the UNSM-treated specimen at RT [26]. Moreover, it has been reported in our previous study that a
gradient nanostructured surface layer with a thickness of about 60 µm was produced in Ti-6Al-4V by
UNSM treatment at RT, while LHT with UNSM at HT of 800 ◦C was able to increase the thickness of
nanostructured surface layer by up to about 100 µm [39].
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Figure 10. Comparison in wear rate of the untreated, UNSM-treated at RT and LHT without and with
UNSM treatment at 1000 ◦C specimens.

The presence of gradient nanostructured surface layer was found to be responsible not only for the
increase in wear resistance but also improvement in frictional behavior of the LHT with UNSM at HT
specimen. In addition, in order to shed light on the friction and wear behavior, the surface morphology
and the roughening after sliding distance of 30 m under dry conditions of the UNSM-treated at RT
and LHT with UNSM at HT specimens are investigated as shown in Figure 11. It can be seen that
the worn out deep scars and damages parallel to sliding direction were formed on the surface of the
UNSM-treated at RT specimen that roughened the contact interface significantly without any cracks in
comparison with the LHT with UNSM at HT specimen due to its high hardness. The average surface
roughness inside the wear track of the UNSM-treated at RT and LHT with UNSM at HT specimens
increased to 2.4 and 1.8 µm from its initial surface roughness of 0.08 µm. It means that the resistance
against the sliding-induced surface roughening of the LHT with UNSM at HT specimen remained
greater in comparison with the UNSM-treated at RT one, which is also owing to the presence of
gradient nanostructured surface layer [54]. Moreover, the change in chemistry after wear test of the
UNSM-treated at RT and LHT with UNSM at HT specimens is shown in Figure 12. It was found that
the oxidative wear also played a crucial role in controlling the frictional behavior, where the amount of
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formed oxide-rich tribolayer was much more on the surface of the LHT with UNSM at HT specimen,
as presented in the inset of Figure 12. Consequently, a newly developed thermo-mechanical UNSM
treatment gives an opportunity to produce a gradient nanostructured surface layer with a thickness
of several hundreds in microns, where the refined grain size is increased gradually at an incremental
angle of about 30◦, as shown in Figure 2d. Many researchers mentioned the advantages of gradient
nanostructured surface layer over the nanostructured surface layer in terms of mechanical and thermal
stabilities, and also strain localization [13,29,54].
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4. Conclusions

In the current investigation, the effects of UNSM treatment with and without LHT at RT and HT
(1000 ◦C) on the microstructure, hardness, and wear resistance of Ta were systematically investigated.
The hardness of the UNSM-treated specimens at RT and HT (1000 ◦C) increased by about 20 and
62% in comparison with the untreated one. The LHT with UNSM at HT (1000 ◦C) was capable of
inducing a greater compressive residual stress (~1400 MPa) at the surface layer in comparison with
the UNSM-treated at RT and LHT without UNSM at HT. It was confirmed by cross-sectional EBSD
observations that the combination of LHT with UNSM treatment at HT (1000 ◦C) produced a stable
gradient nanostructured surface layer, with a thickness of several tens of microns, which led to an
increase in wear resistance and a reduction in friction behavior of Ta. In general, the possibility of
producing a stable gradient nanostructured layer by controlling the UNSM treatment temperature is
significant and would find any potential applications of Ta in various industries.
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