
Encoding Time in Feedforward Trajectories of a Recurrent 
Neural Network Model

NICHOLAS F. HARDY1,2 and DEAN V. BUONOMANO1,2,3

1Neuroscience Interdepartmental Program, University of California Los Angeles

2Department of Neurobiology, University of California Los Angeles

3Department of Psychology, University of California Los Angeles

Abstract

Brain activity evolves through time, creating trajectories of activity that underlie sensorimotor 

processing, behavior, and learning and memory. Therefore, understanding the temporal nature of 

neural dynamics is essential to understanding brain function and behavior. In vivo studies have 

demonstrated that sequential transient activation of neurons can encode time. However, it remains 

unclear whether these patterns emerge from feedforward network architectures or from recurrent 

networks, and, furthermore, what role network structure plays in timing. We address these issues 

using a recurrent neural network (RNN) model with distinct populations of excitatory and 

inhibitory units. Consistent with experimental data, a single RNN could autonomously produce 

multiple functionally feedforward trajectories, thus potentially encoding multiple timed motor 

patterns lasting up to several seconds. Importantly, the model accounted for Weber’s law, a 

hallmark of timing behavior. Analysis of network connectivity revealed that efficiency—a measure 

of network interconnectedness—decreased as the number of stored trajectories increased. 

Additionally, the balance of excitation and inhibition shifted towards excitation during each unit’s 

activation time, generating the prediction that observed sequential activity relies on dynamic 

control of the E/I balance. Our results establish for the first time that the same RNN can generate 

multiple functionally feed-forward patterns of activity as a result of dynamic shifts in the E/I 

balance imposed by the connectome of the RNN. We conclude that recurrent network architectures 

account for sequential neural activity, as well as for a fundamental signature of timing behavior: 

Weber’s law.

1 Introduction

The ability to accurately tell time and generate appropriately timed motor responses is 

essential to most forms of sensory and motor processing. However, the neural processes used 

to encode time remain unknown (Mauk and Buonomano, 2004; Buhusi and Meck, 2005; 

Ivry and Schlerf, 2008; Merchant et al., 2013). While the brain tells time across many scales, 

ranging from microseconds to days, it is on the scale of tens of milliseconds to a few 

seconds that timing is most relevant to sensory-motor processing and behavior. Several 
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neural mechanisms have been proposed to account for temporal processing in this range (for 

reviews see Hardy and Buonomano, 2016; Hass and Durstewitz, 2016), including 

pacemaker/counter internal clocks (Treisman, 1963; Gibbon et al., 1984), ramping firing 

rates (Durstewitz, 2003; Simen et al., 2011), the duration of firing rate increases (Gavornik 

et al., 2009; Namboodiri et al., 2015), models that rely on the inherent stochasticity of 

sensory signals and neural responses (Ahrens and Sahani, 2008; Ahrens and Sahani, 2011), 

and finally “population clocks”, in which timing is encoded in the evolving patterns of 

activity within recurrent circuits (Buonomano and Mauk, 1994; Mauk and Donegan, 1997; 

Medina and Mauk, 1999; Buonomano and Laje, 2010).

The theory that time is encoded in the dynamics of large populations of neurons has received 

experimental support in several brain regions including the cortex (Crowe et al., 2010; 

Merchant et al., 2011; Harvey et al., 2012; Kim et al., 2013; Crowe et al., 2014; Bakhurin et 

al., 2017), basal ganglia (Jin et al., 2009; Gouvea et al., 2015; Mello et al., 2015), 

hippocampus, (Pastalkova et al., 2008; MacDonald et al., 2011; Kraus et al., 2013; Modi et 

al., 2014), and area HVC in songbirds (Hahnloser et al., 2002; Long et al., 2010). Some of 

these studies report relatively simple, apparently feedforward, sequential patterns of activity 

in brain regions containing significant recurrent connectivity. A fundamental question is 

whether these patterns of activity are generated by truly feed-forward circuits, or rather by 

recurrent circuits generating “functionally feedforward” patterns of activity (Banerjee et al., 

2008; Goldman, 2009). Here we define functionally feedforward trajectories as those 

generated by recurrent neural networks, and that are characterized by sequential patterns of 

activation (“moving bumps”) in which any given unit only fires once during a pattern.

Synfire chains are perhaps the simplest network-based model that could account for the 

reports of functionally feedforward patterns of activity. Typically, synfire chain models 

consist of many pools of neurons connected in a feedforward manner such that activation of 

one pool results in the sequential activation of each downstream pool (Abeles, 1991; 

Diesmann et al., 1999). However, cortical circuits, where functionally feedforward activity is 

often observed, are characterized by recurrent connections and local inhibition, features that 

standard synfire chain models generally lack (Harvey et al., 2012). Moreover, the capacity of 

these synfire networks is limited because any given neuron generally participates in only one 

pattern (Herrmann et al., 1995). To address these issues, we use a model of recurrent neural 

networks (RNNs) to examine how they might produce functionally feedforward patterns of 

activity that encode time.

Previous studies of timing using RNNs have not sought to simulate experimentally observed 

patterns of neural activity and have used RNNs that do not follow Dale’s law. We expand on 

previous work (Laje and Buonomano, 2013; Rajan et al., 2016) by training RNNs that 

follow Dale’s Law to emulate experimentally observed activity patterns. In addition, unlike 

standard RNN models, the networks in this study only have positive value firing rates. The 

networks are trained using the innate-training learning rule to autonomously produce stable 

activity for up to five seconds, two orders of magnitude greater than the time constant of the 

units (Laje and Buonomano, 2013; Rajan et al., 2016). Our results demonstrate that RNNs 

can robustly encode time by generating functionally feedforward patterns of activity. 

Importantly, these networks account for a characteristic of motor timing known as Weber’s 
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Law (Gibbon, 1977; Gibbon et al., 1997), and can encode multiple feedforward patterns. 

Analysis of trained networks revealed changes in the balance of excitation and inhibition 

that account for the production of this feedforward activity, thus generating an 

experimentally testable prediction.

2 Results

2.1 Recurrent Neural Networks Produce Functionally Feedforward Trajectories

We first examined if recurrent neural networks can generate the sequential patterns of 

activity observed in the cortex and hippocampus (Pastalkova et al., 2008; Crowe et al., 2010; 

MacDonald et al., 2011; Crowe et al., 2014). Typically, in these areas any neuron 

participating in a sequence is active for periods of hundreds of milliseconds to a few 

seconds. We used a modified version of standard firing-rate RNNs in which units are 

sparsely and randomly connected to one another (Sompolinsky et al., 1988). Specifically, to 

more closely mimic neural physiology we incorporated separate populations of excitatory 

and inhibitory units (Fig. 1A). Furthermore, the firing rate of each unit was bounded 

between 0 and 1 (see Materials and Methods).

We used a supervised learning rule to adjust the recurrent weights and train the network to 

produce a functionally feedforward trajectory in response to a brief (50 ms) input. 

Specifically, the networks were trained to produce a 5 second long target sequence of 

feedforward activity such that each unit in the network was transiently activated without 

being driven by external input (Fig. 1C). This activity pattern can be thought of as a moving 

bump of neural activity. After training, the network was able to reproduce the 5 sec long 

neural trajectory in response to the brief input (Fig. 1D). Importantly, after the end of the 

trajectory the RNN returned to an inactive rest state—thus in contrast to RNNs in high-gain 

regimes these networks were silent at rest. Training dramatically altered the distribution of 

synaptic weights in the network: the weight of many synapses converged to 0 (in part as a 

consequence of the boundaries imposed by Dale’s law) while others were strengthened 

resulting in long tails (Fig. 1B). These long-tails of the synaptic weight distribution is in line 

with experimentally observed distributions of synaptic weights (Song et al., 2005) and 

observations in previous models of neural dynamics in RNNs (Laje and Buonomano, 2013; 

Rajan et al., 2016).

2.2 RNNs can Encode Multiple Sequences

Many motor behaviors such as playing the piano or writing require the use of the same 

muscle groups activated in distinct temporal patterns. If the motor cortex is to drive these 

motor patterns, it must produce distinct well-timed trajectories of neural activity using the 

same sets of neurons activated in different orders. Traditional models of sequential neural 

activity (e.g. standard feedforward synfire chains) do not account for this because each unit 

generally participates in only a single sequence.

To examine the capacity of recurrent networks to encode multiple functionally feedforward 

trajectories, we trained RNNs to learn patterns in which all units participated in each 

trajectory. RNNs were trained to learn 1, 3, 5, 10, or 20 distinct sequences. Each sequence 
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lasted one second, and was triggered by a distinct input. As shown in Fig. 2A, an RNN can 

generate multiple distinct patterns in response to distinct inputs. Importantly, each pattern 

recruits all the units in the network. To quantify the network capacity, we calculated the 

correlation between the evoked activity on each test trial and the corresponding target. We 

used the average correlation across targets as a measure of performance. Trained networks 

could reliably produce ten 1-second sequences with relatively little decrement in 

performance. However, when RNNs were trained on 20 patterns they showed a large 

decrease in performance (one-way ANOVA, F4,45= 193, p < 10−27, n = 10 networks; Fig. 

2B) and increased failure rate (number of trials in which the input did not evoke a pattern or 

generated a partial sequence; one-way ANOVA, F4,45= 419, p < 10−35, n = 10 networks).

2.3 Functionally Feedforward Trajectories Account for Weber’s Law

A defining feature of behavioral timing is that there is an approximately linear relationship 

between the standard deviation and mean of a timed response (Gibbon, 1977; Gibbon et al., 

1997)—referred to as the scalar property or Weber’s law. The ability to account for Weber’s 

law is often taken as a benchmark for models of timing, and does not generally emerge 

spontaneously in many models (Ahrens and Sahani, 2008; Hass and Herrmann, 2012; Hass 

and Durstewitz, 2014). To examine whether the RNNs studied here obey Weber’s law, we 

measured the temporal variability of each unit within a single feedforward pattern at 

different levels of noise. We fit the activity of each unit on every test trial with a Gaussian 

function, and calculated the standard deviation and mean of the peak time of each unit’s fit 

across trials (see Materials and Methods). We used Weber’s generalized law to fit the 

standard deviation as a function of time, and refer to the slope of this linear fit as the Weber 

coefficient (Ivry and Hazeltine, 1995; Merchant et al., 2008)—note that Weber’s generalized 

law allows for a positive intercept. In each of ten trained networks, we found that the 

standard deviation of a unit’s peak firing time across trials increased linearly with its mean 

activation time (Fig. 3A). This property was highly robust: while the Weber coefficient 

increased with the amount of noise injected into the network, the scalar property was 

preserved even at large noise amplitudes (Fig. 3B)—thus Weber’s law was not limited to any 

specific noise parameter choice.

2.4 Sequences are Generated by Dynamic Shifts in the Balance of Excitation and Inhibition

Experimental studies have conclusively demonstrated that functionally feedforward patterns 

of activity occur in vivo, but these studies have not been able to explore the neural and 

network mechanisms underlying these patterns (Pastalkova et al., 2008; Harvey et al., 2012; 

MacDonald et al., 2013). Computational models allow us to address this question and 

generate experimental predictions. To determine how RNNs generate sequential activity, we 

first examined the balance of excitation and inhibition in the units during the trained 

patterns. This analysis parallels experimental studies which have examined the relative 

balance of excitatory and inhibitory currents (Shu et al., 2003; Froemke et al., 2007; Heiss et 

al., 2008). We examined the balance of excitation and inhibition by separately summing the 

total excitatory and inhibitory input onto each unit at all time points. Fig. 4A shows the 

relationship between the E/I balance and firing rate in a single example unit. Interestingly, 

when cells were not active they still received significant excitation and inhibition, and these 

inputs were usually approximately balanced (E/I ≅ 1), similar to a recent in vitro study of 
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temporal processing (Goel and Buonomano, 2016). This balance shifted towards excitation 

(E/I > 1) primarily during a unit’s target activity period. By plotting the E/I ratio of all the 

neurons in the network during a trajectory it is possible to visualize the progressive shift in 

the E/I balance during a feedforward sequence (Fig. 4B). These observations are consistent 

with experimental studies during up-state activity showing excitatory and inhibitory currents 

are balanced, and that changes in activity consist of subtle shifts towards excitation (Shu et 

al., 2003; Haider et al., 2006; Sun et al., 2010), as well as recent work showing timing-

specific shifts in E/I balance in vitro (Goel and Buonomano, 2016).

To examine the origins of the dynamic shift in the E/I balance, we analyzed the synaptic 

connectivity matrix. When sorted according to activation order, connections from both 

inhibitory and excitatory units displayed a pattern of peak connection strength along the 

sequence of activation (Fig. 4C). To examine the structure of the connectome we shifted the 

sorted weight matrix to align the window of activity of each postsynaptic cell within the 

trajectory. Taking the mean across all cells of this shifted weight matrix revealed a peak of 

excitation pointing forward along the trajectory (that is, the excitatory weights are 

asymmetrically shifted to the right), bounded by peaks of inhibition (Fig. 4D, upper panel). 
Despite the rightward shift of the peak—and in contrast to feedforward networks—the 

excitatory units are clearly connected in the “forward” and “backward” directions. This 

anatomical feature allows for the local mutual excitation necessary to keep units active for 

durations of up to a second. This “Mexican hat” connectivity pattern, has been observed in 

other studies of sequence generation (Itskov et al., 2011; Rajan et al., 2016) and accounts for 

the moving bump of activation in feedforward RNNs. Interestingly, for a single pattern the 

shift of the E/I balance towards excitation was primarily driven by an increase in excitation 

(Fig 4D upper panel). However, when the same analysis is performed for networks that 

learned 10 patterns, the E/I shift driving activity forward was generated by both an increase 

in excitation and a decrease in inhibition (Fig. 4D, lower panel). Taken together, these 

results predict that recurrent networks in the cortex generate functionally feedforward 

sequences of activity using asymmetries in the connectivity patterns between neurons, and 

dynamic shifts in the E/I balance.

2.5 Connectivity of RNNs Reflects the Number of Encoded Trajectories

There is increasing emphasis on characterizing the microcircuit structure, or the 

connectome, of biological neural circuits. To further examine the relationship between the 

microcircuit structure in our model, and potentially generate experimental predictions, we 

calculated network efficiency—a standard measure from graph theory that captures the 

“interconnectedness” of the units in a graph (Boccalettii et al., 2006). Specifically, it 

measures the minimal weighted path length between units, such that a larger efficiency value 

corresponds to a shorter path (see Materials and Methods). Because we were interested in 

the relationship between structure and function we compared efficiency measures of coactive 

and non-coactive units. Furthermore, since the activity in any unit is the result of the 

interaction between excitatory and inhibitory inputs we separately calculated the net 

excitatory and inhibitory connection strengths between pairs of units—generating 

topological representations of recurrent excitation and inhibition. We then calculated the 

weighted efficiency index of these connections in trained untrained networks.
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As expected, when averaged along a single trained sequence of feedforward activity, we 

observed that units that co-activate (i.e, active at neighboring points in time) had a higher 

than average efficiency value (Fig. 5A), similar to the observed “Mexican hat” architecture 

in Fig. 4D. However, when networks were trained for sustain more coactive units (Fig. 5B), 

or were trained to produce a larger number of targets (Fig. 5C), the connection efficiency 

between coactive and non-coactive units approached the network mean. Finding the average 

disynaptic efficiency between coactive and non-coactive units revealed that efficiency 

sharply increased when networks were trained for a single target, with coactive efficiency 

exceeding non-coactive (Fig. 5D). As more trajectories were encoded, this difference 

decreased, indicating that efficiency became uniform with respect to unit pairs’ active 

relationship. Moreover, networks with more coactive units (40% active) were initially more 

uniform than those with fewer coactive units (i.e, the efficiency between coactive and non-

coactive units was more similar), consistent with the notion that higher local efficiency may 

be necessary to maintain temporally sparser trajectories in order to support more local 

positive feedback between coactive units.

3 Discussion

Functionally feedforward patterns of activity have been observed in a wide range of different 

brain areas (Pastalkova et al., 2008; MacDonald et al., 2011; Kraus et al., 2013; Mello et al., 

2015; Bakhurin et al., 2017). These patterns have been proposed to underlie a number of 

different behaviors, including memory, planning, and motor timing. Here we have focused 

primarily on the potential role of such patterns in timing, specifically in tasks which animals 

must learn to generate timed motor patterns or anticipate when external events will occur on 

the scale of hundreds of milliseconds to seconds. Our results show that even though many of 

these experimentally reported patterns of sequential activation are apparently accounted for 

by feedforward architectures, recurrent neural networks are more consistent with the data. 

Furthermore, recurrent architectures are computationally more powerful in that they can 

store many different trajectories in which each unit participates in each trajectory. We 

propose that networks with recurrent excitation underlie the functionally feedforward 

trajectories observed in cortical areas.

A number of models have proposed mechanisms for generating functionally feedforward 

patterns within recurrent networks (Buonomano, 2005; Liu and Buonomano, 2009; Fiete et 

al., 2010; Itskov et al., 2011; Rajan et al., 2016). These studies have used both spiking and 

firing rate models, and relied on a number of different mechanisms, but they have not 

explicitly addressed a standard benchmark for behavioral timing—Weber’s law. One recent 

model developed by Rajan et al. (2016) also trained RNNs using the an RLS-based learning 

rule, and our results complement their findings: specifically that by tuning the recurrent 

weights of an initially randomly connected network it is possible to robustly encode multiple 

functionally feedforward patterns of activity. That study, however, focused primarily on 

sequence generation and encoding memory-dependent motor behaviors, and did not encode 

time per se as the network was driven in part by time-varying inputs (that is, external 

information about the time from trial onset was present).
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3.1 Weber’s Law

Here we show that an RNN can encode time and account for Weber’s law, more specifically 

Weber’s generalized law, which states that the standard deviation of a timer increases 

linearly with elapsed time (Ivry and Hazeltine, 1995; Merchant et al., 2008; Laje et al., 

2011). The origins of Weber’s law in timing models is a longstanding and vexing problem, 

because according to the simplest model in which an accumulator integrates the pulses of a 

noisy oscillator, the standard deviation of the latency of a neuron, or of a motor output, 

should increase as a function of the square root of total time (Hass and Herrmann, 2012; 

Hass and Durstewitz, 2014; Hass and Durstewitz, 2016). In contrast, the current model 

naturally captures Weber’s law (at least within the parameter regimes used here), even at 

high noise amplitudes. Major issues remain, such as the properties underlying Weber’s law 

in recurrent networks and why the brain “settles” for the observed linear relationship (Hass 

and Herrmann, 2012). We hypothesize that these properties may be related: 1) recurrency 

may inherently amplify internal noise, producing long-lasting temporal correlations (Hass 

and Herrmann, 2012), and 2) evolutionarily speaking, the tradeoff was adaptive because it 

increased computational capacity.

The current model also establishes that RNNs can robustly store multiple patterns, in which 

each neuron participates in every pattern. This feature is consistent with experimental 

findings demonstrating that the same neuron can participate in multiple patterns of network 

activity, firing within different windows in each (Pastalkova et al., 2008; MacDonald et al., 

2013). Thus the experimental data and the current model are consistent with stimulus-

specific timing, in which time codes are generated in relation to each stimulus or task 

condition as opposed to an absolute time code. The capacity of the RNNs described here 

appears to be fairly large. But as demonstrated in a previous study, the true capacity of 

RNNs is likely to be strongly dependent on model assumptions, most notably noise levels 

(Laje and Buonomano, 2013).

Within this population clock framework, the same RNN does not function as a single clock, 

but rather implements many event-specific timers. That is, the network does not encode 

absolute time but elapsed time from stimulus onset, and there is an entirely different time 

code for each stimulus. This computational strategy ensures that the activity vector at any 

given instant not only encodes elapsed time, but also provides a dynamic memory of the 

current stimulus.

3.2 RNN Connectome

In order for sequences to propagate in a defined trajectory through a network, activity must 

generate imbalances that simultaneously push the activity forward and prevent it from 

deviating from the proper activation order (Ben-Yishai et al., 1995; Fiete et al., 2010). Here 

we find that training an RNN composed of distinct excitatory and inhibitory populations 

produces synaptic connectivity resembling an asymmetric “Mexican hat” architecture, with 

excitation propagating and maintaining network activity and inhibition bounding this activity 

to prevent off-target activation. Importantly, the recurrency of the network enables multiple 

“Mexican hats” to be embedded in a single connectivity matrix, allowing multiple functional 

feedforward patterns to be produced by a single network.
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An important characteristic of the connectome of a network is how efficiently individual 

units exchange information. Surprisingly, we found that the weighted efficiency of a 

feedforward RNN was negatively correlated with the number of sequences stored, and that 

this change was largely driven by reduced efficiency between coactive units. Indeed, multi-

trajectory networks exhibited uniform path lengths between units, regardless of their relative 

activation order. This “flattening” of the efficiency within a network is likely necessary to 

allow units that are highly separated in one sequence to also co-activate in another. Thus a 

prediction that emerges from this study is that learning may induce an overall decrease in the 

efficiency of cortical circuits, as the networks embed more uniform connection structures, 

making individually learned patterns difficult to distinguish using connectomics.

Reports of sequential patterns of activity in multiple brain areas appear to be superficially 

consistent with feedforward synfire-like architectures. However, recurrent networks are 

likely responsible for generating the experimentally observed patterns for two reasons. First, 

although the patterns of activity comprise sequential activation of neurons, the duration of 

activity over which a neuron fires (in the range of hundreds of millisecond to a few seconds) 

likely relies on local positive feedback maintained by recurrent connections; and second, 

purely feedforward network architectures are unlikely to account for the ability of networks 

to generate multiple trajectories in which any given neuron can participate in many different 

patterns.

4 Materials and Methods

4.1 Network Structure and Dynamics

The network dynamics were governed by the standard firing rate equations (Abeles, 1982; 

Sompolinsky et al., 1988; Jaeger and Haas, 2004):

(1)

Where xi represents the state of unit i. The sparse, NRec x NRec matrix WRec describes the 

recurrent connectivity, with nonzero values initially drawn from a Gaussian distribution of μ 

= 0 and , where g = 1.6 is the synaptic scaling constant and pc = 0.3 is the 

probability a given unit will connect to another unit in the network (autapses were 

eliminated). The firing rate, ri, of unit i is given by the logistic function:

(2)

where a = 2 and b = 4 correspond to the gain and “threshold” of the units, respectively. 

Compared to the traditional tanh function, this provides a more biologically plausible model 

in which activity is low at “rest” (i.e. without input), and rates are bounded between 0 and 1.
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After initialization, the efferent synapses from a randomly selected half of the recurrent units 

were set to be positive and the other half set to be negative to create inhibitory and excitatory 

populations. The NRec x NIn matrix WIn describes the input connections from input units y 
to the recurrent units, and is set to stimulate only those units active at the start of a 

functionally feedforward sequence with weight equal to each unit’s target activity at t = 0. 

The activity of the input units was set to 0 except during the 50 ms input window at the 

beginning of a trial when it was set to 3. NRec = 1200 is the network size, and τ = 25 ms is 

the time constant of the units. The random noise current (INoise) was drawn from a Gaussian 

distribution of μ = 0 and σ = 0.5 (noise amplitude) unless otherwise indicated. A single unit 

of the RNN contacted all other units and was tonically active, providing a “bias” to each 

unit, but containing no temporal information as its activity was set to 1 at all times.

4.2 Training the RNNs

The RNNs were trained to generate target patterns of sequential activity designed to mimic 

the functionally feedforward activity observed in neural circuits during temporal tasks 

(Hahnloser et al., 2002; Pastalkova et al., 2008; MacDonald et al., 2011; Harvey et al., 

2012). These targets were generated by setting each unit to activate briefly in sequence so 

the entire population tiled the interval defined by tmax (Fig. 1C). The activation order was 

generated randomly for each target pattern and constrained so that the order of inhibitory 

and excitatory units was interleaved. The pattern of activation for each unit was set by a 

Gaussian with a μ equal to the unit’s activation time. The temporal sparsity of the pattern, 

defined by , where NActive represents the number of units in the target pattern that are 

active at any given point in time, was set to approximately 20% by making the σ of the 

Gaussian target function 7.5% of tmax (Rajan et al., 2016).

Training was performed using the innate-training learning rule which tunes the recurrent 

weights based on errors generated by each unit (Laje and Buonomano, 2013), similar to the 

learning rule used in Rajan et al. 2016. The error was determined by taking the difference 

between the activity of the unit ri and it’s target activity at time t and used to update its 

weights using the recursive least squares (RLS) algorithm (see also, Haykin, 2002; Jaeger 

and Haas, 2004; Sussillo and Abbott, 2009; Mante et al., 2013; Carnevale et al., 2015; Rajan 

et al., 2016). As described previously (Laje and Buonomano, 2013) the weights onto a given 

unit were updated proportional to its error, the activity of its presynaptic units, and the 

inverse cross-correlation matrix of the network activity. To maintain Dale’s law, efferent 

weights from all units were bounded so that they could not cross zero (i.e. negative weights 

were prevented from becoming positive and vice versa). The weights were bounded to a 

maximum value of  of the appropriate sign to prevent overfitting. Training was 

conducted at a noise amplitude of 0.5 and all recurrent units were trained.

4.3 Weber Analysis

To determine if the timing of the network obeyed Weber’s law, we tested each network 15 

times at six different INoise amplitudes. For each trial, we fit the activity of each unit with a 

Gaussian curve and used the center of that curve as a measure of the unit’s activation time. 

Because each unit activates only once, time can be measured directly from the activity state 
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of the network (Abeles, 1982; Long et al., 2010). Only units whose Gaussian fit had an R2 > 

0.9 where used for the Weber analysis. For a given noise level and network, we calculated 

the standard deviation (stdi) and mean (ti) of these activation times for each unit i and found 

a linear fit of these values. We then used the slope of the linear fit as the Weber coefficient, 

std/t (excluding units outside a 95% confidence interval of the linear fit; Fig. 1).

4.5 Performance

Network performance was measured by a performance index, calculated as the correlation 

(R2) between network activity on a given trial and the corresponding target pattern. The 

overall performance of a network was calculated as the network’s mean performance index 

across all trials for all trained patterns. Particularly at high noise levels and numbers of 

trained targets, networks sometimes failed to complete a feedforward sequence; thus we also 

used the percentage of these failures to quantify capacity (Fig. 2B).

4.6 Network Efficiency

In graph theory, network efficiency measures the shortest path between two nodes of a 

network, and can be thought of as a measure of interconnectedness of the units (Boccalettii 

et al., 2006). Efficiency was calculated by determining the minimum weighted disynaptic 

excitatory and inhibitory path length between pairs of excitatory units in the network, with 

weights normalized to the maximum weight. Disynaptic connection strengths were 

calculated by taking matrix products WEx ExWEx Ex for the excitatory path and 

WEx InhWInh Ex for inhibitory path, creating two NEx × NEx matrices. The path length 

between two units was determined by finding the series of edges that connected the units 

with the smallest summed inverse weight. For example, if unit A is connected to unit B with 

a strength of 0.2, the path length will be 5; if unit A is also connected to unit C with a 

strength 0.5 and unit C connects to B with a strength of 0.5, then the length from A to B is 4 

(2 + 2). Thus the minimum weighted path between A and B would be through unit C. This 

path length was calculated for all possible pairs in the disynaptic matrices, inverted, and 

normalized by the total number of possible connections (NRec * (NRec − 1)) to generate an 

efficiency value. Therefore, a network with 100% maximal connections would have an 

efficiency value of 1.
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Figure 1. Generation of feedforward trajectories within a RNN
A. Schematic of network architecture. The networks were composed of 600 excitatory (blue) 

and 600 inhibitory (red) firing rate units (NRec = 1200), with sparse recurrent connections. 

Neurons at the beginning of a sequence received input (green) during a 50 ms window to 

trigger the trajectory. B. Connection weights were initialized with a Gaussian distribution. 

After training to produce a single feedforward sequence, a large number of weights were 

pruned to zero, and some weights became stronger, resulting in a long tailed distribution. C. 
Example five second feedforward sequence target. D. After training, the RNN can produce a 

five second feedforward trajectory. Top: two units trained to activate in the middle and end 

of the trajectory, highlighted below. Each trace represents one of 15 trials. Bottom: Example 

network activity from a single trial.
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Figure 2. A single RNN can encode many different feedforward trajectories
A. The units of the same trained RNN in response to two different inputs. Each column 

shows the spatiotemporal pattern of activity triggered by a single input. Each row shows the 

activity sorted according to feedforward trajectory #1 (top row) or #2 (bottom row). Blue 

and pink dashed lines highlight the same two units in all panels. B. Performance (top) and 

failure rate (bottom) for ten networks trained to produce up to 20 trajectories. Each dot 

represents the average across 15 trials per target for a single network. Each network can 

reliably produce up to ten feedforward sequences before performance decreases. Error bars 

show the mean ± SEM
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Figure 3. The timing generated by the RNN obeys Weber’s law
A. Temporal variability increases linearly with elapsed time. Each dot shows the standard 

deviation of the activation time of a unit of an example network plotted against its mean. The 

activation time of each unit on each trial was determined from the center of a Gaussian fit of 

that unit’s activity. Each color represents one of six amplitudes of injected noise. Lines show 

the linear fit. B. The Weber law is robust to noise. The Weber Coefficient (slope of the linear 

fit shown in panel A) is shown across six noise amplitudes for ten trained networks. Each 

dotted line represent a single network, the solid black line represents the mean with error 

bars showing ± SEM. Inset: mean ± SEM of the goodness of fit (R2) for the linear fits.
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Figure 4. Feedforward trajectories are generated by dynamic shifts in the E/I balance
A. The excitation/inhibition (E/l) ratio peaks around a unit’s activation time. Top: the 

activity of an example unit which peaked in the middle of a five seconds trajectory. Bottom: 

Inhibitory (red) and excitatory (blue) inputs are high but usually balanced throughout the 

trajectory, but the balance shifts towards excitation when the unit is active. E/I ratio shown in 

pink. B. A heat-map of the E/I ratio of the same network showing a shifting peak of the E/I 

ratio along the trajectory (during one trial). C. Excitatory (top) and inhibitory (bottom) 

weight matrices of a network sorted according to the activation order. Note the peak in 

synaptic strength following the activation order along the diagonal. Weights are smoothed 

for visualization. D. Averaging along the feedforward trajectory reveals a peak in excitatory 

weights pointing forward, bounded by inhibition. The absolute value of the weight matrix 

was centered along the feedforward sequence and averaged according to excitatory and 

inhibitory units. Top: Weights of a network trained for one pattern. Bottom: The same initial 

network, but trained for ten feedforward patterns.
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Figure 5. Multiple feedforward pat terns are embedded via uniform path lengths between units
A. Average disynaptic efficiency between coactive (unshaded) and non-coactive (shaded) 

unit pairs in an RNN trained for a single feedforward target. Units that are coactive during a 

trajectory have a higher mean efficiency compared to non-coactive pairs. Efficiency values 

were normalized to the mean to aid visualization. B. Same as A but showing the same initial 

network trained such that more units are coactive at a given time (lower temporal sparsity). 

The efficiency across the network is more uniform. C. Same as in A now trained for 10 

targets. In A–C, postsynaptic efficiency values were aligned according to the activation 

order of the presynaptic unit within the same target order and averaged across units. D. 
Average efficiency of connections between coactive and non-coactive units according to the 

number of trained trajectories. Efficiency increases sharply from the naive weights. As more 

trajectories are encoded, efficiency becomes uniform across the network, i.e. the difference 

between coactive and non-coactive units decreases.
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