Algorithm, part 1.
Dictionary creation
Init split CA-DS into 2 disjoint sets: dictionary, training&testing (for model creation) |
input 40 calcium sub-images. |
output dictionary of textons (∈ ℝK×n) |
for each sub-image {
|
} |
Concatenate all calcium pixel responses |
Create K clusters for each group via K-means (Identify K via “elbow” method). |
Output dictionary |