Skip to main content
. Author manuscript; available in PMC: 2018 Mar 28.
Published in final edited form as: Proc SPIE Int Soc Opt Eng. 2016 Mar;9786:978605. doi: 10.1117/12.2216315

Algorithm, part 1.

Dictionary creation

Init split CA-DS into 2 disjoint sets: dictionary, training&testing (for model creation)
input 40 calcium sub-images.
output dictionary of textons (∈ ℝK×n)
for each sub-image {
  1. Create filter bank, F

  2. Convolve with filter bank, F (∈ □nf) and record convolution value.

  3. Combine with DGAS feature set - ℝn for each pixel

}
Concatenate all calcium pixel responses
Create K clusters for each group via K-means (Identify K via “elbow” method).
Output dictionary