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BACKGROUND

The gastrointestinal tract (GIT) is a diverse and complex ecosystem shaped by continual 

interactions between host cells, nutrients, and the gut microbiota. The gut microbiome is 

estimated to contain approximately 1013 bacterial cells and is dominated by the major phyla 

Firmicutes, Bacteriodetes, Actinobacteria, Proteobacteria and Verrucomicrobia (1, 2). Early 

colonizers of the GIT include bifidobacteria from the phylum Actinobacteria. These 

commensal microbes colonize immediately after birth and are speculated to prime the GIT 

and influence the gut-brain-axis (3–5). The infant microbiota is considered to be relatively 

unstable. Despite dramatic changes in the microbiome structure during early life, the gut 

microbiota increases in diversity and stability over the first three years of life (6). Following 

this initial establishment, the microbiome of children are generally enriched in 

Bifidobacterium spp., Faecalibacterium spp., and Lachnospiraceae compared to adults (7–9). 

During adulthood, the gut microbiome is considered to be stable and is dominated by the 

phyla Firmicutes and Bacteriodetes. While bacterial populations vary between individuals, 

the fecal microbiota of adults is highly stable through time (6). This stability is maintained 

until older age (> 65), when the microbiome stability and function beings to decline (10, 11).

A mutualistic relationship exists between the gut microbiota and the host. Commensal 

microbes metabolize indigestible food components, produce vitamins, prime the immune 

system, modulate the enteric nervous system (ENS) and potentially the central nervous 

system (CNS), contribute to intestinal architecture development, protect against colonization 

of opportunistic pathogens and more for the benefit of the host (12). Conversely, the host 

generates a stable ecosystem for the gut microbiota, providing nutrients and ecological 

niches. The gut selects resident commensal microbes based on their capacity to adapt to and 

colonize within the host.

Select commensal bacteria are able to positively alter the gut microbiome and/or host. Many 

of these commensal groups harbor strains that are considered to be probiotics. Probiotics are 

defined as microbes which confer advantages to the host and have not been implicated to 

confer human disease (World Health Organization) and these well characterized organisms 
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are known to produce a number of beneficial products which promote host health. Certain 

strains of Lactobacillus, Bifidobacterium, Escherichia coli, Bacillus, and Propionibacterium 
spp. have been classically used as probiotics. The value of probiotics has been supported by 

multiple clinical trials, which demonstrate improvements for patients receiving probiotics in 

response to multiple pathologies including diarrhea, inflammatory bowel disease (IBD), 

allergic reactions, viral infections, cancer, and others. However, a number of commensal 

bacteria that are not defined as probiotics are also known to produce bioactive metabolites 

with health promoting effects. These commensals include Ruminococcus, Eubacterium, 
Roseburia, Faecalibacterium, and Akkermansia spp. This review seeks to identify major 

pathways used by commensal bacteria to beneficially modulate the host, with the caveat that 

the majority of studies that have identified specific mechanisms tend to focus on probiotic 

strains.

Commensal and beneficial microbes have been hypothesized to promote health in a variety 

of ways: (1) exclusion of pathogens, (2) immunomodulation, and (3) enhancement of the 

intestinal barrier (Figure 1). Several mechanisms have been proposed to explain the 

beneficial effects of observed by key commensal microbes. One mechanism of great interest 

is the secretion of molecules which are capable of altering both the host and the microbiome. 

Bacterial metabolites can be generated as intermediate or end products of bacterial 

metabolism (Figure 2). Secreted products can target the microbiome by acting as signaling 

molecules for intra-species/strain communication (quorum sensing), altering the intestinal 

environment, and targeting certain microbes to control microbiota composition 

(antimicrobials). These molecules include lactic acid, hydrogen peroxide, and bacteriocins 

(Figure 3). Likewise, bacterial molecules can modify the host. Metabolites can participate in 

functional complementation to the host metabolic capabilities, immune regulation and 

improvement of intestinal barrier function. These factors include small molecule metabolites 

such as histamine, vitamins, short chain fatty acids, polyunsaturated fatty acids, serpins, 

lactocepins, and secreted proteins (Figure 3). Of note, the metabolic potential of microbes 

varies greatly among species, and even among strains of the same species. Several studies 

have found that microbe-driven protective effects depend on the strains used (13–15). These 

differences could be due in part to the diversity of secreted metabolites. As a result, it is 

important to characterize the secreted products of individual microbes in order to identify 

which strains should be used for a specific disorder. Herein we describe the most prominent 

examples of well characterized secreted products and their documented effects on the 

microbiome and/or host function.

Signaling Compounds

1. Bacterial-host signaling compounds

Biogenic Amine Neuromodulators—Select microbes are known to produce 

biologically active compounds that are associated with mammalian neurotransmission and 

behave as neuroactive compounds. These molecules include histamine, gamma-

aminobutryic acid (GABA), and tryptophan metabolites. Microbe-generated 

neuromodulators in the intestinal lumen likely regulate signaling within the enteric nervous 

system (ENS) and ultimately effect the “gut-brain axis”. Although bacterial products such as 
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acetate (16) and peptidoglycan (17) have been found in the central nervous system (CNS), 

these neuroactive compounds primarily affect the enteric part of the peripheral nervous 

system and are thought to act in a local manner.

Biogenic amines (BAs) are low molecular organic bases generated through decarboxylation 

of specific free amino acids, reductive amination of aldehydes and ketones, transamination 

or hydrolytic degradation of nitrogen compounds. BA are ubiquitously present in both pro- 

and eukaryotes. In bacteria, the most common mechanism of BA synthesis is the microbial 

decarboxylation of amino acids catalyzed by amino acid decarboxylases (18). Certain 

bacteria are able to use BA production to harness the proton gradient and generate energy 

and/or increase the cytoplasmic pH, thereby protecting cells against acid damage (19). BAs 

are separated into classes based on the number of amino groups present in the structure: 

monoamines, diamines, and polyamines (18). BAs are known to be key regulators of host 

health, particularly when acting as hormones or neurotransmitters. BAs can be classified 

according to their chemical structure as aliphatic (putrescine, cadaverine, spermine, 

spermidine), aromatic (tyramine, β-phenylethylamine), or heterocyclic (histamine, 

tryptamine) (20, 21). Several BAs have been associated with promoting human health.

Histamine—Specific gut microbiota members have been reported to produce the biogenic 

amine histamine. Histamine is produced by decarboxylation of dietary L-histidine. Amino 

acid decarboxylation and biogenic amine synthesis maintain bacterial intracellular pH 

homeostasis (22) and can be used to generate energy using proton motive force (23). As a 

result, bacterial amino acid decarboxylase expression and activity is enhanced in acidic 

environments, leading to a locally increased pH and pH counter-regulation. Bacterial amino 

acid decarboxylase expression is also regulated by fermentable carbohydrates, sodium 

chloride concentration and oxygen saturation. Select gram-negative and gram-positive 

organisms generate histamine from histidine (24–28). The majority of histamine-producing 

strains belong to species of the genera Oenococcus, Lactobacillus, and Pediococcus (29, 30). 

These species harbor the gene encoding histamine decarboxylase (hdcA ) which converts 

dietary histidine into histamine. Histamine is known to exert pro-inflammatory and anti-

inflammatory effects on immunoregulatory processes (Figure 5). The type of response is 

dependent on the type of histamine receptor (of four known histamine receptors) that is 

activated. Activation of histamine receptor type 1 (H1R) or 3 (H3R) has been associated with 

pro-inflammatory effects; in contrast, activation of histamine receptor type 2 (H2R) or 4 

(H4R) is associated with anti-inflammatory responses. While a number of species are 

capable of producing histamine, luminal histamine generated by L. reuteri has been 

documented to have beneficial anti-inflammatory properties. For example, several human-

derived strains of Lactobacillus reuteri contain the histidine decarboxylase gene cluster 

(hdcA, hdcB, hdcP, HisS) which is required for histamine production. L. reuteri ATTC PTA 

6475 -generated histamine suppressed the pro-inflammatory cytokine TNF in Toll-like 

receptor 2 (TLR2)-activated human monocytoid cells (27). This suppression was driven by 

activation of the anti-inflammatory H2R and downregulation of mitogen-activated protein 

(MAP) kinase activation. In vivo, histamine producing L. reuteri strains ameliorate 

inflammation in vivo in a trinitrobenzene sulfonic acid (TNBS)-induced mouse model of 

acute colitis (26, 31). Likewise histamine from L saerimneri strain 30a (ATCC 33222) was 
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able to significant lower NFkB activation in human monocytoid cells and suppress IL-17 and 

IFN-γ secretion in wild-type mice, but not in H2R-deficient animals (32). Histamine has 

also been demonstrated to alter dendritic cell (DC) responses to microbial ligands (33). 

Histamine was found to suppress lipopolysaccharide (LPS, TLR-4 ligand) driven pro-

inflammatory cytokine secretion (TNF, IL-12, CXCL10) and Pam3Cys (TLR-2 ligand) 

driven TNF production. Moreover, histamine increases production of the anti-inflammatory 

cytokine, IL-10. These responses were driven by H2R signaling through cyclic AMP. In vivo 
addition of histamine-secreting L. rhamnosus was suppressed cytokine (IL-2, IL-4, IL-5, 

IL-12, TNF-a, and GM-CSF) secretion from Peyer’s patches in wildtype, but not in H2R-

deficient mice (33). These studies indicate that bacterial histamine exerts immunoregulatory 

effects in vitro and in vivo.

Amino acid neurotransmitters

GABA (γ-aminobutyric acid): GABA is a four carbon amino acid which functions as an 

inhibitory neurotransmitter in the mammalian nervous system and mediates diverse 

functions with the host. GABA can be produced by select bacterial species from the 

decarboxylation of glutamic acid via glutamate decarboxylase (GAD) (34). GABA 

production is highest in mircobes when the environment is more acidic. Decarboxylation of 

glutamate consumes a proton and results in the stoichiometric release of GABA. In this 

manner, GABA production increases the pH of the bacteria cytosol and allows cells to resist 

acid stress (34). Several microbes have been demonstrated to produce GABA (35–38). LAB 

strains are considered to be the major group of microbes responsible for GABA production. 

Some examples of known GABA producing LAB members include L. paracasei NFRI 7415, 

L. plantarum C48, L. paracasei PF6, L. brevis PM17, L. delbrueckii subsp. bulgaricus PR1, 

L. lactis PU1, and B. dentium to name a few (39–41). GABA is known to elicit a number of 

beneficial effects on the host. As an inhibitory neurotransmitter GABA lowers the blood 

pressure in vivo in animal models and human subjects (42–44). GABA is also known to have 

diuretic and antidiabetic consequences (45–47). In the brain, GABA is able to enhance 

plasma concentration, growth hormones and the protein synthesis (48). GABA intake can 

regulate sensations of pain and anxiety. Mice fed L. rhamnosus JB-1were shown to have 

region-dependent alterations in GABA receptor mRNA in the brain when compared with 

control-fed mice (49). L. rhamnosus JB-1 also reduced stress-induced corticosterone and 

anxiety- and depression-related behavior in treated mice (49). In human subjects, 

administration of a 30-day course of L. helveticus and B. longum led to decreased anxiety 

and depression (50). Other groups have found that daily oral administration of fermented 

products containing microbial GABA was effective in treating the neurological disorders of 

sleeplessness, depression and autonomic disorder in female subjects (51). Together, these 

findings indicate that gut microbes are able to participate in the bidirectional communication 

of the gut-brain axis via production of neurotransmitters such as GABA. Modulation of the 

gut-brain axis may prove to be beneficial for stress-related disorders such as anxiety and 

depression.

Polyamines: Polyamines (PAs) are small apliphatic hydrocarbon molecules with two or 

more amino groups (-NH2) that have a net positive charge at physiological pH (52). PAs and 

inorganic cations, like magnesium and calcium, play an essential role in maintaining optimal 
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conformation of negatively charged nucleic acids. Moreover, PAs are essential factors for 

normal cell growth, cell differentiation, and for the synthesis of DNA, RNA, and proteins 

(53). The majority of colonic PAs are derived from commensal gut microbiota (54–56). The 

main PAs are spermidine, putrescine, spermine and cadaverine. These compounds are 

critical for the growth and multiplication of both prokaryotic and eukaryotic cells (52, 57). 

In the majority of bacteria, intracellular concentrations of spermidine (1–3 mM) are higher 

than putrescine (0.1–0.2 mM), with the known exception of E. coli which has higher 

putrescine (10–30 mM) levels (57). Cadaverine is considered to be the least prevalent 

bacterial PAs (52, 57). In contrast, spermine is primarily produced in the presence of specific 

dietary sources. Consumption of pectin has been shown to increase the cecal concentrations 

of multiple PAs, particularly spermine (56). This effect was shown to be gut-microbe 

dependent as consumption of pectin- or guar-containing diets altered the concentrations and 

the composition of cecal PAs in conventional rats, but not in germ-free rats (56). The gut 

members Bacteroides thetaiotaomicron and Fusobacterium varium are major contributors of 

spermine and spermidine in the gnotobiotic rat cecum, suggesting that commensal bacteria 

can modulate PA levels (55).

Commensal bacteria can both produce and be influenced by PAs. PAs are known to possess 

anti-inflammatory activities, which can benefit the host. PAs can decrease systemic 

inflammation by inhibiting pro-inflammatory cytokine production in macrophages and 

intestinal epithelial cells (58, 59). Additionally, PAs function as reactive oxygen species 

(ROS) scavengers, chemical chaperones, positive regulators of stress genes and 

antimutagenic agents (60, 61). Spermine possesses anti-inflammatory activity by inhibiting 

NFκB activation (62) and inflammatory cytokine synthesis (58, 63), and by selectively 

activating T cell protein-tyrosine phosphatase (TCPTP) (64). In mammals, systemic PA 

levels decrease with age (65, 66) and decreased PAs have been associated with intestinal 

barrier dysfunction (67). Supplementation of middle-aged (10-month-old) mice with B. 
animalis subsp. lactis LKM512 for 6 months increased fecal spermine concentrations (67). 

This spermine increase correlated with increased survival, reduced skin ulcers and tumors, 

improved colonic barrier function, downregulation of inflammation-associated genes and 

alteration of the gut microbiota composition (67). In addition, supplementation of arginine to 

the diets of mice and rats increased colonic concentrations of spermine and putrescine (68). 

A combination of both arginine and B. animalis subsp. lactis LKM512 further suppressed 

inflammation, improved longevity, and protection from age-induced memory impairment in 

mice (68). Several of these findings have been mirrored in patients, as addition of B. 
animalis subsp. lactis LKM512 increased intestinal PAs (putrescine, spermidine, spermine 

and cadaverine) (69, 70) and reduced quantities of biomarkers of acute inflammation in 

hospitalized elderly patients (70).

Commensal bacteria also benefit from PA production as PAs can protect bacterial cells from 

ROS (71) and mutagens (61, 72–75). PAs can also modulate gut community dynamics. 

Supplementation of PAs to a formula diet of neonatal BALB/c mice was found to regulate 

the concentrations of Akkermansia muciniphila, Lactobacillus, Bifidobacterium, 
Bacteroides-Prevotella and Clostridium groups to levels found in the breast-fed group (76). 

Although PAs can be used by commensal bacteria, PAs can also be used by pathogens. 

Pathogens utilize PAs to promote toxin activity, bacteriocin production, biofilm formation, 
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microbial carcinogenesis, and protection from oxidative and acid stress (77–85). While PA 

production and utilization is not unique to commensals, the highlighted studies provide 

evidence that PA synthesis by commensal bacteria may serve to modulate the host immune 

response and improve patient well-being.

Tryptophan and Indole—The essential amino acid L-tryptophan is used by the host to 

synthesize proteins and specialized molecules including the hormone and neurotransmitter 

serotonin (86). In addition to its use by the host, pathogens such as enteropathogenic E. coli 
(EPEC) and enterohemorrhagic E. coli (EHEC) can also utilize tryptophan as the sole source 

of carbon and nitrogen (87). As a result, conversion of tryptophan to its metabolites by 

commensal bacteria may effectively remove tryptophan from the amino acid pool available 

to pathogens. Luminal tryptophan can undergo bacterial degradation generating indole, 

indican, and indole acid derivatives (indolyl-3-acetic acid, indolyl-acetyl-glutamine, indolyl-

propionic acid, indolyl-lactic acid, indolyl-acrylic acid and indolyl-acryloyl-glycine). Indole 

represents the main bacterial byproduct of tryptophan. Several microbes are capable of 

producing indole and indole derivatives including Bacteroides spp, Bifidobacterium spp, 

Clostridium spp, E. coli, Proteus vulgaris, Paracolobactrum coliforme, and Achromobacter 
liquefaciens (86, 88, 89). Bacterial tryptophanase converts tryptophan into indole, ammonia, 

and pyruvate. In many different microbes, tryptophanase activity has been shown to be 

induced by tryptophan and repressible by glucose (89). Protein-rich diets have also been 

shown to induce bacterial tryptophanase activity (89).

Indole metabolites are noteworthy as they have been shown to provide several benefits to the 

host. Indole compounds secreted by commensal E. coli reduce attachment of pathogenic E. 
coli to epithelial cells (90). Specifically, indole-3-carboxaldehyde (ICA), downregulated 

production of E. coli Locus of Enterocyte Effacement (LEE) virulence factors and inhibited 

pedestal formation on mammalian cells (91). Oral administration of ICA was found to 

inhibit virulence and promote survival in a lethal mouse infection model of C. rodentium 
(91). Select indole derivatives also yielded bacteriostatic effects on gram-negative 

enterobacteria, particularly pathogens such as Salmonella and Shigella (89).

In addition to bacteriocidal effects of indole metabolites, indole itself may enhance the 

mucosal barrier by inducing tight junction mediated trans-epithelial resistance and mucin 

production, and by diminishing TNF-alpha-mediated activation of NF-kB (90). In vivo, oral 

administration of indole-containing capsules to germ free mice resulted in increased 

quantities of tight junction and adherens junction-associated proteins in colonic epithelial 

cells (92). Furthermore, germ free mice supplemented with indole-containing capsules 

yielded greater resistance to dextran sodium sulfate (DSS)-induced colitis (92). Indole 

compounds secreted by gut bacteria may serve as an important signal for the maintenance of 

intestinal epithelial homeostasis. Similar to other compounds produced by commensal 

microbes, indole is also utilized by several pathogens. Indole is known to regulate biofilm 

formation, virulence, and production of Shiga toxins in pathogenic E. coli strains, as well as 

virulence in the rodent A/E pathogen C. rodentium, Pseudomonas and Salmonella strains 

(91). However, since select indole metabolites synthesized by commensals inhibit these 

same species, future work may focus on selecting key commensals to combat pathogens via 

indole metabolism.
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2. Bacteria-bacteria communication

Quorum Sensing Molecules—In addition to the many routes of bacterial-host 

communication, bacteria themselves must communicate with each other in order to regulate 

cooperative activities (93). A number of bacteria release, sense and respond to small 

diffusible signal molecules, known as quorum sensing molecules, as a method of intra- and 

inter-species bacterial communication. In this manner, bacteria can behave as a collective 

unit (94–96). Quorum sensing regulates bacterial symbiosis, formation of spore or fruiting 

bodies, bacteriocin production, genetic competence, programmed cell death, virulence and 

biofilm formation (93, 96–99). This behavior is thought to offer significant benefits to 

bacteria in terms of biofilm community structure, defense against competitors, adaptation to 

environmental changes and overall host colonization (93, 96, 99, 100). In general, quorum 

sensing relies on diffusible signaling molecules and sensors or transcriptional activators 

which work in concert to promote gene expression (93, 96, 99, 101, 102). Quorum sensing 

can be divided into three classes: (1) LuxI/LuxR–type quorum sensing in gram-negative 

bacteria (2) oligopeptide-two-component-type quorum sensing in gram-positive bacteria; 

and (3) luxS-encoded autoinducer 2 (AI-2) quorum sensing in both gram-negative and gram-

positive bacteria (93).

In LuxI/LuxR–type quorum sensing, acyl-homoserine lactones (AHL) act as the signaling 

molecules (103, 104). In this system, AHL synthesis is dependent on a LuxI-like protein and 

AHLs increase in concentration in proportion to cell density. AHLs can freely diffuse across 

bacterial cell membranes where they are recognized and bound by the cognate LuxR-like 

protein, which subsequently binds specific promoter DNA elements and activates target 

genes. Hundreds of gram-negative bacteria use the LuxI/LuxR-type quorum sensing system, 

with each species producing a unique AHL. As a result, only similar species are able to 

recognize and respond to signals from their own kind (96, 99, 103, 105).

In contrast to the LuxI/LuxR system, the oligopeptide-two-component-type quorum sensing 

system is comprised of three components: a signaling molecule and a two-component signal 

transduction system (TCSTS). The most common oligopeptide-two-component-type quorum 

sensing system involves the autoinducer signaling peptide (AIP) and a corresponding 

TCSTS that specifically detects and responds to AIP (96, 102, 106–108). Unlike diffusible 

AHL signals, AIP must be transported by a dedicated oligopeptide transporter, typically an 

ABC transporter, in order to exit the cell (106–108). The AIP signal is then sensed by the 

two-component signal transduction system, which contains a membrane-associated, 

histidine kinase protein and a cytoplasmic response regulator protein, which translates the 

signal via regulation of target gene expression (106–108). Another type of quorum sensing 

identified in gram-positive streptococci is the ComRS system, which involves a small 

double-tryptophan signal peptide pheromone, XIP. Similar to AIP, XIP is transported inside 

the cell via an oligopeptide ABC transport system (Opp/Ami). Inside the cell, XIP interacts 

with a transcriptional regulator, ComR or ComX, thereby activating competence genes for 

genetic transformation (109–111). Additionally, S. mutans contains ComCDE and ComRS 

quorum sensing systems which regulate bacteriocin production (109).
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Both gram-negative and gram-positive bacteria can utilize the autoinducer 2 (AI-2) quorum 

sensing system (93, 96, 99). In contrast to the LuxI/LuxR–type and oligopeptide-two-

component-type quorum sensing systems which provide for intra-species signaling, AI-2 

quorum sensing allows for inter-species communication. As a result, AI-2 has been termed 

the “universal language” (101, 102). AI-2, a furanosyl borate diester, is produced and 

recognized by many gram-negative and gram-positive bacteria (96). AI-2 synthesis depends 

on a luxS encoded synthase; a metabolic enzyme which converts ribosyl-homocysteine into 

homocysteine and 4,5-dihydroxy-2,3-pentanedione (DPD) (112). AI-2 is transported inside 

the bacteria by the Lsr ABC-type transporter in Enterobacteriaceae, Pasteurella, 
Photorhabdus, Haemophilus, and Bacillus. (113). AI-2 is then phosphorylated by LsrK and 

subsequently binds the transcriptional repressor protein, LsrR. Binding of phosphor-AI-2 to 

LsrR releases the promoter/operator region of the lsr operon, thereby promoting 

transcription lsr genes.

Since AI-2 is produced and detected by a number of diverse bacteria, it has been speculated 

that AI-2 facilitates interspecies communication and social interactions. This compound has 

been postulated to be particularly relevant in the setting of biofilms. Biofilms are considered 

to be structured microbial communities organized within an extracellular matrix which 

harness symbiotic interactions for mutual benefit of the collective (94, 95). Microbes within 

biofilms have diverse characteristics compared with their free-living counterparts, including 

enhanced resistance to antibiotics and host immune responses (93, 95, 114). Biofilms are 

important for both virulent pathogens and complex commensal communities within the GIT 

(115). For commensal microbes within the GIT, colonization of the intestinal mucus layer is 

a critical step in establishing ecological niches. The intestinal epithelium is covered by a 

continuous layer of mucus secreted by goblet cells, chiefly composed of the mucin protein 

MUC2 (116, 117). Mucus provides a viscoeleastic gel barrier that prevents luminal contents 

and microbiota from interacting directly with the epithelium and immune cells of the lamina 

propia. The mucin proteins are heavily O-glycosylated and these glycans can serve as 

adhesion sites for commensal bacteria (118–123). Several studies have shown that intestinal 

communities can be visualized as biofilms of sessile microorganisms within the mucus layer 

(116, 124–126). High bacterial cell density within biofilms favors a mode of communication 

using diffusible small molecules as a mechanism for regulating biofilm formation and for 

social interactions (97, 127). Several studies have shown that AI-2 signaling is important for 

the proper development of multi-species biofilms in natural ecosystems (128–130). This 

signaling pathway has been particularly well documented for the oral cavity. In mixed 

cultures of Actinomyces naeslundii T14V and S. oralis 34, AI-2 is essential for interdigitated 

biofilm growth where saliva is the primary nutrient source (129). Introduction of a S. oralis 
34 luxS mutant with A. naeslundii T14V diminished mutualistic growth; a defect that could 

be rescued with the LuxS enzyme product DPD. Other groups have shown luxS -dependent 

biofilm formation in S. pneumoniae (131), clinical isolates of S. pneumoniae D39 (132), and 

L. reuteri (133).

In the intestine, AI-2 has also been shown to play a key role in community structure and 

colonization. Thompson and colleagues found that AI-2 can modulate the structure of the 

gut microbiota by using E. coli to manipulate signal levels (98). In this work, AI-2 

influenced bacterial behaviors to restore the balance between the major phyla of the gut 
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microbiota, Bacteroidetes and Firmicutes, following antibiotic treatment. Although there are 

only few in vivo studies thus far, existing data points to the critical role of quorum sensing in 

establishment of commensal communities.

Metabolites that benefit the host

1. Short Chain Fatty Acids (SCFA)

Several bacterial species in the gastrointestinal tract generate short chain fatty acids (SCFAs) 

as an end product of complex carbohydrate fermentation pathways in the intestine. SCFAs 

are comprised of one to six carbons, with the most abundant and well-characterized SCFAs 

being acetate, propionate, and butyrate. The composition of SCFAs in the GIT depends on 

microbial composition and environmental conditions, including pH, hydrogen partial 

pressure and host diet (134–137). SCFAs can reach local concentrations of approximately 13 

mM in the terminal ileum, 130 mM in the cecum and 150 mM in the descending colon, 

making SCFAs a class of abundant colonic anions (138, 139). Most SCFAs are absorbed by 

the host in exchange for bicarbonate. As a result, SCFAs gradually diminish in 

concentrations from the proximal to the distal colon and the luminal pH correspondingly 

increases from cecum to rectum (138, 140, 141). The pH reduction may alter microbial 

composition of the gut and prevent overgrowth by pH-sensitive pathogenic bacteria such as 

certain strains of Enterobacteriaceae and Clostridia (142–146). SCFAs are absorbed by 

intestinal enterocytes via passive diffusion or carrier-mediated transportation through 

SMCT1 (SLC5a8) and MCT1 (SLC16a1) transporters (147, 148). SMCT1 acts as a sodium-

coupled transporter, while MCT1 is a hydrogen-coupled transporter for SCFAs and related 

organic acids (147–149). These transporters are found on the apical membranes of intestinal 

enterocytes, dendritic cells, kidney cells and brain cells. In addition to intestinal absorption, 

SCFAs can activate several G-protein-coupled cell surface receptors (GPCRs). SCFAs bind 

to G protein–coupled receptors, such as GPR41 (propionate > butyrate ≫ acetate), GPR43 

(propionate, butyrate, acetate) and GPR109A (butyrate) on intestinal epithelial cells and 

enteroendocrine cells such as colonic L-cells (150–154). In addition to intestinal cells, 

GPR41 is also expressed in enteric neuronal cells, adipocytes, renal smooth muscle cells, 

and pancreatic cells (155, 156) and GPR43 is expressed by granulocytes and some myeloid 

cells (157–159). GPR109a is also expressed by macrophages, dendritic cells and adipocytes. 

As a result of the wide distribution of receptors, SCFAs have diverse effects on the host 

(Figure 5). SCFAs can regulate different aspects of host physiology, including enhanced 

sodium uptake and subsequent water absorption, pH regulation, chloride and mucus 

secretion, immune regulation, decreased bioavailability of toxic amines and remote effects 

on neural activity and development (160–162).

Acetate—Acetate is the most abundant SCFA and is generated as a fermentation end 

product produced by enteric bacteria, as well as a product of metabolism of H2, CO2 or 

formate by acetogenic bacteria (135). Bifidobacterium longum subsp. longum and B. 
longum subsp. infantis secreted products suppressed epithelial cell apoptosis, ameliorated 

intestinal inflammation and inhibited translocation of the E. coli O157:H7 Shiga toxin, 

thereby protecting mice against infection by enterohemorrhagic E. coli O157 bacteria (163). 

This protection correlated with fecal acetate quantities. Non-acetate producing 
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Bifidobacteria strains as well as a Bifidobacterium longum mutant with reduced acetate 

production were unable mimic the protective effects of the parental strain against E. coli 
O157. Moreover, administration of acetylated starch which increased fecal acetate improved 

the survival rate. These data indicate that bacterial produced acetate protects the host against 

lethal infection. In addition to epithelial cell effects, acetate also plays an important role in 

immune regulation. Acetate induces T regulatory cell proliferation and accumulation (160, 

164–166) and inhibits T cell histone deacetylase 6, while increasing tubulin-α acetylation 

(167). In addition to immune cells, Ishiguro and colleagues have demonstrated that acetate 

inhibits IL-8 production and increases tubulin-α acetylation within intestinal epithelial cells 

(IEC) (167). Inoculation of germ-free mice with the acetate producer Bacteroides 
thetaiotaomicron increased goblet cell differentiation and expression of mucus-related genes. 

These in vivo findings were confirmed in vitro using the mucus-producing cell line HT29-

MTX where acetate up-regulated KLF4, a transcription factor involved in goblet cell 

differentiation (168). Mucus produced by goblet cells creates a protective barrier that 

prevents the epithelium and immune system from adhesion and invasion by pathogenic 

bacteria, microbial antigens, and other damaging agents present in the intestinal lumen (116, 

127). Mucin glycans are also important sources of carbohydrate for saccharolytic bacteria 

and the spatial organization and composition of mucosal communities may be influenced by 

variations in mucin production and glycan composition (118, 127). As a result, modulation 

of the mucus layer by microbial compounds such as acetate may serve to maintain proper 

distance between the microbiota and host and potentially modulates the microbial 

community structure.

Acetate also inhibits the growth of several pathogens. Acetate alone inhibits the growth of P. 
aeruginosa (169), while acetate in combination with propionate and butyrate inhibits the 

growth of pathogenic E. coli O157 (170), Proteus mirabilis, Klebsiella pneumoniae and 

Pseudomonas aeruginosa (169). Acetate and propionate acting via GPR43 participate in 

anti-inflammatory effects via the modulation of regulatory T cells (Treg) cells (164, 171). In 
vivo, supplementation of acetate in germ-free mice was shown to be sufficient to ameliorate 

the dextran sulfate sodium (DSS)-driven intestinal inflammation, an effect that was not 

observed in Gpr43−/− mice (171). Interestingly de Vuyst and Leroy demonstrated the 

importance of acetate as a substrate for the production of butyrate by butyrate-producing 

bacteria (172), implicating a cross-talk of SCFAs in microbial metabolism.

Propionate—Propionate is primarily formed via the succinate pathway by the phyla 

Firmicutes (135, 173). Propionate is principally metabolized by the liver, while acetate is 

metabolized by peripheral tissues. Production of acetate by the commensal Akkermansia 
mucinphila modulates mouse gene expression, particularly Fiaf, Gpr43, histone deacetylases 

(HDACs), and peroxisome proliferator-activated receptor gamma (Pparγ), which are 

important regulators of transcription factor regulation, cell cycle control, lipolysis, and 

satiety (174). In vitro propionate inhibits several pathogens including Salmonella serovar 

Typhimurium (175–178), E. coli O157 (170), Proteus mirabilis, Klebsiella pneumoniae and 

Pseudomonas aeruginosa (169). Propionate and acetate generated by microbial species 

stimulated the cellular function of immune cells, specifically promoting neutrophil 

chemotaxis (157, 171, 179, 180). In addition, propionate has been utilized for its ability to 
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release short-term modulators of satiation and satiety, including the anorectic gut hormones 

peptide YY (PYY) and glucagon like peptide-1 (GLP-1) from intestinal enteroendocrine L 

cells (181–183) (184, 185). In humans, colonic delivery of inulin-propionate esters increased 

plasma PYY and GLP-1 and reduced energy intake, resulting in significantly reduced weight 

gain, intra-abdominal adipose tissue distribution, and intra-hepatocellular lipid content after 

24 weeks (184). These data suggest that colonic propionate may be an important microbial 

metabolite in the context of host body metabolism.

Butyrate—Butyrate is generated by microbes of the phylum Firmicutes (including 

Faecalibacterium prausnitzii, Roseburia spp., Eubacterium rectale, Eubacterium hallii and 

Anaerostipes spp.) via the butyryl-CoA:acetate CoA-transferase enzyme or 

phosphotransbutyrylase and butyrate kinase pathway (135, 186–188). Butyrate is primarily 

metabolized in the colon as an energy source utilized by intestinal epithelial cells, and this 

SCFA yields immunoregulatory and cancer protective effects in the gastrointestinal tract. 

Propionate and butyrate alter immune cell function. Both propionate and butyrate inhibit 

stimuli-induced expression of adhesion molecules, chemokine production and suppress 

monocyte/macrophage and neutrophil recruitment (179). Butyrate signaling via GPR109A 

regulates the differentiation of regulatory Treg and IL-10-producing T cells (162), and 

suppresses activation of nuclear factor-κB (NF-κB) and induction of apoptosis (189). In vivo 
production of butyrate by clostridial species induces the differentiation of Treg cells and 

ameliorates development of colitis (160). Apart from the major effects on butyrate on 

immune cell populations, this SCFA can also serve as an energy source for colonic 

enterocytes. Furthermore, activation of GPR43 and GPR109A by butyrate and propionate 

mediate cancer-protective effects associated with high fiber intake (186, 190). Butyrate also 

participates in anti-tumorigenic properties by inhibiting proliferation and selectively 

inducing apoptosis of colorectal cancer (CRC) cells (191–194). Intracellular butyrate and 

propionate, but not acetate, inhibit the activity of histone deacetylases (HDACs) in 

colonocytes and immune cells. HDAC inhibition promotes the hyper-acetylation of histones, 

effectively downregulating pro-inflammatory cytokines, such as interleukin-6 (IL-6) and 

IL-12 in colonic macrophages (191, 195, 196). Together these studies demonstrate that 

commensal produced SCFAs can elicit multiple advantages for the host through the 

stimulation of intestinal mucus production, inhibition of inflammation, modulation of 

immune cell populations, and inhibition of cancer proliferation.

2. Long Chain Fatty Acids

While SCFAs have been thoroughly characterized with respect to intestinal biology and 

human health, long chain fatty acids (LCFAs) are gaining attention for their health-

promoting activities as well (197). Similar to SCFAs, commensal bacteria are also 

responsible for the composition and concentration of LCFAs and subsequently contribute to 

LCFA-induced signaling in host cells. LCFAs are produced when dietary poly-unsaturated 

fatty acids (PUFA), such as linoleic acids, are converted into conjugated linoleic acids 

(CLA) and trans-fatty acids (198–200). Germ-free (GF) mice without a gut microbiota, lack 

detectable LCFAs (201), while mice inoculated with the commensal Bifidobacterium breve 
in combination with linoleic acid-supplemented diet resulted in increased CLA (202). 

Production of CLA by bacteria reduced amounts of hepatic triacylglycerols and inhibited 
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atherosclerosis (203, 204). Although it remains unclear if LCFAs regulate host immune 

functions, modified Polyunsaturated fatty acids (PUFAs) are potent agonists for peroxisome 

proliferator-activated receptor (PPAR)γ and PPARα, which are upregulated by commensal 

bacteria and implicated in attenuating inflammation (197, 205–208). The role of LCFAs in 

intestinal homeostasis was also further confirmed in vivo in ethanol-fed mice. Exposure of 

mice to alcohol resulted in an altered gut microbiota and reduced synthesis of LCFAs (209). 

Relative abundances of Lactobacillus spp., known metabolizers of saturated LCFAs, were 

reduced in the feces of humans with active alcohol abuse (209). The authors hypothesized 

that targeted approaches to restore LCFA levels might reduce ethanol-induced liver injury 

and restore an intact community of gut microbiota.

3. Vitamins

Bacteria residing in mammals are able to produce vitamins which directly benefit the host 

(210). Metagenomic analyses of the human microbiota from the distal colon revealed the 

existence of diverse Clustered Orthologous Groups (COGs) which are involved in vitamin 

synthesis (211). Vitamins are essential organic micronutrients which are critical for cellular 

function and may not be synthesized by the host. Vitamins exist as precursors of intracellular 

coenzymes. The majority of vitamins are produced by bacteria via the 2-methyl-D-erythritol 

4-phosphate pathway. Thirteen essential vitamins for human health include the water-soluble 

vitamins thiamine (B1), riboflavin (B2), niacin (B3), pyridoxine (B6), pantothenic acid (B5), 

biotin (B7 or H), folate (B11–B9 or M) and cobalamin (B12) and C and the fat-soluble 

vitamins A, D, E and K (212). Vitamins generated by gut microbes are primarily absorbed in 

the colon, while dietary vitamins are absorbed mostly in the small intestine (213, 214). Data 

suggest that colonocytes absorb thiamine, folates, biotin, riboflavin, pantothenic acid, and 

menaquinones (213, 214). Vitamins provide essential nutrients to the host and directly 

influence the development and function of immune cells (215–218). In this manner, vitamins 

may work to promote host growth and immune homeostasis (Figure 5).

Water-Soluble Vitamins

Riboflavin (Vitamin B2): Riboflavin, or vitamin B2, is a known component for cellular 

metabolism. Riboflavin serves as a precursor of the coenzymes flavin mononucleotide 

(FMN) and flavin adenine dinucleotide (FAD) (219). FMN and FAD serve as hydrogen 

carriers in cellular redox reactions, making B2 critical for host metabolism. B2 can exist in 

several active forms including riboflavin (7,8-dimethyl-10-(1′-d-ribityl) isoalloxazine), 

riboflavin-5′-phosphate (FMN) and riboflavin-5′-adenosyldiphosphate (FAD). Riboflavin 

can be produced by both gram-positive and gram-negative bacteria and is well characterized 

in Bacillus subtilis and Escherichia coli (220, 221). LAB strains including L. plantarum and 

L. lactis have also been identified as B2 producers (219, 222–225). B2 can be produced from 

the precursor guanosine triphosphate (GTP) and D-ribulose 5-phosphate via seven 

enzymatic steps (220). Enhanced production of B2 has been shown in species that are 

capable of simultaneously expressing four biosynthetic genes (ribG, ribH, ribB and ribA) 

(223, 224). Deficiency in B2 levels leads to ariboflavinosis, which is associated with 

hyperemia, edema of oral and mucous membranes, cheilosis and glossitis (226). In rats 

supplementation of a fermented milk drink containing a genetically modified B2-producing 

L. lactis strain was effective in reversing ariboflavinosis in a riboflavin-deficiency model 
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(223). In humans daily consumption of a probiotic yogurt containing Streptococcus 
thermophilus, L. bulgaricus and L. casei subsp. casei for 2 weeks contributed to the total 

intake of vitamin B2, as reflected by increased blood concentrations of plasma-free 

riboflavin in healthy women (227). These effects were ameliorated when subjects returned to 

their previous diet, implicating select supplemented probiotic bacteria in the enhanced 

production of vitamin B2 (227).

Folates ((B11–B9 or M): Folates are hydrophilic anionic molecules which are produced by 

a number of bacteria. The generic term folate is typically used to include all bacterial 

derived folate derivatives. Folates are involved in essential cellular metabolism functions 

including DNA replication, DNA repair, DNA methylation, and nucleotide synthesis. 

Deficiency in folate has been linked to a large spectrum of disorders including colorectal 

cancer, osteoporosis, coronary heart disease, Alzheimer’s disease, among others (228, 229). 

Although folate is primarily absorbed in the duodenum and jejunum, folate compounds 

generated by the mammalian microbiome in the colon represent a major source of host 

folate. Bacteria generate mono- and poly-glutamylated folate, a form of foliate which is 

easily absorbed by mammalian cells (230, 231). Multiple LAB strains such as Lactobacillus 
reuteri, L. acidophilus, L. plantarum, L. bulgaricus, Lact. lactis, Bifidobacobacterium 
adolescentis, Bifidobacterium animalis and Bifidobacterium longum synthesize folate (228, 

232–238). However not all LAB strains are capable of generating folate. For example L. 
gasseri (236), L. salivarius (239), and L. johnsonii (240) do not contain folate biosynthesis 

genes and do not produce folate. Bacterial production of folate in the presence of existing 

folate appears to be species dependent; with select species producing folate solely in low 

folate conditions and others continually producing folate (241). Bacteria produce folate 

using the precursor 6-hydroxymethyl-7,8-dihydropterin pyrophosphate (DHPPP) and para-

aminobenzoic acid (pABA, vitamin B10) (25, 242). All bacteria capable of producing folate 

contain the folC or homologous genes (235, 238). Additional genes involved in folate 

production include folKE genes which encode 6-hydroxymethyl-

dihydropterinpyrophosphokinase (folK) and GTP cyclohydrolase (folE) or pABA (243). 

Folate production relies on the combination of folate and pABA biosynthesis. Deletion of 

the pABA genes in L. lactis and L. reuteri resulted in loss of folate production and inhibition 

of growth in the absence of purine nucleobases/nucleosides (243). Genetic manipulation of 

folate genes increased folate production in a number of species including L. lactis, L. gasseri 
and L. reuteri (233, 236, 237, 243). In vivo addition of L. lactic overexpressing the folC, 

folKE or folC-folKE genes improved folate status in a rat folate deficiency model (228). 

Moreover, production of a 5,10-methenyltetrahydrofolic acid polyglutamates via the folC2 

gene by L. reuteri ATCC PTA 6475 was found to suppress TNF production by activated 

human monocytes and partake in the anti-inflammatory effect of L. reuteri in a TNBS-

induced mouse model of acute colitis (231). These studies demonstrate that select folate 

producing microbes can be utilized to improve folate status and modulate the immune 

system in animal models.

Vitamin B12: Vitamin B12, also known as cobalamin, exists in its natural form as 5′-
deoxyadenosylcobalamin (coenzyme B12), methylcobalamin or pseudocobalamin, and is a 

corrin ring or corrinoid compound. B12 is required for the metabolism of nucleic acids, 
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amino acids and fatty acids (244) and is primarily produced by anaerobic bacteria (245–

247). Few bacteria are capable of producing vitamin B12 (248, 249). Typically specialized 

bacteria found in food source animals produce vitamin B12. As a result, humans must 

absorb the coenzyme from animal sources such as meats, fish and eggs. However, select 

lactobacilli have been demonstrated to produce vitamin B12. L. reuteri CRL1098 was found 

to produce a cobalamin-like compound, a form of B12 (250). L. reuteri DSM 20016 (237), 

JCM1112 (237) and CRL 1324 and 1327(251) and L. coryniformis (252) produced a 

cobalamin-type compound. These L. reuteri species contain an extensive cobalamin 

biosynthesis cluster, which is associated with the anaerobic catabolism of glycerol (or 1,2-

propanediol) (253, 254). Vitamin B12 deficiency is associated with numerous 

hematopoietic, neurological and cardiovascular pathologies. Pernicious anemia, a severe 

form of B12 deficiency, is the result of poor production of a gastric glycoprotein called 

intrinsic factor that facilitates the absorption of vitamin B12 in the small intestine (255). In 
vivo in a mouse model of vitamin B12-deficient, supplementation of L. reuteri CRL 1098 

was able to reverse vitamin B12 deficiency (256). Gut microbes may be important in 

maintaining adequate body concentrations of B complex vitamins, including vitamin B12.

Fat Soluble Vitamins

Vitamin K: Vitamin K comprise a number of series of fat-soluble compounds which share a 

2-methyl-1, 4-naphthoquinone nucleus and differ side chain structure at the 3-position. 

Vitamin K can be produced by both plants and microbes. In plants, vitamin K exists as 

phylloquinone (vitamin K1), which has a phytyl side chain. In contrast, bacteria generate a 

family of compounds known as menaquinones (vitamin K2). These compounds contain side 

chains based on repeating unsaturated 5-carbon (prenyl) units and are designated 

menaquinone-n (MK-n) according to the number (n) of prenyl units. Vitamin K acts as an 

essential cofactor for the formation of γ-carboxyglutamic acid (Gla) residues in proteins 

which bind calcium ions. As a result, vitamin K serves a prominent role in bone formation, 

tissue calcification, kidney function, and blood clotting to name a few (257, 258). Vitamin K 

deficiency has been implicated in osteoporosis- driven bone fracture and intracranial 

haemorrhage in newborns. The gut microbiota synthesize large amounts of menaquinone 

K2, one of the forms of Vitamin K (259). Quantitative measurements at different sites of the 

human intestine have demonstrated that most of these menaquinones are present in the distal 

colon (259). Specific microbes are capable of generating menaquinone K2, one of the forms 

of Vitamin K. Genera from Lactobacillus, Lactococcus, Enterococcus, Leuconostoc and 

Streptococcus are known producers of K2 (260, 261). Other major menaquinone forms are 

produced by Bacteroides (MK-10, MK-11), Enterobacter (MK-8), Veillonella (MK-7) and 

Eubacterium lentum (MK-6). Vitamin K is predominantly absorbed in the terminal ileum of 

the intestine; a site where menaquinone-producing bacteria colonize as well. Collectively the 

data acquired from all vitamin studies point to the selection of multivitamin-producing 

bacteria to compensate for common vitamin-deficiencies and for promotion of gut 

homeostasis.

4. Outer Membrane Vesicles (OMVs)

Several bacteria are capable of releasing outer membrane vesicles (OMVs) which range in 

size from 20 to 300 nm in gram-negative bacteria (262) to <20 nm MVs in Gram-positive 
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bacteria (263, 264). OMV production is considered to be a common feature of gram-

negative bacteria. OMVs are generated by membrane remodeling which occurs when the 

OM bulges and encapsulates periplasmic components (265, 266). As a result, OMVs contain 

a number of soluble proteins entrapped in the OMV periplasm and multiple proteins on the 

external surface. Secreted OMVs can disseminate compounds to distant sites. OMVs have 

yielded a wide range of biological functions, from delivery of enzymes, transport of toxins, 

transmission of communication signals, nutrient acquisition, to induction of commensal 

tolerance. One beneficial role of OMVs on host homeostasis is the ability of OMVs to 

modulate innate and adaptive immune systems (267) (Figure 5). Bacteroides fragilis OMV 

delivery of polysaccharide capsular antigen (PSA) yielded multiple immunomodulatory 

effects. Mono-colonization of germ-free mice with B. fragilis was shown to modulate CD4+ 

T cell homeostasis and cytokine production (3). T cell modulation occurs in a PSA-

dependent manner (3). OMV delivered PSA stimulated TLR2 on Tregs and directly 

modulated dendritic cells (DCs) (268, 269). OMVs were internalized by DCs and this 

interaction promoted tolerogenic DCs which produced IL-10 and stimulated regulatory 

Tregs. Furthermore, PSA production ameliorated intestinal inflammation (270), CNS 

inflammation (271, 272) and neurodegeneration (273). These studies demonstrate that OMV 

delivery of PSA is capable of promoting an anti-inflammatory profile which leads to 

tolerance and suppression of mucosal inflammation.

5. Serpin

Serpins are eukaryotic-type serine protease inhibitors. These molecules are synthesized by 

several commensal bacteria. Serpins are relatively large molecules consisting of 

approximately 330–500 amino acids (274). Currently more than 70 serpin structures have 

been identified. These complex structures act as stoichiometric suicide inactivators and 

inhibit eukaryotic elastase-like serine proteases. Serpins are known to regulate a wide range 

of signaling pathways in eukaryotes. Select serpins have been shown to suppress 

inflammatory responses by inhibiting elastase activity (275) (Figure 5). Several 

bifidobacterial species and subspecies (B. breve, B. longum subsp. infantis, and B. longum 
subsp. longum, B. dentium) are capable of producing serpins (276). B. longum NCC2705 

was shown to secrete a serpin which binds and inactivates human neutrophil elastase, a 

product secreted by neutrophils during active inflammation (277). Moreover, bifidobacterial 

serpin-like proteins have been shown to reduce intestinal inflammation in a murine colitis 

model (278). Based on these findings, production of serpins which inhibit neutrophil 

elastases may be beneficial for reducing intestinal damage in the setting of overt 

inflammation.

6. Lactocepin

Lactocepins are bacterial enzymes which can degrade targeted bacteria of different genera 

via damage to prokaryotic cell membranes and induction of pro-inflammatory modulators 

(Figure 5). Lactocepins can be cell-wall associated or secreted, and the target specificity is 

strain specific (279–281). Lactocepins are mainly expressed by lactococci and lactobacilli. 

These enzymes are encoded by prtP, prtB, and/or prtH. The prtP genes are well documented 

for their caseinolytic properties. Lactobacillus paracasei secreted prtP-encoded lactocepin, 

and this compound selectively degraded the lymphocyte recruiting chemokine IP-10 and 
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other pro-inflammatory chemokines such as I-TAC and Eotaxin in vitro (282). Importantly, 

prtP-encoded lactocepin selectively degraded IP-10 in inflamed intestinal tissue and had no 

adverse effects on IEC barrier function in vivo (282). This resulted in significantly reduced 

lymphocyte recruitment after intraperitoneal injection in an ileitis model. Another 

Lactobacillus strain L. casei was found to secrete lactocepin which degraded host IP-10 

(283). In a murine colitis model (T cell transferred Rag2−/− mice), supplementation of a L. 
casei prtP-disruption mutant resulted in more IP-10, T cell infiltration and inflammation in 

cecal tissue compared to the isogenic wild-type strain. Supplementation of the probiotic 

VSL#3, which contains Lactobacillus, Bifidobacterium, and Streptococcus, normalized 

intestinal levels of IP-10 in a murine colitis model and reduced inflammation in patients with 

IBD (283). These studies support the role of lactocepin secreted by commensal microbes as 

an effective treatment for chemokine-mediated diseases like IBD.

7. Other Secreted proteins known to enhance host health

In addition to all the secreted products highlighted by this review, select commensal bacteria 

generate putative proteins which modulate the host (Figure 5). L. rhamnosus GG and L. 
casei secrete two proteins designated p40 and p75 (284, 285). Lactobacilli producted p40 

and p75 were found to inhibit tumor necrosis factor (TNF)-induced apoptosis in the 

intestinal epithelium. The proteins signal via the anti-apoptotic Akt kinase in a 

phosphoinositide 3-kinase-dependent manner likely via epidermal growth factor receptor 

(EGFR) activation (284, 286). The p40 and p75 proteins also enhance tight junctions and 

attenuate intestinal barrier disruption via protein kinase C, and extracellular signal-regulated 

kinase 1 (ERK). Furthermore, p40 was shown to transactivate the EGF receptor (EGFR), 

activating the downstream target Akt and stimulating mucus Muc2 gene expression and 

mucin production in the human goblet cell line LS174T and wild type mice. Intestinal 

mucus is a critical component of the healthy intestinal barrier, particularly in the setting of 

infection and inflammation (122, 287–289). Stimulation of intestinal mucus by commensal 

bacteria likely serves to enhance barrier function and promote homeostasis. Other 

commensal bacteria produce putative proteins with immunoregulatory features. 

Faecalibacterium prausnitzii is known to produce a 15 kDa protein, termed MAM, with anti-

inflammatory properties (290, 291). MAM inhibits the NF-κB pathway in intestinal 

epithelial cells and prevents colitis in vivo. As subgroups of Crohn’s disease are associated 

with reduced relative abundances of F. prausnitzii, microbial or protein (e.g. MAM) 

supplementation have been hypothesized to alleviate intestinal inflammation in future 

clinical trials. These studies highlight the need to define secreted commensal products of the 

mammalian microbiome.

Antimicrobial Compounds

1. Lactic Acid

Commensal microbes may produce organic acids, such as lactic acid, that may reduce local 

pH and suppress the growth and survival of neighboring microbes. A group of microbes 

known as Lactic Acid Bacteria (LAB) are able to produce relatively large amounts of lactic 

acid as a major catabolic end product of glucose fermentation. In general LAB consists of 

non-spore forming Gram-positive bacteria with a DNA base composition of less than 53 mol
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% G+C(292). LAB members include Lactobacillus, Lactococcus, Leuconostoc, 
Enterococcus, Streptococcus, Pediococcus, Carnobacterium, Aerococcus, Oenococcus, 
Tetragenococcus, Vagococcus, and Weisella. The generation of lactic acid results in the 

recycling of electron acceptors for ATP generation by bacterial species. In addition to this 

role in the bacteria, lactic acid production benefits the host by reducing local pH and 

suppressing colonization and proliferation of potential pathogens. Lactic acid is readily 

miscible with water due to its low hydrophobicity and low acid dissociation constant (pKa). 

Lactic acid is effective against gram-negative bacteria and to a lesser extent effect against 

gram-positive bacteria (293, 294). As a liposoluble organic acid, lactic acid in its un-

dissociated form can penetrate the bacterial cytoplasmic membrane (295). In gram-negative 

bacteria lactic acid transverses the outer membrane (OM) via water-filled porins and 

penetrates the cytoplasmic membrane. Additionally, in gram-negative bacteria, lactic acid 

can act as a potent OM-disintegrating agent, as evidenced by LPS release and sensitization 

of bacteria to detergents or lysozyme (294). Lactic acid-induced changes in cell membrane 

permeability can hinder substrate transport and promote further entrance of lactic acid into 

the cytoplasm, thereby effectively lowering the intracellular pH (294–296) (Figure 4). 

Intracellular acidity can suppress NADH oxidation, altering the membrane electron transport 

system and transmembrane proton motive force (296). Malfunction of the electron transport 

system can lead to oxidative stress and generation of free radicals that damage DNA and 

proteins. These free radicals can then damage intracellular components as well as the 

extracellular membrane (297). Collectively these mechanisms result in cell death to 

susceptible bacteria. Lactic acid in sufficient quantities may inhibit the growth of a wide 

range of bacterial species (245, 298, 299). Addition of pure lactic acid in vitro has both 

inhibitory and biocidal effects against several pathogens including gram-negative 

Escherichia coli, Proteus mirabilis, Salmonella enteritidis, Pseudomonas aeruginosa, gram-

positive Staphylococcus aureus, Enterococcus faecalis, Listeria monocytogenes, Bacillus 
cereus and Bacillus megaterium and minimal fungicidal activity against the yeast species 

Rhodotorula sp., Saccharomyces cerevisiae and Candida albicans (300). Generation of lactic 

acid by commensal bacteria also inhibits the growth a several pathogens including H. pylori, 
B. subtilis, B. cereus, S. epidermidis, E. coli CB6, Klebsiella CB2, S. pyogenes, S. 
epidermidis, P. aeruginosa, S. paratyphi, and S. typhimurium (299, 301–306)(307)(308). In 

these studies, lactic acid alters in vivo pH, inhibits pathogen urease activity, inhibits 

pathogen growth and acts as a bactericidal agent. Additionally L-lactic acid suppresses 

immune cell mediated pro-inflammatory responses (309). Modulation of the immune system 

and alteration in local GIT pH has been speculated to selectively manipulate the gut 

microbiota composition (120, 121, 310), which may further promote colonization resistance 

and inhibition of pathogens. In addition to the antimicrobial effects of lactic acid itself, 

several studies have demonstrated that unidentified bacterial substances, bacteriocins and 

hydrogen peroxide act in concert with lactic acid to inhibit the growth of pathogens (301, 

304, 308).

2. Hydrogen Peroxide

Bacterial produced hydrogen peroxide (H2O2) is known to act synergistically with L-lactic 

acid (311)(Figure 4). H2O2 produced by certain microbes can damage bacterial nucleic acids 

by creating breaks in the carbon phosphate backbone of DNA, releasing nucleotides and 
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preventing chromosomal replication (312, 313). Additionally, hydroxyl radicals, which can 

be produced from the dissociation of H2O2, can attack the methyl group of thymine, 

resulting in damaged DNA (314, 315). Anaerobic bacteria are more sensitive to H2O2 as 

they do not produce catalase which can break down H2O2. In general, gram-negative 

bacteria are more sensitive than gram-positive bacteria to H2O2. However, select gram-

negative bacteria have developed a mechanism to deal with H2O2. These microbes utilize an 

outer lipopolysaccharide (LPS) layer which traps active molecular oxygen (316). Lactic acid 

disrupts the outer membrane (OM) of gram-negative bacteria, releasing LPS, and making 

cells sensitive to H2O2 and antimicrobial agents (294). Several microbes are known to 

produce H2O2 including lactobacilli and bifidobacteria (317, 318). Many studies have 

demonstrated that bacterial produced H2O2 inhibits the growth of pathogens such as 

Staphylococcus aureus, Salmonella enterica serovar Typhimurium, Listeria monocytogenes, 

Enterococcus faecalis, E. faecium, enterotoxigenic Escherichia coli, E. coli CFT074, Listeria 
ivanovii, Staphylococcus aureus, Yersinia enterocolitica, Aeromonas hydrophila, 

Gardnerella vaginalis DSM494, Neisseria gonorrhoeae, Streptococcus mutans, Bacteroides 
forsythus, Capnocytophaga sputigena, Eikenella corrodens, Fusobacterium nucleatum, 
Porphyromonas gingivalis, Prevotella intermedia, and Wolinella recta (318–329). The effect 

of LAB produced H2O2 on pathogen inhibition was found to be significantly enhanced by 

lactic acid (324), supporting the role of H2O2 and lactic acid in concert, acting to shape 

microbial communities. However, commensal bacteria are not the sole producers of H2O2. 

The pathogen S. pneumoniae’s production of H2O2 inhibited growth of viral Haemophilus 
influenza and fellow bacterial pathogens Moraxella catarrhalis, Neisseria meningitides and 
S. aureus (330, 331). In this manner, it has been speculated that pathogens use H2O2 

production to inhibit competing organisms and secure a niche.

3. Bacteriocins

Production of antimicrobial compounds by bacteria provides specific microorganisms with a 

competitive advantage for colonization. Production of bacteriocins is a nearly universal trait, 

as it is projected that the majority of bacteria and archaea produce at least one bacteriocin 

(332–334). The ubiquity of this trait implies that bacteriocins play an important role in vivo 
as colonizing peptides, tools for inhibiting commensal or pathogen niche occupation, or as 

signaling peptides (334–339). Wide variation exists in the chemical composition and 

mechanisms of action of different bacteriocins. Bacteriocins can be classified based on the 

bacteria that secrete them (gram-negative or gram-positive). In general, bacteriocins 

produced by gram-positive bacteria have antimicrobial effects on other gram-positive 

bacteria (332). Production of bacteriocins by probiotic bacteria has been speculated to 

promote colonization and inhibit pathogens (161, 334). In contrast, production of 

bacteriocins by pathogenic bacteria has been postulated to provide a competitive edge for 

infection (340). Wide variation exists in the chemical composition and mechanism of action 

of different bacteriocins. Most bacteriocins target phosphate groups on bacterial cell 

membranes, deplete the transmembrane potential (Δψ) and/or the pH gradient and form 

membrane pores, resulting in membrane disruption and cellular leakage (341–343) (Figure 

4). Similar to other compounds such as H2O2, bacteriocins may yield synergistic effects with 

lactic acid and exhibit greater antibacterial activities at lower pH values. To simplify our 
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review, we have chosen to focus on primarily bacteriocins produced by commensal bacteria, 

as opposed to ones produced by pathogens.

Bacteriocin Diversity and classification

Gram-positive Bacteriocins

Class I: The Lantibiotics: Lantibiotics are small (<5 kDa) peptides characterized by the 

unusual amino acids lanthionine (Lan), α-methyllanthionine (MeLan), dehydroalanine, and 

dehydrobutyrine. Within Class I molecules can be sub-grouped into type A or type B 

according to their chemical structures and antimicrobial activities (344–346). Type A 

Lantibiotics exhibit elongated screw-shaped peptides with a net positive charge. The shape 

and charge of type A molecules facilitate membrane pore formation and membrane 

depolarization in sensitive species. Type A molecules generally are 2 – 4 kDa in molecular 

weight. The best characterized of the type A lantibiotics is the Lactococcus lactis produced 

Nisin. Nisin inhibits the growth of a range of gram-positive bacteria including Listeria 
monocytogenes, Staphylococcus aureus, and Bacillus cereus (347–350). Nisin also prevents 

spore germination by pathogens Clostridium botulinum, Clostridium sporogenes, Bacillus 
cereus, and Bacillus anthracis (342, 351–354). In vegetative cells, Nisin binds to lipid II on 

targeted bacterial membranes. Nisin orients parallel to the surface of the target membrane 

and inserts the C-terminus of peptide into the phospholipids, thereby disrupting cell wall 

biosynthesis and creating a “wedge-like” pore (355). Pore formation causes a rapid 

nonspecific amino acid and cation efflux and subsequent cell membrane rupture and cell 

death (356, 357). In spores, Nisin also utilizes lipid II binding and pore formation in 

germinated spores during outgrowth, leading to membrane disruption that inhibits spore 

development into vegetative cells. Type A lantibiotics include lacticin (Lactococcus lactis 
lacticin 3147 (358), Lactococcus lactis subsp. lactis lacticin 481 (359), lactocin 

(Lactobacillus rhamnosus lactocin 160 (343), Lactobacillus sake L45 lactocin S (360)), 

Staphylococcus epidermidis epidermin (361) and Staphylococcus gallinarum gallidermin 

(362). In comparison to type A molecules, type B lantibiotics are smaller (2– 3 kDa) 

globular peptides with a negative or neutral charge. In contrast to type A lantibiotics, type B 

peptides exert their antimicrobial activity via cell lysis and inhibition of essential bacterial 

enzymes. Type B lantibiotics increase membrane permeability and reduce ATP-dependent 

protein transport and ATP-dependent calcium uptake in sensitive bacterial cells, resulting in 

cell lysis. Cell lysis was significantly reduced when the type B lantibiotics cinnamycin and 

duramycin were incubated with the phospholipid phosphatidylethanolamine (363–365). The 

data indicate that type B lantibiotics interact with phospholipid targets. In addition to 

membrane effects, type B lantibiotics are also known to inhibit bacterial enzymes, such as 

phospholipase A and peptidoglycan synthesis. Examples of Type B lantibiotics include 

Lactobacillus curvatus curvacin A, Streptomyces cinnamoneus cinnamycin, Streptomyces 
ssp ancovenin (366) and Streptoverticillium R2075 duramycins B and C and Streptomyces 
griseoluteus (R2107) duramycins B and C (367).

Class II: Class II bacteriocins are small (<10 kDa), heat stable, non-lanthionine containing 

membrane active peptides. These peptides can be further divided into subgroups based on 

sequence and function: a, b, c, d and e. The subgroup class IIa comprises pediocin-like 

peptides containing an N-terminal consensus sequence -Tyr-Gly-Asn-Gly-Val-Xaa-Cys. 
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Class IIa bacteriocins are produced by food-associated bacterial strains and have garnered 

attention due to their anti-Listeria activity (368, 369). Similar to Class I molecules, class IIa 

bacteriocins kill target cells by permeabilizing the cell membrane (341, 370). Class II 

molecules bind to the target membrane using the cationic N-terminal beta sheet domain of 

the peptide, while the C-terminal regions form a hairpin-like domain which penetrates into 

the target cell membrane. This penetration results in leakage of cytoplasmic components 

through the membrane, resulting in cell death. Bacteriocins belonging to the class IIa family 

include L. lactis lactococcin MMFII, Bifidobacterium bifidum NCFB bifidocin B, B. 
longum subsp. infantis bifidin I, Pediococcus acidilactici pediocin PA-1, Carnobacterium 
piscicola carnobacteriocin B2, C. divergens divercin V41, L. sakei sakacin P, L. sake sakacin 

A, Enterococcus faecium enterocin A, E. faecium enterocin P, Leuconostoc gelidum 
leucocin A, L. mesenteroides mesentericinY105 (281, 371–379) and Pediococcus 
pentosaceus K23-2 (380). Class IIb contains bacteriocins that require two separate peptides 

for activity. Similar to Class IIa they act as pore-forming peptides (381). Class IIb peptides 

include L. lactis lactococcin G and M, L. salivarius UCC118 Abp118, L. johnsonii lactacin 

F, and L. plantarum plantaricin A, S, E, F, and JK (339, 358, 382–389). The class IIc 

peptides have a wide range of effects on membrane permeability and cell wall formation. 

One of the well documented class IIc molecules is E. faecalis bacteriocin AS-48 (390). 

Bacteriocin AS-48 consists of five alpha helices enclosing a hydrophobic core, creating a 

globular structure which creates membrane pores in susceptible gram-positive or gram-

negative bacteria. Other examples include L. acidophilus acidocin B, C. piscicola 
carnobacteriocin A, C. divergens divergicin A and E. faecium enterocin P and B (391–394). 

Class IId bacteriocins are linear, non-pediocin-like, single-peptide bacteriocins with similar 

antimicrobial activity. Class IId molecules include L. lactis lactococcin A, S. epidermidis 
epidermicin NI01, and S. cremoris diplococcin (387, 395, 396). Class IIe bacteriocins are 

comprised of non-ribosomal siderophore-type post-translational modifications at the serine-

rich carboxy-terminal region of the peptide. Class IIe molecules include Klebsiella 
pneumonia microcin E492 (397, 398).

Class III: Class III bacteriocins are comprised of large molecular weight (>30 kDa) heat 

labile proteins. This class is further subdivided in two subclasses: subclass IIIa and IIIb. 

Subclass IIIa, also known as bacteriolysins, emcompasses peptides that degrade bacterial 

cell membranes, resulting in cell lysis and subsequent cell death. Of subclass IIIa the most 

characterized is Staphylococcus species produced lysostaphin. Lysostaphin is a 27 kDa 

peptide that cleaves cell wall crosslinking pentaglycin bridges, thereby hydrolyzing 

suspectible staphylococci, including the pathogen S.aureus (399–401). Another member of 

the subclass IIIa group is E. faecium enterolysin (402). Subclass IIIb, comprises peptides 

which disrupt target cell membrane potential, causing ATP efflux and death. In contrast to 

subclass IIIa, these peptides do not cause cell lysis. Other members of Class III include 

bacteriocins from subclass IIIb include L. casei Caseicin 80, and L. helveticus helveticin J 

and V-1829 (403–405).

Class IV: Class IV bacteriocins were recently described and are defined as complex 

bacteriocins containing lipid or carbohydrate moities. The class IV bacteriocins are cyclical 

due to covalent bonding of the first and last amino acids and are considered to be S-linked 
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glycopeptides with antimicrobial activity. Examples of class IV molecules include 

Enterococcus faecalis subsp. liquefaciens S-48 Enterocin AS-48, E. faecalis F4-9 Enterocin 

F4-9, Bac. subtilis 168 sublancin (a S-linked glycopeptide) and L. plantarum KW30 

glycocin F (GccF) (406–409). Peptides from this class exhibit a wide pH range, variable 

resistance to heat and loss of antimicrobial activity when exposed to proteolytic enzymes 

(409–411). The cationic charges of enterocin F4-9 and glycocin F were found to be essential 

for interactions with charged phospholipids in target bacterial cells. These interactions did 

not induce cell lysis, implying a bacteriostatic effect these bacteriocins. Enterocin F4-9 

yielded antimicrobial activity against E. faecalis and E. coli JM109, but not Enterococcus 
faecium and other E. coli members (409). In contrast, glycocin F was found to have activity 

against lactobacilli (411) while sublancin 168 had activity against gram-positive bacteria, 

specifically Bacillus species, but not E. coli JM101 (410). These studies indciate that class 

IV bacteriocins target unique epitopes.

Gram-negative Bacteriocins

Microcins: Microcins are low molecular weight (<10 kDa) hydrophobic antimicrobial 

peptides synthesized on bacterial ribosomes. These molecules are primarily produced by 

gram-negative Enterobacteriaceae (phylum Proteobacteria). Microcins are generally heat, 

extreme pH, and protease tolerant (412). Microcins exhibit a wide range of structural 

diversity and antimicrobial mechanisms. Microcins target other bacterial cells via pore 

formation, DNAse or RNAse nuclease function, inhibition of protein synthesis or inhibition 

of DNA replication (413). One of the more deceptive ways microcins exert their 

antibacterial activity is through a ‘Trojan horse’ strategy whereby microcins imitate essential 

nutrients (412). Microcins are able to mimic small, high-affinity iron chelating compounds 

(iron-siderophore complexes). As iron is required for bacterial DNA synthesis, microcins 

resembling iron-siderophores are able to bind to outer-membrane receptors on target bacteria 

and translocate into the periplasmic space where they can exert their antimicrobial activity. 

Despite the large diversity, these molecules are classified in two classes depending on their 

molecular masses, disulfide bonds and post-translational modifications: class I and II. Class 

I microcins are plasmid-encoded, low molecular weight (<5 kDa) and are post-

translationally modified. Examples of class I microcins include E. coli microcin B17, C7–

C51, D93, and J25. Class II microcins are larger in molecular weight (5–10 kDa) and 

produced by and active against Enterobacteria. Class II microcins are subdivided into two 

subclasses, including class IIa and IIb. Class IIa microcins do not undergo post-translational 

modification while class IIb microcins exhibit post-translational modifications in the form of 

a salmochelin-like siderophore motif (414). Additionally, class IIa peptides typically contain 

1–2 disulfide bond(s). Class IIa molecules include Escherichia coli microcins L, V, S, and N, 

all of which require three different genes to synthesis the molecule. Class IIb microcins are 

differentiated from class IIa due to their linear structure or lack of post-translational 

modifications at the C-terminal (413, 415). Examples of class IIb molecules include E. coli 
Nissle 1917 microcin M, E. coli Nissle 1917 microcin H47, and Klebsiella microcin E492.

Colicins: In contrast to low weight microcins, colicins are high molecular weight (25–80 

kDa) proteins with antimicrobial activity. Colicins act by binding to outer membrane 

receptors, penetrating the cytoplasmic membrane, and then subsequently causing cytotoxic 
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effects, including cytoplasmic membrane depolarization, DNase activity, RNase activity, or 

murein synthesis inhibition. Colicins use a two-receptor system to target cells. First colicins 

bind to outer membrane receptors, such as porins OmpF, FepA, BtuB, Cir and FhuA, which 

are typically used for entry of specific nutrients into the bacterial cells. Next, colicins are 

translocated through the outer membrane and enter the cell cytoplasm by either the Tol or 

Ton system where they can exert their cytotoxic effect (416). Colicins are divided into 

categories based on their outer membrane translocation system (either Tol or Ton). The Ton 

and Tol systems are two protein arrangements which E. coli uses to transfer energy from the 

inner membrane to the outer membrane. The systems differ in their component proteins. The 

Ton system consists of TonB, ExbB, and ExbD, while the Tol system consists of TolA, TolQ, 

and TolR. In the Ton system, ExbB and ExbD proteins compose the energy harvesting 

complex which transfers energy to the protein TonB. This arrangement causes a 

conformational change in TonB which subsequently delivers energy to the outer membrane. 

In the Tol system, TolQ and TolR proteins compose the energy harvesting complex which 

transfers energy to TolA, resulting in a conformational change and energy to the outer 

membrane. The Ton system is involved in transport of compounds across the membrane, 

while the Tol system is involved in outer membrane maintenance. Group A colicins use the 

Tol protein system to traverse the outer membrane of sensitive bacteria, while group B 

colicins use the Ton system. Examples of group A colicins include colicins E1 to E9, colicin 

A, K, N and examples of group B molecules include colicin 5, 10, B, D, M, V, Ia, Ib (413, 

417). Colicins can also be classified based on their mechanism of induced cell death: (1) 

Pore formation colicins, (2) Nuclease type colicins or (3) Peptidoglycanase type colicins. 

Pore formation colicins act by creating a pore within the bacterial cytoplasmic membrane, 

resulting in cytoplasmic content leakage, loss of electrochemical gradients and cell death. 

Examples of pore-formation colicins include colicin A, B, E1, Ia, Ib, K, and N. Nuclease 

type colicins utilize DNase, 16S rRNase, and tRNase to non-specifically digest DNA and 

RNA of targeted bacteria. Examples of these molecules include colicin E2 to E9. Finally 

peptidoglycanase type colicins are able to digest peptidoglycan precursors. This digestion 

prevents bacteria from synthesizing peptidoglycan, a key cell wall component, and results in 

bacterial death (418).

Bacteriocins In vivo—Bacteriocin producing strains have been shown to have an 

ecological advantage over non-producing strains in vivo, pointing to the role of bacteriocins 

in niche development. For example, E. coli BZB1011 strains which produced colicins (A, 

E1, E2, E7, K, and N) were found to be persistent over time in mice, compared to non-

colicin producing isogenic strains (419). Bacteriocins, particularly the lantibiotics from 

gram-positive bacteria, have been shown to be effective against a number of pathogenic 

strains in vivo. The lantibiotic nisin has been shown to inhibit pathogens S. pneumoniae 
(420), Staph. aureus (421–423), and Listeria monocytogenesin in mice (424). Furthermore 

lantibiotic B-Ny266 was shown to inhibit S. aureus (425) and planosporicin inhibited S. 
pyogenes in mice (426). Class IIa bacteriocin peptides Enterocin CRL35 and divercin V41 

were also shown to inhibit L. monocytogenes (427, 428) while bacteriocin E50–52 inhibited 

Mycobacterium tuberculosis in mice (429). Intraperitoneal injection of microcin MccJ25 

reduced Salmonella Newport quantities in the spleen and liver in mice (430). As a result of 
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these in vivo studies, bacteriocins have been considered for the treatment of multi-drug 

resistant pathogens.

Bacteriocins as Quorum Sensing Molecules—For many bacteria, bacteroicin 

production is regulated by quorum sensing (161, 431, 432). Quorum sensing, as discussed 

earlier, is a cell-density dependent regulatory system where autoinducing signals facilitates 

bacterial communication. This system can sense the number of cells of the same species and 

synchronize the expression of key genes. Bacteriocin peptides are sensed by membrane-

located histidine kinases, which transmits a signal via an intracellular response regulator, 

thereby activating gene transcription of the inducer bacteriocin molecule (433). The two-

component signal-transduction mechanism is a key step for transcription activation and 

production of several bacteriocins or bacteriocin-like peptides. These include the Class I 

lantibiotics L. lactis nisin and Bacillus subtilis subtilin, as well as the class II E. faecium 
Enterocin A and L. salivarius UCC118 Abp118 (432, 434–438). Thus the bacteriocin 

peptide itself functions as a pheromone to induce its own production. When bacterial cell 

density is high, an autoinduction loop is activated and bacteriocins are likewise produced at 

high concentrations. In this manner, bacteriocins are released to target similar species only 

when the bacterial levels are high enough to suppress the growth of competitive strains.

Bacteriocins within biofilms are known to play important roles in bacterial competition, 

ecological fitness and overall community structure (93, 439, 440). In the naturally 

transformable streptococci, including S. mutans, S. gordonii, S. sanguinis and S. mitis, 

bacteriocin production is tightly regulated by a quorum sensing system that also regulates 

genetic competence and biofilm formation (93, 439, 440). S. mutans has served as a well-

studied example of quorum sensing and bacteriocin production. S. mutans uses the 

ComCDE quorum-sensing system to connect to bacteriocin production, stress response, 

genetic competence and biofilm formation (93, 343, 439, 441–443). S. mutants ComC 

mutants do not produce the signaling molecule CSP, and these biofilms exhibit reduced 

biomass (93). However, supplementation of cultures with synthetic CSP restores the wild-

type biofilm phenotype. S. mutans CSP-induced bacteriocin (CipB) can also stimulate cell 

lysis (444, 445). As a result, bacteriocin production within biofilms is speculated to provide 

balanced competition and coexistence of multi-organisms within a microbial community 

(439, 440, 446).

4. Other biogenic substances

In addition to bacteriocins, select microbes are known to produce bacteriocin-like substances 

(BLS). BLS are used to describe compounds which have antimicrobial properties, but are 

not ribosomally produced or gene-encoded precursor peptides. Examples of this class of 

compounds include reuterin and reutericyclin.

Reuterin—Select strains of Lactobacillus reuteri are able to generate reuterin (3-

hydroxypropionaldehyde) during anaerobic fermentation of glycerol (447, 448). During this 

process glycerol is reduced 1,3-propanediol, an event catalyzed by the coenzyme B12-

dependent diol dehydratase, which regenerates NAD+ from NADH (449–451). Reuterin is 

water-soluble, active over a wide range of pH values and bioactive against gram-positive and 
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gram-negative bacteria, viruses and fungi (452). The aldehyde group of reuterin is highly 

reactive with thiol groups and primary amines. As a result reuterin inhibits bacterial growth 

by modifying protein thiol groups and inducing oxidative stress in target cells (450). 

Production of reuterin by L. reuteri was found to be enhanced by interactions with E. coli, 
indicating that cross-talk between members of the gut microbiota may regulate reuterin 

output (450). Reuterin has also been demonstrated to act synergistically with other 

bacteriocins. Nisin, lacticin 481 or enterocin AS-48 were found to enhance antimicrobial 

activity of reuterin against the pathogen L. monocytogenes (453). However, only nisin was 

found to increase antimicrobial activity or reuterin against S. aureus (453). These studies 

indicate that synergism between reuterin and bacteriocins are dependent on the bacteriocin 

and pathogen. Importantly reuterin was found to be produced by L. reuteri in mono-

associated germ-free mice, indicating that reuterin can be produced in vivo in the GIT (454).

Reutericyclin—Reutericyclin is a highly hydrophobic, negatively charged compound 

produced by certain L. reuteri strains (455, 456). Reutericyclin ((5R)-1-(2-decenoyl)-2-

hydroxy-3-acetyl-5-isobutyl-Δ2-pyrroline-4-one) is a N-acylated tetramic acid (456) and its 

mode of action resembles that of weak organic acids. Reutericyclin targets the cytoplasmic 

membrane of sensitive bacteria by acting as a proton-ionophore. This action results in the 

translocation of protons across the cytoplasmic membrane and subsequent colapse the 

transmembrane ΔpH (455). Reutericyclin exhibits a broad inhibitory spectrum against gram-

positive pathogens including E. faecalis, Listeria innocua, S. aureus, Bacillus subtilis, and B. 
cereus (456). Reutericyclin has also been shown to inhibit germination of Bacillus spores 

(456). However gram-negative bacteria are resistant to reutericyclin due to the presence of 

LPS in their outer membrane. LPS is known to limit access of hydrophobic compounds and 

the charged polysaccharide moieties of LPS has been proposed to bind reutericyclin, thereby 

rendering it inactive (455, 457).

SUMMARY AND CONCLUSIONS

This chapter highlighted multiple well-characterized systems used by commensal bacteria to 

communicate with other microbes and the mammalian host, to modify microbial 

communities, and to beneficially modulate the function of the mammalian host. These 

studies emphasize key roles of bacterial metabolites and secreted products in fine-tuning 

mammalian biology. Bacteria are capable of secreting multiple and chemically diverse host-

modulating factors. This work has focused on commensal bacteria, but a number of these 

factors can also be used by pathogens. Future studies may begin to define the secretion of 

products in various environments and under different conditions (i.e. inflammation, altered 

pH, various dietary nutrients). As we begin to understand health-promoting compounds and 

metabolites generated by commensal bacteria, we will be better able to identify individual 

species and strains which can be tailored for specific physiological or biochemical targets of 

interest. The work herein highlights the importance of selecting well-characterized 

commensal or probiotic strains with known mechanisms to address specific disease 

processes. The recent development of the US edition of the Clinical Guide to Probiotic 

Products reflects the growing need for evidence based selection of probiotics. This online 

database provides guidelines for probiotic products and corresponding research studies 
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supporting the use of each specific probiotic (http://usprobioticguide.com/). These tools will 

likely aid clinicians in selecting disease-relevant bacterial species.

Genetic engineering of probiotic strains has also been used as a method to either enhance 

production of molecules of interest (124). In this system bacteria could be designed with 

upregulated gene synthesis or to be constitutively active. Using this model, issues of whether 

a given product is being secreted in vivo under various conditions (pH, ion composition, 

changing osmolarity) could be minimized. Strains have also been engineered with genes 

from other bacteria to create organisms capable of secreting multiple beneficial factors. 

Microbial engineering may lead to the production of “super” strains with the ability to 

release multiple factors targeted for different purposes (i.e. immunomodulation, pathogen 

exclusion, enhancing the mucus barrier). Additionally genetic engineering has also be used 

to facilitate probiotic selection and maintenance in the host (124). This method may ensure 

the transient introduction of strains which are not desired to colonize the host long term. 

Currently social acceptance of genetically modified (GM) foods or microbes is not universal 

and thus these types of modifications will likely be closely monitored in the future. An 

alternate approach could be to isolate and purify valuable metabolites, which themselves 

could also be used directly as novel therapeutics for specific disorders.

Based on studies conducted thus far, we have strong evidence to pursue selection of 

probiotics and examination of specific microbial genes, proteins, and metabolites of interest. 

In the future we hope to use this knowledge to thoughtfully select commensal strains for a 

given disease treatment or prevention. Overall, these studies contribute to the rapidly 

expanding body of evidence demonstrating that secreted microbial metabolites can 

beneficially influence host physiology. In addition to probiotics, future dietary and medicinal 

interventions may depend on the foundations of microbial metabolite and protein discovery 

in the context of microbiome science.
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Figure 1. 
Methods utilized by commensal bacteria to beneficially modulate the intestinal environment. 

A. Commensal bacteria are able to secrete molecules which can alter the gut microbiota. By 

selectively inhibiting resident microbes, commensal bacteria are able to establish an 

intestinal bacterial niche. Production of anti-microbial factors has also been shown to 

exclude pathogens. B. Select commensal bacteria are also able to secrete compounds which 

can modulate immune cells such as macrophages, dendritic cells or lymphocytes such as T 

cells. These compounds decrease intestinal inflammation by dampening pro-inflammatory 

cytokines and promoting anti-inflammatory factors such as Interleukin (IL)-10. C. Finally, 

commensal bacteria can secrete factors which modulate the functions of the epithelial barrier 

by enhancing the secretion of the protective mucus layer, upregulating tight junctions and 

promoting secretion of molecules such IgA.
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Figure 2. 
A depiction of secreted metabolites from commensal bacteria and their interactions with the 

microbiome or host. Lactic acid, hydrogen peroxide, short chain fatty acids (SCFA), and 

bacteriocins are all capable of serving as quorum sensing molecules and/or directly 

modulating the composition of the microbiome. SCFAs, long chain fatty acids (LCFAs), 

outer membrane vesicles, vitamins, lactocepins, serpins and biogenic amines have all been 

demonstrated to beneficially modulate the host. Together these bacterial products shape the 

intestinal environment and host.
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Figure 3. 
Schematic representation of the molecular mechanisms of commensal secreted products on a 

gram-negative bacteria. Bacteriocins are classified based on their structure. Bacteriocins 

such as nisin bind to a peptidoglycan subunit transporter, thereby preventing cell wall 

synthesis and resulting in cell death. Furthermore, bacteriocins can initiate pore formation. 

Pore formation depletes the bacterial transmembrane potential (Δψ) and/or the pH gradient, 

resulting in membrane disruption and cellular leakage that leads to rapid cell death. Other 

bacteriocins are able to directly insert themselves directly or degrade the target membrane, 

leading to depolarization and death. Bacteriocins have also been shown to serve as quorum 

sensing molecules for other microbes. Lactic acid decreases local pH and suppresses the 

growth and survival of pathogens. Additionally, un-dissociated lactic acid can traverse the 

outer membrane (OM) via water-filled porins and penetrate the cytoplasmic membrane. This 

shift lowers the intracellular pH and disrupts the transmembrane proton motive force and 

generates oxidative stress. Hydrogen peroxide and select bacteriocins such as micrococcins 

damage bacterial DNA and inhibit cell growth. Together, these compounds secreted by 

select members of the microbiota effectively target pathogens.
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Figure 4. 
Mechanisms by which commensal secreted products beneficially modulate the host. A. 

Epithelial cells. Vitamins produced by bacteria provide essential nutrients to the host. 

Likewise, short chain fatty acids (SCFA) such as butyrate are known to serve as energy 

sources for intestinal epithelial cells. The SCFA acetate has also been shown to inhibit IL-8 

production and increases tubulin-α acetylation. Lactobacilli produced p40 and p75 inhibit 

tumor necrosis factor (TNF)-induced apoptosis and enhance tight junctions which attenuates 

intestinal barrier disruption. B. Goblet cells. p40 is known to transactivate the EGF receptor 

(EGFR), activating the downstream target Akt and stimulating Muc2 gene expression and 

mucin production. Acetate produced by bacteria has also been shown to increase goblet cell 

differentiation and expression of mucus-related genes. C. Immune cells. Vitamins, Outer 

Membrane Vesicles (OMVs), SCFA and LCFAs are known to directly influence the 

development and function of immune cells. In general these molecules modulate T cell and 

dendritic cell homeostasis and cytokine production, promoting production of anti-

inflammatory IL-10 and inhibiting pro-inflammatory cytokines such as TNF. Biogenic 

amines such as histamine have also been shown to suppress pro-inflammatory cytokines 

such as TNF in immune cells, thereby ameliorating intestinal inflammation. Bacterial 

enzymes such as lactocepin selectively degrade lymphocyte recruiting chemokine IP-10 and 

other pro-inflammatory chemokines such as I-TAC and Eotaxin. The protease inhibitor 

serpin has been shown to suppress inflammatory responses by binding and inactivating 

neutrophil elastase. Using the highlighted mechanism, commensal bacteria produce signals 

that reduce intestinal inflammation and promote health.
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