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Maternal genome-wide DNA methylation profiling in gestational diabetes shows
distinctive disease-associated changes relative to matched healthy pregnancies
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ABSTRACT
Several recent reports have described associations between gestational diabetes (GDM) and changes to the
epigenomic landscape where the DNA samples were derived from either cord or placental sources. We
employed genome-wide 450K array analysis to determine changes to the epigenome in a unique cohort of
maternal blood DNA from 11 pregnant women prior to GDM development relative to matched controls.
Hierarchical clustering segregated the samples into 2 distinct clusters comprising GDM and healthy
pregnancies. Screening identified 100 CpGs with a mean b-value difference of �0.2 between cases and
controls. Using stringent criteria, 5 CpGs (within COPS8, PIK3R5, HAAO, CCDC124, and C5orf34 genes)
demonstrated potentials to be clinical biomarkers as revealed by differential methylation in 8 of 11 women
who developed GDM relative to matched controls. We identified, for the first time, maternal methylation
changes prior to the onset of GDM that may prove useful as biomarkers for early therapeutic intervention.
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Introduction

Gestational diabetes (GDM) is a pregnancy-specific endocrine
disorder with a prevalence of 3.5–14%.1 Due to the worldwide
obesity epidemic and recently modified diagnostic criteria, GDM
is increasingly prevalent.2 It occurs because of a mismatch
between insulin production and requirement, leading to maternal
hyperglycemia. Since glucose is able to cross the placenta,
whereas insulin is not, the fetus is also exposed to hyperglycemic
conditions. Women with GDM are at increased risk of caesarean
section and stillbirth compared with healthy women.3, 4 They are
also more likely to develop type 2 diabetes (T2DM), dyslipide-
mia, and cardiovascular disease in later life,5-7 while their off-
spring have an increased long-term risk of obesity and diabetes.2

Epigenetic modifications, which may be causal of or associated
with changes in gene expression, offer significant promise for
understanding the underlying mechanisms of GDM. Indeed, and
as an example, epigenetic changes in T2DM have been reported in
genes involved in metabolism.8-13 Since maternal epigenetic modi-
fications are known to contribute to fetal programming,14 recent
studies have investigated the role of epigenetic alterations in off-
spring exposed tomaternal hyperglycemia and found positive asso-
ciations.15-19 Furthermore, previous studies suggest that epigenetic
modificationsmay play a role in the pathogenesis of GDM.20,21

Epigenetic research in GDM has largely used targeted (can-
didate gene) approaches.15,16,18,19 To date, only 2 studies have

utilized genome-wide methodology17,22 and in these cases
investigators examined placenta and cord blood samples from
GDM pregnancies. Differentially methylated genes were identi-
fied between GDM and healthy pregnancies,17,22 which provide
evidence for the involvement of these genes and/or their differ-
ential methylation in GDM. However, there have been no
genome-wide studies examining methylation differences
between maternal tissue samples from GDM and healthy preg-
nancies. We decided to focus on maternal epigenetic profiles,
as they would facilitate the assessment of the in utero environ-
ment and allow identification of predictive biomarkers that
would enable targeted intervention to high risk groups.

On the basis of the current literature, we hypothesized the
presence of pre-existing epigenetic markers in women who subse-
quently go on to develop GDM. In this study, and for the first
time in this disease, we interrogated genome-wide DNAmethyla-
tion in peripheral blood samples collected from women prior to
the development of GDM and relative to matched healthy con-
trols that did not develop GDM. Using this discovery cohort, our
aim was to identify candidate genes with future promise as poten-
tial biomarkers for the prediction of GDM in early pregnancy.

Results

Our initial data analyses focused on comparison of our data in
antenatal samples with the 2 recent genome-wide studies that
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investigated cord blood and placental tissue samples.17,22 We
compared our data with those of Finer et al.22 and Ruchat
et al.17 separately due to the different approaches used for data
processing by each study (Fig. 1). Using the filtering criteria
shown in step 1A of Fig. 1, comparison of our data with those
of Finer et al.22 identified 4,755 differentially methylated CpGs
(representing 2,236 genes) where the mean b-value difference
between the GDM and healthy groups was >0.05 and statisti-
cally significant (P < 0.05). In contrast, comparison with the
data of Ruchat et al.17 (step 1B of Fig. 1) identified 1,035 CpGs
(representing 633 candidate genes). We also performed the
same comparison after applying multiple testing adjustment
using the false discovery rates, which showed no overlap of our
data with these 2 studies.

As shown in Fig. 2A, by comparing the 2,236 genes identi-
fied as differentially methylated in our study with those
reported by Finer et al.,22 2 genes were common between
maternal blood, umbilical cord, and placenta: Hook

Microtubule-Tethering Protein 2 (HOOK2) and Retinol Dehy-
drogenase 12 (RDH12). Conversely, and as summarized by the
Venn diagram in Fig. 2B, there were no genes common to all 3
tissue types when we compared our data with that of Ruchat
et al.17

The 4,755 CpGs initially identified as differentially methyl-
ated were then subjected to further filtering (steps 2 and 3,
Fig. 1). Using this approach, we identified 100 unique CpGs
(comprising 66 genes) that were differentially methylated
between GDM and healthy pregnancies (the full annotated list
is shown in Table S1). None of these CpGs have an annotated
single-nucleotide polymorphism (SNP) in the probe. Closer
examination of the 100 CpGs revealed that the majority (53%)
were hypomethylated in GDM relative to healthy pregnancies.
The observed differences in mean b-value showed a maximum
difference of 0.38. The frequency and DNA methylation of
these differentially methylated CpG sites in relation to their
genomic location and CpG islands are shown in Figure S1. Of

Figure 1. Filtering criteria for the identification of CpGs differentially methylated between GDM and normal pregnancies. The starting number of CpGs (484,273) was
derived through the removal of CpGs with high detection values (P > 0.05) and those with missing b-values in any one of the 22 samples, as described in the Materials
and Methods. Horizontal line denotes additional filtering steps. �According to Finer et al. criteria.22 ��According to Ruchat et al. criteria.17 GDM, gestational diabetes. SD,
standard deviation.
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the differentially methylated CpGs, 45% were associated with a
CpG island, shelf, or shore (Figure S1C).

Hierarchical clustering was performed to determine whether
the methylation patterns in these 100 CpGs can be used to dis-
tinguish between GDM and healthy pregnancies. The heatmap
in Fig. 3 illustrates that there are distinctive methylation pat-
terns between GDM and healthy pregnancies, which segregate
samples into 2 distinct groups comprising those from GDM
and healthy populations. The slide type did not cause the clus-
tering; therefore, our results were not due to batch effects. Cal-
culation of the genomic inflation factor before and after
normalization steps showed that removal of SNP containing
probes and subset-quantile within array normalization
(SWAN) by the minfi package reduced the genomic

inflation.23-25 Pre-normalization λ was estimated to be 1.189
(standard error of the estimation D 9.461 £ 10¡5); after nor-
malization, the estimated λ was reduced to 1.132 (standard
error of the estimation D 7.461 £ 10¡5). The remaining geno-
mic inflation suggests that mild confounding stratification fac-
tors remain unaccounted for in the data.

Enrichment of gene ontology terms and biological pathways
within the 66 genes associated with differentially methylated
CpGs were assessed using DAVID online software26 and identi-
fied 11 overrepresented pathways, with the top 3 (ranked by P-
value) involved in cell adhesion molecules, type 1 diabetes mel-
litus, and keratin pathways. However, enrichment of these
pathways was not statistically significant following adjustment
for false discovery rates (Table S2).

Finally, we examined the absolute b-value differences across
all 11 matched pairs. Using this stringent criteria, in 5 of the
100 CpGs identified, at least 8 of the 11 GDM pregnancies
showed b-value differences of >0 .2 relative to matched con-
trols. The 5 CpGs comprised of 5 genes (COPS8, PIK3R5,
HAAO, C5orf34, and CCDC124) and their functions are shown
in Table 1.

Discussion

We describe for the first time, genome-wide DNA methylation
changes in maternal blood prior to the diagnosis of GDM. We
identified 2 differentially methylated genes that shared identity
with genes previously described in studies that interrogated pla-
centa and umbilical cord blood samples and, in these cases,
using the same array platforms.17,22 Furthermore, using strin-
gent filtering criteria, we identified 100 unique CpGs that segre-
gated GDM and healthy pregnancies into distinct groups upon
hierarchical clustering.

The strength of our study, in contrast to previous studies, is
that we carefully matched each GDM pregnancy to a healthy
one to ensure the samples were comparable.17,22 Furthermore,
as all samples were taken prior to development of pregnancy
complications, there was limited sampling bias.

We were able to compare our data to those from 2 recent
genome-wide studies in GDM using cord blood and placenta

Figure 2. Venn diagrams illustrating comparison of genes differentially methylated in GDM using maternal blood with those identified in cord blood and placenta of GDM
affected pregnancies from the cohorts of (A) Finer et al.22 and (B) Ruchat et al.17, respectively. The genes from our dataset that were common with the other study are
shown in dark gray shading. Genes identified as differentially methylated in Finer et al.22 were obtained from Supplementary file 2 of the published article, while the list
of differentially methylated genes identified by Ruchat et al.17 was kindly provided through personal communication with the corresponding author of Ruchat et al.17

Figure 3. Heatmap and dendrograms showing clustering45 for the 100 CpGs iden-
tified as differentially methylated (mean difference in b-values >0.2) between
GDM and healthy pregnancies. DNA methylation across the 100 sites in each of
the samples was analyzed by hierarchical clustering using the Euclidean distance
and average linkage criteria. Each row represents an individual CpG site and each
column a different sample. Healthy controls and GDM samples are shown by the
green and red bars, respectively. Slide type is also shown with slide 1 in green and
slide 2 in red. Color gradation from yellow to blue represents low to high DNA
methylation respectively, with b-values ranging from 0 (no methylation; yellow) to
1 (complete methylation; blue). GDM, gestational diabetes.
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tissue.17,22 Comparative analysis with Finer et al.22 showed that
HOOK2 and RDH12 were common to maternal blood, placenta
and cord blood. HOOK2 codes for a linker protein that medi-
ates binding to organelles and is responsible for morphogenesis
of cilia and endocytosis.27,28,29 RDH12 encodes a retinal reduc-
tase, which also plays a role in the metabolism of short-chain
aldehydes.27,30 In terms of KEGG orthology, it is involved in
metabolic pathways as well as retinal metabolism.31 These 2
genes, therefore, may represent important candidates for fur-
ther study.

The disparity of candidate genes when comparisons are
made to the previous studies might reflect the different data fil-
tering criteria used by Ruchat et al.17 and Finer et al.22 Using
the Finer et al. criteria, many of the differentially methylated
CpGs are likely to have b-value differences <0.2, which could
be difficult to reproduce either by alternative methodologies,
such as pyrosequencing or in replication studies using indepen-
dent patient cohorts. Moreover, we used a distinct patient pop-
ulation to the other 2 studies. We used samples from women
prior to the development of their GDM, while both Ruchat
et al.17 and Finer et al.22 used samples from women with estab-
lished GDM. Furthermore, we used maternal blood samples,
rather than placenta and cord blood samples. These disparities
may have contributed to the differences in the absolute num-
bers of CpGs/genes identified.

Further analysis of our cohort identified 100 independent
CpGs (comprising 66 genes), which were found to cluster
GDM and healthy pregnancies separately. Reassuringly,
these CpGs have no annotated SNPs in the probe. Enrich-
ment of gene ontology terms and biological pathways of
these 66 genes showed enrichment for genes involved in
cell adhesion, type 1 diabetes mellitus, and keratin path-
ways.26,32 Although the enrichment was not statistically sig-
nificant following adjustment for false discovery rates, these
are promising candidates, which are worth examining to
elucidate the biological mechanisms behind GDM. In future
work, it will be important to verify, in larger independent
cohorts, the candidates identified herein and to determine
the impact of differential methylation. This may in the
future improve the understanding of GDM pathogenesis
and aid in the development of therapy.

The design of this pilot study was to generate a list of genes
of interest using a relatively small number of samples. In order
to avoid type II errors (false negatives), we used uncorrected P-
values to identify potential candidates in the preliminary

screening. We then applied more stringent methodology (steps
2–4 of Fig. 1) to identify candidate genes. A potential limitation
of our study is the possibility of genomic inflation. Mild con-
founding stratification factors, such as changes in composition
of blood during the pregnancy, the time of blood sampling, and
parity, may have inflated the data. Therefore, we further vali-
dated the array data using an independent method with pyrose-
quencing in order to confirm our findings.

On closer inspection, 8 of 11 women who subsequently
developed GDM showed differential methylation at 5 CpGs
(consisting of COPS8, PIK3R5, HAAO, CCDC124, and C5orf34
genes) relative to matched controls. COPS8 encodes a regulator
of multiple signaling pathways.27,33 It is involved in protein
binding and negative regulation of cell proliferation.33,34 The
PIK3R5 protein has important roles in cell growth, prolifera-
tion, motility, differentiation, survival, and intracellular traf-
ficking.27,35–37 The HAAO protein catalyzes the synthesis of
quinolinic acid (QUIN). Increased cerebral levels of QUIN may
participate in the pathogenesis of neurologic and inflammatory
disorders, which may be mediated by HAAO.27,38 This unique
epigenetic signature may form the basis of future biomarker
studies using a larger validation cohort. The CCDC124 protein
is involved in cell cycle and division.39 C5orf34 encodes for a
protein that is highly conserved across species; however, its
function remains uncharacterised.27

In summary, for the first time, using a genome-wide
approach in maternal blood, we have identified maternal meth-
ylation changes prior to the diagnosis of GDM. As a discovery-
based study, our findings may prove useful toward developing
simple biomarkers for predicting GDM, thus facilitating inter-
vention strategies in the early antenatal period to improve the
health of the mother and baby, both during pregnancy and in
the long-term.

Materials and methods

Patients

Peripheral blood samples were obtained from women prospec-
tively recruited at the University Hospital of North Midlands,
UK, between 12–16 weeks gestation, prior to the diagnosis of
any pregnancy complications as part of the EFFECT-M study.40

At the end of pregnancy, we identified 11 women who had
GDM and individually matched each one with a healthy
woman who had a normal pregnancy. They were matched in

Table 1. Annotation for the 5 genes differentially methylated in 8 of 11 matched pairs, as determined by genome-wide DNA methylation analysis. �The official gene sym-
bol, gene name and stated function were retrieved from the NCBI Gene database (accessed September 2015). ��The absolute b-value difference range is the minimum to
the maximum value of the individual absolute b-value differences for each differentially methylated CpG.

Gene
symbol�

Absolute b-value
difference range�� Gene name� Functional summary

COPS8 0.05–0.84 Constitutive photomorphogenic homolog subunit 8 Regulator of multiple signaling pathways
PIK3R5 0.02–0.82 Phosphoinositide-3-kinase, regulatory subunit 5 Cell growth, proliferation, differentiation, motility, survival,

and intracellular trafficking
HAAO 0.02–0.77 3-hydroxyanthranilate 3,4-dioxygenase Catalyzes the synthesis of quinolinic acid (QUIN), which is an

excitotoxin that may participate in the pathogenesis of
neurologic and inflammatory disorders

CCDC124 0.01–0.79 Coiled-coil domain containing 124 Cell cycle, cell division
C5orf34 0.01–0.77 Chromosome 5 open reading frame 34 Unknown, but sequence is conserved in chimpanzee, Rhesus

monkey, dog, cow, mouse, rat, chicken, and zebrafish
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terms of age, body mass index, ethnicity, smoking status, medi-
cations and folate supplementation (Table S3). The study was
approved by the West Midlands (Black Country) Research
Ethics Committee (REC reference no. 08/H1204/121).

Genome-wide DNA methylation profiling

We performed genome-wide analysis of DNA methylation
using the Illumina HumanMethylation450 BeadChip (450K)
array, which examines over 480,000 individual CpG sites. We
first extracted genomic DNA from blood samples collected into
potassium EDTA using standard phenol/chloroform proce-
dures. Next, samples were sodium bisulfite converted41 and
hybridized to arrays according to Illumina recommended pro-
tocols that we have previously described.42 Methylation at indi-
vidual CpGs is reported as a methylation b-value, which is a
quantitative measure of methylation for each CpG site with
range between 0 (no methylation) to 1 (completely
methylated).

Validation by sodium bisulfite pyrosequencing

A technical validation between array b-values and methylation
levels was determined by sodium bisulfite pyrosequencing in all
22 samples. To increase template quantity for pyrosequencing
assays, whole genome amplification of bisulfite-converted DNA
followed by touchdown PCR were performed as previously
described.42 A PyroMark Q24 instrument was used to run
pyrosequencing assays according to the manufacturer’s instruc-
tions (Qiagen). Analyses of Pyrograms were conducted on the
PyroMark Q24 software (v 2.0.6., build 20; Qiagen). Seven
CpGs representing 5 genes were chosen to provide a range of
b-values. These demonstrated a strong positive correlation
between b-values and percentage methylation by bisulphite
sequencing (Spearman’s r D 0.92, Fig. S2).

Data analysis

Each array passed quality control assessment based on the per-
formance of internal array controls. Initial processing, probe
type correction and assessment of array data was conducted
using the minfi package and SWAN.23,24 Probes with known
SNPs were removed. All CpGs for which one or more of the 22
samples displayed detection P-values > 0.05 (indicating an
unreliable site) or presented with missing b-values were
excluded. The genomic inflation factor (λ, the ratio of the
median of the observed distribution of the test statistic to the
expected median) was calculated using the estlambda function
of GenABEL.25

We filtered the data using criteria shown in Fig. 1 to identify
differentially methylated sites between GDM and healthy preg-
nancies. In step the first analysis, we elected to use a minimum
b-value difference of 0.05, in part to permit comparisons with a
recent report describing DNA methylation in placenta and
umbilical cord blood from GDM pregnancies also using the
450K array platform (step 1, Fig. 1).22 The genes identified as
differentially methylated were obtained from the supplemen-
tary data of this particular publication. We also compared our
data with a separate cohort of placenta and umbilical cord

blood samples from GDM pregnancies.17 We obtained their list
of differentially methylated genes through personal communi-
cation with the corresponding author of the publication. Fur-
ther filtering steps were applied to facilitate a more stringent
analysis. To reduce the number of non-variable sites to improve
the statistical power of subsequent analyses, we removed all
sites with b-values �0 .8 and �0 .2 in all 22 samples (step 2,
Fig. 1). This is an approach that has been used by our group as
well as by others.41-44 As described previously by our group, we
consider it a more robust methodology to remove from the
data set CpGs that failed in any one of the samples, instead of
eliminating specific failed CpGs from specific samples.42 We
retained only those CpGs that had a mean b-value difference of
�0 .2 (step 3, Fig. 1). Finally we examined the absolute b-values
in each matched pairs. We used a cut-off of �0 .2 mean b-val-
ues difference to identify CpGs with considerable methylation
differences.

Hierarchical clustering was performed utilizing Genesis soft-
ware (v1.7.6) using Euclidian distance and average linkage cri-
teria.45 Enrichment of gene ontology terms and biological
pathways within the genes associated with differentially meth-
ylated CpGs were assessed using DAVID online software.26,32

Abbreviations

GDM Gestational diabetes
KEGG Kyoto encyclopedia of genes and genomes
T2DM Type 2 diabetes mellitus
QUIN Quinolinic acid
SNP Single-nucleotide polymorphism
SWAN Subset-quantile within array normalization
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T, Montenegro N. Gestational diabetes mellitus: A risk factor for non-
elective cesarean section. J Obstet Gynaecol Res 2012; 38:154-9;
PMID:21995455; https://doi.org/10.1111/j.1447-0756.2011.01659.x

4. Schmidt MI, Duncan BB, Reichelt AJ, Branchtein L. Gestational dia-
betes mellitus diagnosed with a 2-h 75-g oral glucose tolerance test
and adverse pregnancy outcomes. Diabetes Care 2001; 24:1151-5;
PMID:11423494; https://doi.org/10.2337/diacare.24.7.1151

5. Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mel-
litus after gestational diabetes: a systematic review and meta-analysis.
Lancet 2009; 373:1773-9; https://doi.org/10.1016/S0140-6736(09)
60731-5

6. Akinci B, Celtik A, Genc S, Yener S, Demir T, Secil M, Kebapcilar L,
Yesil S. Evaluation of postpartum carbohydrate intolerance and car-
diovascular risk factors in women with gestational diabetes. Gynecol
Endocrinol 2011; 27:361-7; PMID:20540676; https://doi.org/10.3109/
09513590.2010.492885

7. Rivero K, Portal VL, Vieira M, Behle I. Prevalence of the impaired glu-
cose metabolism and its association with risk factors for coronary
artery disease in women with gestational diabetes. Diabetes Res Clin
Pract 2008; 79:433-7; PMID:18045723; https://doi.org/10.1016/j.
diabres.2007.10.015

8. Ling C, Del Guerra S, Lupi R, R€onn T, Granhall C, Luthman H,
Masiello P, Marchetti P, Groop L, Del Prato S. Epigenetic regulation
of PPARGC1A in human type 2 diabetic islets and effect on insulin
secretion. Diabetologia 2008; 51:615-22; PMID:18270681; https://doi.
org/10.1007/s00125-007-0916-5

9. Kulkarni SS, Salehzadeh F, Fritz T, Zierath JR, Krook A, Osler ME.
Mitochondrial regulators of fatty acid metabolism reflect metabolic
dysfunction in type 2 diabetes mellitus. Metabolism 2012; 61:175-85;
PMID:21816445; https://doi.org/10.1016/j.metabol.2011.06.014

10. Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S, Jing X,
Renstr€om E, Wollheim CB, Nitert MD, Ling C. Increased DNA meth-
ylation and decreased expression of PDX-1 in pancreatic islets from
patients with type 2 diabetes. Mol Endocrinol 2012; 26:1203-12;
PMID:22570331; https://doi.org/10.1210/me.2012-1004

11. Yang BT, Dayeh TA, Kirkpatrick CL, Taneera J, Kumar R, Groop L,
Wollheim CB, Nitert MD, Ling C. Insulin promoter DNA methylation
correlates negatively with insulin gene expression and positively with
HbA1c levels in human pancreatic islets. Diabetologia 2011; 54:360-7;
PMID:21104225; https://doi.org/10.1007/s00125-010-1967-6

12. Hall E, Dayeh T, Kirkpatrick CL, Wollheim CB, Dekker Nitert M,
Ling C. DNA methylation of the glucagon-like peptide 1 receptor
(GLP1R) in human pancreatic islets. BMC Med Genet 2013; 14:76;
PMID:23879380; https://doi.org/10.1186/1471-2350-14-76

13. Ribel-Madsen R, Fraga MF, Jacobsen S, Bork-Jensen J, Lara E, Calva-
nese V, Fernandez AF, Friedrichsen M, Vind BF, Højlund K, et al.
Genome-wide analysis of DNA methylation differences in muscle and
fat from monozygotic twins discordant for type 2 diabetes. PloS one
2012; 7:e51302; PMID:23251491; https://doi.org/10.1371/journal.
pone.0051302

14. Gluckman PD, Hanson MA, Buklijas T, Low FM. Epigenetic mecha-
nisms that underpin metabolic and cardiovascular diseases. Nat Rev
Endocrinol 2009; 5:401-8; PMID:19488075; https://doi.org/10.1038/
nrendo.2009.102

15. Bouchard L, Thibault S, Guay SP, Santure M, Monpetit A, St-Pierre J,
Perron P, Brisson D. Leptin gene epigenetic adaptation to impaired
glucose metabolism during pregnancy. Diabetes Care 2010; 33:2436-
41; PMID:20724651; https://doi.org/10.2337/dc10-1024

16. Bouchard L, Hivert MF, Guay SP, St-Pierre J, Perron P, Brisson D.
Placental adiponectin gene DNA methylation levels are associated
with mothers’ blood glucose concentration. Diabetes 2012; 61:1272-
80; PMID:22396200; https://doi.org/10.2337/db11-1160

17. Ruchat SM, Houde AA, Voisin G, St-Pierre J, Perron P, Baillargeon JP,
Gaudet D, Hivert MF, Brisson D, Bouchard L. Gestational diabetes
mellitus epigenetically affects genes predominantly involved in meta-
bolic diseases. Epigenetics 2013; 8:935-43; PMID:23975224; https://
doi.org/10.4161/epi.25578

18. Houde AA, Guay SP, Desgagn�e V, Hivert MF, Baillargeon JP, St-
Pierre J, Perron P, Gaudet D, Brisson D, Bouchard L. Adaptations of

placental and cord blood ABCA1 DNA methylation profile to mater-
nal metabolic status. Epigenetics 2013; 8:1289-302; PMID:24113149;
https://doi.org/10.4161/epi.26554

19. El Hajj N, Pliushch G, Schneider E, Dittrich M, M€uller T, Korenkov
M, Aretz M, Zechner U, Lehnen H, Haaf T. Metabolic programming
of MEST DNA methylation by intrauterine exposure to gestational
diabetes mellitus. Diabetes 2013; 62:1320-8; PMID:23209187; https://
doi.org/10.2337/db12-0289

20. Lehnen H, Zechner U, Haaf T. Epigenetics of gestational diabetes mel-
litus and offspring health: the time for action is in early stages of life.
Mol Hum Reprod 2013; 19:415-22; PMID:23515667; https://doi.org/
10.1093/molehr/gat020

21. Ma RC, Tutino GE, Lillycrop KA, Hanson MA, Tam WH. Maternal
diabetes, gestational diabetes and the role of epigenetics in their long
term effects on offspring. Prog Biophys Mol Biol 2015; 118:55-68;
PMID:25792090; https://doi.org/10.1016/j.pbiomolbio.2015.02.010

22. Finer S, Mathews C, Lowe R, Smart M, Hillman S, Foo L, Sinha
A, Williams D, Rakyan VK, Hitman GA. Maternal gestational dia-
betes is associated with genome-wide DNA methylation variation
in placenta and cord blood of exposed offspring. Hum Mol Genet
2015; 24:3021-9; PMID:25634562; https://doi.org/10.1093/hmg/
ddv013

23. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP,
Hansen KD, Irizarry RA. Minfi: a flexible and comprehensive Biocon-
ductor package for the analysis of Infinium DNA methylation micro-
arrays. Bioinformatics 2014; 30:1363-9; PMID:24478339; https://doi.
org/10.1093/bioinformatics/btu049

24. Maksimovic J, Gordon L, Oshlack A. SWAN: Subset-quantile within
array normalisation for Illumina Infinium HumanMethylation450
BeadChips. Genome Biol 2012; 13:R44; PMID:22703947; https://doi.
org/10.1186/gb-2012-13-6-r44

25. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R
library for genome-wide association analysis. Bioinformatics 2007;
23:1294-6; PMID:17384015; https://doi.org/10.1093/bioinformatics/
btm108

26. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources. Nat
Protoc 2008; 4:44-57; https://doi.org/10.1038/nprot.2008.211

27. Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez Gene: gene-cen-
tered information at NCBI. Nucleic Acids Res 2005; 33:D54-8;
PMID:15608257; https://doi.org/10.1093/nar/gki031

28. Baron Gaillard CL, Pallesi-Pocachard E, Massey-Harroche D, Richard
F, Arsanto JP, Chauvin JP, et al. Hook2 is involved in the morphogen-
esis of the primary cilium. Mol Biol Cell 2011; 22:4549-62;
PMID:21998199; https://doi.org/10.1091/mbc.E11-05-0405

29. Kr€amer H, Phistry M. Genetic analysis of hook, a gene required for
endocytic trafficking in drosophila. Genetics 1999; 151:675-84.

30. Haeseleer F, Jang GF, Imanishi Y, Driessen CAGG, Matsumura M, Nel-
son PS, Palczewski K. Dual-substrate specificity short chain retinol dehy-
drogenases from the vertebrate retina. J Biol Chem 2002; 277:45537-46;
PMID:12226107; https://doi.org/10.1074/jbc.M208882200

31. Kanehisa M, Susumu G. KEGG: Kyoto encyclopedia of genes and
genomes. Nucleic Acids Res 2000; 28:27-30; PMID:10592173; https://
doi.org/10.1093/nar/28.1.27

32. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment
tools: paths toward the comprehensive functional analysis of large
gene lists. Nucleic Acids Res 2009; 37:1-13; PMID:19033363; https://
doi.org/10.1093/nar/gkn923

33. Liu C, Guo LQ, Menon S, Jin D, Pick E, Wang X, Deng XW, Wei N.
COP9 signalosome subunit Csn8 is involved in maintaining proper
duration of the G1 phase. J Biol Chem 2013; 288:20443-52;
PMID:23689509; https://doi.org/10.1074/jbc.M113.468959
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