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Durvalumab is an anti-PD-L1 monoclonal antibody approved for patients with locally advanced or metastatic urothelial car-
cinoma (UC) that has progressed after platinum-containing chemotherapy. A population tumor kinetic model, coupled with
dropout and survival models, was developed to describe longitudinal tumor size data and predict overall survival in UC
patients treated with durvalumab (NCT01693562) and to identify prognostic and predictive biomarkers of clinical out-
comes. Model-based covariate analysis identified liver metastasis as the most influential factor for tumor growth and
immune-cell PD-L1 expression and baseline tumor burden as predictive factors for tumor killing. Tumor or immune-cell PD-
L1 expression, liver metastasis, baseline hemoglobin, and albumin levels were identified as significant covariates for overall
survival. These model simulations provided further insights into the impact of PD-L1 cutoff values on treatment outcomes.
The modeling framework can be a useful tool to guide patient selection and enrichment strategies for immunotherapies
across various cancer indications.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?
� Durvalumab is an anti-PD-L1 monoclonal antibody
approved for patients with locally advanced or metastatic urothe-
lial carcinoma (UC) that has progressed after platinum-
containing chemotherapy. Durvalumab treatment demonstrated
favorable clinical activity in objective tumor response and overall
survival (OS) in UC patients.
WHAT QUESTION DID THIS STUDY ADDRESS?
� This study analyzed the longitudinal tumor size data and OS
in UC patients treated with durvalumab and identified prog-
nostic and predictive biomarkers of clinical outcomes with a
population-based modeling approach.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� This study identified several prognostic or predictive bio-
markers as significant covariates for tumor growth, immune
cell-mediated tumor killing, and/or OS after durvalumab treat-
ment and provided insights into the impact of biomarker cutoff
values on treatment outcomes.
HOW THIS MIGHT CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE
� This novel application of a pharmacometric modeling
approach for biomarker identification can be adapted to other
cancer immunotherapies. It can serve as a useful tool to guide
patient selection and enrichment strategies and to optimize trial
designs across various cancer indications.

Immune checkpoint inhibitors such as antibodies targeting PD-1
and PD-L1 have evolved as new treatment options for cancer
patients and have demonstrated efficacy in reducing tumor size
and prolonging survival in multiple cancer indications.1–4 An
important clinical question in the development of immuno-
oncology (IO) therapies is how to identify patients who are most
likely to benefit from these therapies. Pharmacometric modeling
provides a quantitative tool to address this question through
mathematical modeling of clinical efficacy data with multivariate
covariate testing. Although numerous reports of tumor kinetic

models have been published for traditional chemotherapy or
non-IO therapies in cancer patients,5–7 few studies have modeled
tumor dynamics after IO therapies.8 Further, no quantitative
model has been published to date to link tumor kinetics to over-
all survival (OS) for IO therapeutics as a tool to identify and
characterize prognostic and predictive biomarkers of efficacy
outcomes.
Durvalumab is a human immunoglobulin G1 antibody that

specifically binds human PD-L1, blocking its interaction with
PD-1 or CD80 receptors expressed on activated T cells.
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Durvalumab (10mg/kg q2w) has recently been approved as a
treatment for patients with locally advanced or metastatic urothe-
lial carcinoma (UC) that has progressed after platinum-
containing chemotherapy. Study 1108 (NCT01693562) was a
phase I/II, open-label expansion study of durvalumab in patients
with advanced urothelial bladder cancer, in which durvalumab
treatment demonstrated favorable clinical activity in objective
tumor response and OS.3 The objectives of this analysis were to
model survival data and longitudinal changes in target lesion size,
to characterize the relationship between tumor kinetics and sur-
vival, and to evaluate prognostic and predictive biomarkers for
efficacy outcomes in these patients.

RESULTS
Tumor kinetic model
A total of 186 UC patients who had been treated with durvalu-
mab at 10mg/kg q2w in study 1108 had tumor assessment by
blinded independent central review according to RECIST v. 1.1
guidelines and were included in the population to be analyzed for
the modeling. Of these 186 patients, 159 had postbaseline tumor
size data. The observed individual tumor kinetic profiles from
these patients showed large variability, with three distinct profile
types: continued tumor progression throughout the study, imme-
diate tumor shrinkage after the first dose, and delayed tumor
response with initial stable tumor size or pseudoprogression fol-
lowed by shrinkage (Figure 1a,b). No tumor regrowth after
regression was observed in any patients in the dataset. Each of
these profiles were well captured by the tumor kinetic model,
which describes tumor growth, killing, and delayed immune
response after treatment (Figure 1b).
A number of covariates were evaluated, including biomarkers,

baseline characteristics, and disease factors, using a full covariate
model (Table 1). Potential prognostic factors, including time
since prior chemotherapy; baseline albumin, hemoglobin, and lac-
tate dehydrogenase levels; neutrophil-to-lymphocyte (N:L) ratio;
and Eastern Cooperative Oncology Group (ECOG) performance
status were evaluated on tumor growth rate constant (kg) and
were chosen based on literature reports of prognostic factors
affecting survival in UC patients receiving other salvage thera-
pies.9–11 Intratumor PD-L1 expression on tumor cell membrane
(TC) and on tumor-infiltrating immune cells (IC) has been eval-
uated as a predictive biomarker for other anti-PD-1/PD-L1 ther-
apies and was associated with efficacy in study 11083; therefore,
TC and IC were evaluated as covariates on killing rate constant
(kkill) only. Smoking history was also evaluated on kkill due to its
association with mutational burden.12 Factors that could be both
prognostic and predictive, including baseline tumor size, liver
metastasis, lymph node (LN)-only disease, and line of therapy,
were evaluated on either kg or kkill or both, depending on the sig-
nificance of the univariate correlation between the individual
post-hoc parameter estimates and the parameters, where
appropriate.
The full covariate analysis results showed that the most influ-

ential covariate for kg was liver metastasis, which caused a 46%
increase in kg (Figure 2a). LN-only disease also had a notable
impact on kg, which led to an average 30% decrease in kg. This

effect was not well estimated, however, because the confidence
interval was large and crossed zero, probably due to the small
number of subjects with LN-only disease (n5 13). The most
influential covariate for kkill was baseline tumor size, followed by
IC and then TC (Figure 2b). A baseline tumor size of 21mm
(5th percentile of the study population) led to an approximately
3-fold increase in kkill, whereas a TC or IC of 100% resulted in
27% and 86% increases in kkill, respectively, compared to the
median values, although the effect of TC was not well estimated.
Further stepwise backward elimination yielded the final model,

which included significant covariates of liver metastasis on kg,
and baseline tumor size and IC on kkill. Most of the parameters
in the final model were estimated with good precision (Table 2).

Figure 1 (a) Observed percent change in tumor size from baseline in all
subjects; (b) typical types of individual tumor kinetic profiles, where dots
represent observed data and lines represent individual prediction from the
base tumor kinetic model.
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The kg in a typical patient (with liver metastasis, median baseline
tumor size, and IC) was estimated to be 0.076 week21, which corre-
sponds to a tumor doubling time of �9 weeks. Approximately 49%
of patients were estimated to have delayed tumor killing, with a
mean delay time of �4.5 weeks. The standard diagnostic plots com-
paring the individual and population model prediction and observed
data, as well as residual plots, showed reasonably good fit of the final
tumor kinetic model (Supplemental Figure S1).

Survival and dropout models
At the time of the data cutoff date, 100 of 186 subjects had
dropped out of the study (67 of them were due to death). As is
typical of oncology trials, the risk of patient dropout was strongly
influenced by treatment response. Patients with rapid tumor pro-
gression dropped out early, whereas those whose disease improved
had longer follow-up times (Figure 1). To accurately simulate
the longitudinal tumor response in the trial, the model had to

account for correlation between dropout and response. A drop-
out model was therefore developed in which the model-predicted
tumor response from the final tumor kinetic model was used as
time-varying covariates in the dropout hazard. Similarly, given
the observed relationship between OS and tumor response
(Figure 3), a survival model was developed to predict OS, using
the model-predicted tumor response as a time-varying covariate.
The effect of covariates on survival and dropout hazard were

further evaluated with a full covariate modeling approach. The
results suggested that the average baseline survival hazard
decreased by 54% and 61% in patients with 100% TC and IC,
respectively, compared to the median values, and increased by
103% in patients with liver metastasis (Figure 2c). In addition,
the baseline survival hazard increased by 62% and 59% in
patients with low (5th percentile of the study population) hemo-
globin and albumin levels, respectively, and by 39% in those with
high (95th percentile) N:L ratios compared to the median values
(Figure 2c). There was also a trend of increased survival hazard
with LN-only disease, but this effect was poorly estimated due to
small sample size. Further stepwise backward elimination yielded
the final model, which included TC, IC, hemoglobin and albu-
min levels, and liver metastasis as significant covariates for OS.
The parameter estimates for the final survival and dropout mod-
els are presented in Supplemental Tables S1, S2.

Model validation and simulations
Visual predictive checks (VPCs) showed that the final tumor
kinetic model, coupled with the final dropout and survival mod-
els, predicted the central tendency and variability in tumor
dynamics (Figure 4a), as well as OS (Figure 4b). Similar to the
observed data, the model predicted generally shorter follow-up
times in the simulated fast progressors than in responders and
those with stable disease (Figure 4c), suggesting that the dropout
model adequately described the relationship between tumor
response and dropout. Further, VPC stratified by tumor response
categories showed that the models described the longitudinal
tumor size changes, OS, and dropout in responders (with or
without delay) and nonresponders reasonably well (Supplemen-
tal Figure S2).
To predict the covariate effects on tumor response rates and

survival, trial simulations were performed to predict the 1-year
survival rate and the percentage of patients with greater than
30% reductions in tumor size from baseline by various covariate
categories. The predicted trends were generally consistent with
the observed data, although the model did not account for disease
progression due to nontarget lesions and slightly overpredicted
the true objective response rate (Figure 5). The model predicted
that a higher IC cutoff would lead to a better rate of tumor
response (12%, 18%, and 33% increases with ICs of �25%,
�50%, and �75%, respectively, compared with all-comers),
whereas no effect of TC was predicted (Figure 5, top). These
data translated to a similar trend for OS (Figure 5, bottom),
where the model predicted averages of 12%, 15%, and 32%
increases in 1-year survival rate with ICs of �25%, �50%, and
�75%, respectively, but no apparent trend with TC. The
observed survival rate was lower than predicted for an IC of

Table 1 Summary of covariate distributions in UC patients

Continuous covariates

Covariate (units) N Mean (SD) Median Range

TC (%) 172 20.8 (32) 5 0–100

IC (%) 146 29 (26.6) 20 0–100

Baseline tumor (mm) 186 72.9 (49.4) 59.9 16.2–333

LDH (U/L) 178 316 (370) 227 89–4,260

Albumin (g/dL) 182 3.74 (0.529) 3.81 2–4.6

Hemoglobin (g/dL) 180 11.3 (1.55) 11.3 8–15.3

N:L ratio 178 6.22 (7.98) 3.91 0.872–72.3

Age (years) 186 66.2 (9.46) 67 34–88

Categorical covariates

Covariate Category N (%)

Duration from prior
chemotherapy �3 months

No 106 (57)

Yes 80 (43)

ECOG performance status 0 62 (33.3)

1 124 (66.7)

Smoking history Never 77 (41.4)

Ever 109 (58.6)

Line of therapy 1 9 (4.8)

2 113 (60.8)

�3 64 (34.4)

Liver metastasis No 105 (56.5)

Yes 81 (43.5)

LN-only disease No 173 (93)

Yes 13 (7)

ECOG, Eastern Cooperative Oncology Group; IC, immune cell PD-L1 expression;
LDH, lactate dehydrogenase; N:L ratio, neutrophil-to-lymphocyte ratio; LN, lymph
node; TC, tumor cell PD-L1 expression.
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�75%, which may be due to the limited number of patients in
this group (n5 12); hence, the large uncertainty in the observed
data. The models also predicted that patients with lower baseline
tumor burden and N:L ratio, higher albumin and hemoglobin
levels, and LN-only disease or no liver metastasis would have
greater tumor response rate and longer survival, which was gener-
ally consistent with the observed trends (Figure 5).

DISCUSSION
We developed a population-based tumor kinetic model to
describe the longitudinal tumor dynamics in UC patients after
durvalumab treatment. The predicted tumor dynamics were then

used to model OS and time to dropout in the same population.
Covariate analyses identified patient baseline characteristics,
disease-related factors, and biomarkers as potential prognostic or
predictive factors for tumor growth or shrinkage and for survival.
This approach allowed tumor kinetics to be linked to survival
and dropout while enabling systematic and multivariate study of
the effect of prognostic or predictive covariates on both tumor
response and OS for IO therapeutics.
Our results suggest that liver metastasis is the most influential

and statistically significant covariate for tumor growth. This find-
ing is consistent with recent reports showing that liver metastasis
is associated with poor prognosis in various cancers.13–17 We also

Figure 2 Forest plots of covariate effects on kg (a) and kkill (b) estimated from the full covariate tumor kinetic model and survival hazard (c) from the full
covariate survival model. Circles represent the calculated percent change in the parameter value from the reference value at the indicated covariate val-
ues, using the point estimates of the respective covariate effects; error bars represent the 95% confidence intervals of the covariate effects based on the
relative standard error estimates from NONMEM; dashed vertical lines represent the reference value; dotted lines represent the 30% change from refer-
ence value. For continuous covariates, the values in parentheses represent the 5th and 95th percentiles of each covariate in the study population (except
for PD-L1 expression on tumor cells and immune cells, which are the minimum and maximum values, respectively), and the reference value is the median
of the study population. For categorical covariates, the following reference values were taken: prior chemotherapy �3 months 5 “no”; LN-only dis-
ease 5 “no”; liver metastasis 5 “no”; line of therapy 5 1 or 2; smoking history 5 “ever smoked”; ECOG 5 1. ECOG, Eastern Cooperative Oncology Group
performance status; IC, immune cell PD-L1 expression; LDH, lactate dehydrogenase; LN, lymph node; N/L, neutrophil-to-lymphocyte ratio; TC, tumor cell
PD-L1 expression.
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showed that baseline tumor size and IC are the most influential
and significant covariates for tumor killing after durvalumab
treatment. This observation of faster tumor killing rate with
smaller baseline tumor size could be explained by the greater
accessibility of smaller tumors to immune cell infiltration and
antibody penetration, which leads to a higher killing rate. High
PD-L1 expression has been shown to predict better response to
durvalumab and other PD-L1- and PD-1-targeting therapies.2–4

In study 1108, “PD-L1 high” was defined as either a TC or an
IC score above a cutoff of 25%.3 In the present study, the effect
of IC was more pronounced than that of TC in UC tumors, of
which the latter did not show statistical significance. Although
this finding could reflect the mechanism of action and the differ-
ential role of immune cells and tumor cells in this particular can-
cer type, it may also be confounded by the overall low (median
5%) TC distribution in the study population, which makes it dif-
ficult to detect a significant effect of TC in this population.
For OS, both TC and IC, as well as liver metastasis and levels

of hemoglobin and albumin, were identified as significant covari-
ates after accounting for the effect of tumor size. The effects of

TC and IC on OS suggests that intratumoral PD-L1 expression
is predictive not only of tumor response, but also of OS indepen-
dently of tumor response, after durvalumab treatment. The
effects of liver metastasis and hemoglobin and albumin levels on
OS are consistent with literature reports on UC patients and
supports our conclusion that the population modeling approach
can accurately identify prognostic and predictive biomarkers in a
multivariate framework.10,18 In a recent pooled study across mul-
tiple phase II trials in patients receiving salvage systemic therapy
for advanced UC, a five-factor prognostic model was proposed
for patients receiving salvage systemic therapy for advanced
UC.10 Three of these prognostic factors (liver metastasis, and
hemoglobin and albumin levels) were also identified in our analy-
sis, suggesting that they are also applicable to patients receiving
durvalumab treatment and that their prognostic value for OS is
retained after accounting for tumor response.
One advantage of using the pharmacometrics approach, as

compared with the traditional statistical approach, to study the
effects of predictive and prognostic factors on clinical endpoints
is the ability to perform simulations to predict clinical outcomes

Table 2 Parameter estimates of the final tumor kinetic model

Parameter Description Estimate % RSE Bootstrap 95% CI Shrinkage (%)

kg,TV (week21) Typical value of growth rate
constant

0.076 11.1 0.0431, 0.0922

kkill,TV (week21mm21) Typical value of killing rate
constant

0.00145 12.4 0.000985, 0.00187

DTIMTV (weeks) Typical value of delay time for
subpopulation with delay in tumor
killing

4.49 22.1 2.79, 6.49

PDTIM 5 0 Probability of being in the
subpopulation of DTIM 5 0

0.489 20.4 0.128, 0.639

uLM�kg Relative change in kg in patients
with liver metastasis (LM 5 1)

0.616 21.9 0.307, 1.01

uIC�kkill Linear coefficient for effect of IC on
kkill

1.08 37 0.249, 1.87

uTBSL�kkill Power exponent of effect of TBSL
on kkill

21.24 12.1 21.58, 20.969

u2,TBSL�kkill (mm) Maximum TBSL above which kkill is
not affected by TBSL

145 40.4 98.4, 212

g_hkg Box-Cox parameter for BSV of kg –2.63 35.8 25.02, 20.162

g_hkkill Box-Cox parameter for BSV of kkill 0.033 362 –0.495, 0.613

x2: kg BSV of kg (variance) 0.465 56.8 0.192, 1.43 47.2%

x2: kkill BSV of kkill (variance) 0.778 18.4 0.398, 3.19 31.6%

x2: DTIM BSV of DTIM for subpopulation with
DTIM>0 (variance)

0.776 36.6 0.241,1.42 37.8%

Covariance kg�kkill Covariance between kg and kkill 0.368 40.2 0.115, 1.53

Covariance kg�DTIM Covariance between kg and DTIM 20.282 69.7 20.617, 0.0245

Eadd (mm) Additive residual error 3.6 1.4 2.76, 4.42 17.8%

BSV, between-subject variability; CI, confidence interval; DTIM, mean transit time for delay in immune response; IC, immune cell PD-L1 expression; LM, liver metastasis;
RSE, relative standard error (based on NONMEM output); TBSL, baseline tumor size.
Final covariate equations for kg and kkill:kg5kg;TV 3ð11uLM�kg3LMÞ; kkill5kkill;TV 3

�
11uIC�kkill3ðIC2ICmedÞ

�
3

minðTBSL;u2;TBSL�kkillÞ
TBSLmed

� �uTBSL�kkill

.
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along a continuum of biomarker levels, taking into consideration
their correlation with other risk factors in a multivariate fashion.
When evaluating dichotomous predictive biomarker cutoffs (bio-
marker high or low) in univariate analyses, imbalances in other
predictive or prognostic factors within the biomarker strata can
potentially confound interpretation of the appropriate cutoff. In
our study, the model simulations predicted that increased IC cut-
off (from 25% to 50% or 75%) may lead to higher tumor
response rate and OS, whereas the effect of TC cutoff was not
clear. However, our results may have been confounded by the
scarcity of available data at high IC or TC ranges (11% with TC
of �75%, 6.5% with IC of �75%). Another limitation of our
analysis is the lack of a comparator cohort to clearly differentiate
between prognostic and predictive biomarkers. Although TC and
IC have been tested on kkill as potential predictive factors, PD-L1
expression has also been shown to have a prognostic effect in
solid tumors (unpublished data). Post-hoc analysis with the final
tumor kinetic model confirmed the absence of any remaining
correlations between kg and TC or IC, suggesting that PD-L1
expression is likely to be predictive rather than prognostic in UC
patients.
The results of this analysis provided useful insights to optimize

future clinical trial designs by identifying patient subgroups that
are likely to respond better to treatment. Model simulations pre-
dicted that patients with no liver metastasis, higher immune cell
PD-L1 expression, smaller tumor size, higher albumin and hemo-
globin levels, and lower neutrophil-to-lymphocyte ratio at base-
line were associated with increased tumor response rate as well as
prolonged survival following durvalumab treatment (Figure 5;
Supplemental Figures S3, S4). These biomarkers and the associ-
ated cutoff values can be used as patient stratification variables
and will be further validated in future trials. It is worth noting

that some of these biomarkers are correlated, e.g., liver metastasis
is generally associated with larger tumor size, and albumin and
hemoglobin levels are correlated. In addition, an optimal balance
between response rate and population prevalence needs to be
considered. For example, an increased IC cutoff is predicted to
result in greater response, but leads to a reduced prevalence and
would exclude some patients who could still benefit from therapy.
Therefore, the appropriate set of factors and the associated cutoff
values for patient stratification should be carefully selected and
practical considerations need to be taken into account.
In this analysis, drug exposure or clearance was not formally

tested as a covariate in the model. It has been reported that clear-
ance of therapeutic antibodies may be associated with disease
severity in cancer patients and correlates with other known prog-
nostic factors, such as albumin level.19 In addition, improved dis-
ease status in cancer patients after treatment has been associated
with decreased clearance of anti-PD-L1 and PD-1 therapeutics,
including durvalumab, over time.20–23 Therefore, the covariate
analysis for drug exposure would be confounded by its correlation
with disease severity and time-varying clearance as disease
improves after treatment. In this analysis, although drug exposure
was not included in the full covariate models, adding durvalumab
clearance (at baseline or steady state) to the final tumor kinetic,
OS or dropout models did not result in a significant improve-
ment in model fit (P> 0.05). This is consistent with the results
from an exposure–response analysis previously conducted with
data from study 1108, which showed that, at the 10-mg/kg q2w
dose, no exposure–efficacy relationship was observed after adjust-
ment for confounding risk factors.24

In a previous study, a population pharmacokinetic-
pharmacodynamic model was developed to describe tumor
dynamics in pembrolizumab-treated advanced melanoma.8 Our
model was different in several key aspects. First, the previous
model assumed first-order kinetics for both tumor growth and
killing, whereas our model assumed a second-order kinetics for
tumor killing to allow the system to reach steady state. This char-
acteristic of our model explained the durable tumor responses
observed in many patients without a requirement for a very low
growth rate constant, resulting in a greatly improved model fit
(Supplemental Table S3) and a realistic estimate of tumor dou-
bling time, and is consistent with a previously proposed tumor-
killing model for IO therapy that takes into account tumor and
immune cell competition.25 Second, we incorporated a mixed-
population transit compartment model for tumor killing in our
model to better describe the delayed tumor response observed in
some patients, which resulted in a large improvement in model
fit (Supplemental Table S3). The delayed drug effect on tumor
killing may be explained by interpatient variability in the time it
takes for the immune system to be activated in response to PD-
L1 blockade and enhance effector T-cell function in the tumor
microenvironment. Third, the pembrolizumab model assumed
two tumor compartments to represent tumor volume, i.e.,
“accessible” or “not accessible” to treatment, whereas in our
model, a single tumor compartment was sufficient to describe the
observed tumor growth or shrinkage profiles, given the absence of
tumor regrowth in the study population. Finally, we incorporated

Figure 3 Kaplan-Meier curves of overall survival stratified by best percent
change in tumor size from baseline: �0% (solid line, Group 1); <0% and
�–30% (dotted line, Group 2); and <–30% (dashed line; Group 3). P-value
is based on Cox proportional hazard regression.
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dropout in our model to account for the relationship between
tumor response and dropout, which allowed better prediction of
tumor kinetics over time in a clinical trial. The VPC plots
showed that our tumor kinetic model, coupled with the dropout
model, adequately predicted the population mean as well as vari-
ability in the longitudinal tumor size data in the UC population.
A number of published studies have modeled OS based on

tumor kinetics in cancer patients treated with traditional chemo-
therapy or non-IO therapies.6,26–29 Our study is the first reported
study that linked tumor kinetics to OS by using quantitative
modeling for IO therapeutics. In contrast to previous studies, our
model utilized the entire longitudinal tumor kinetic profile rather
than a single timepoint or derived variable (e.g., time to tumor
growth) as a predictor of OS. This allowed a more accurate
assessment of the relationship between tumor response and sur-
vival and enabled a model-based extrapolation of missing data,
thus allowing a better prediction of OS and a more reliable evalu-
ation of covariate effects on survival independently of their effect
on tumor dynamics. The model reasonably predicted the OS

curve and the effect of key covariates on survival rate in UC
patients treated with durvalumab.
In conclusion, we developed a population tumor kinetic model

linked to a dropout and survival model to describe both the lon-
gitudinal change in tumor size and OS to identify potential pre-
dictive or prognostic biomarkers for tumor growth, shrinkage,
and OS in UC patients treated with durvalumab. This modeling
approach provides a useful framework to study tumor response
and its correlation with OS, in which the effect of multiple prog-
nostic and predictive biomarkers can be evaluated in a multivari-
ate analysis. Therefore, this modeling approach can be used to
guide patient selection and enrichment strategies and to optimize
clinical trial designs for IO therapies across various cancer
indications.

METHODS
Study design and analysis data
Study 1108 (NCT01693562) is an ongoing phase I/II study to evaluate
the safety, tolerability, and pharmacokinetics of durvalumab in patients

Figure 4 (a) Visual predictive check for tumor kinetics; (b) visual predictive check for survival; (c) simulated individual tumor kinetic profiles including
dropout from one representative simulated trial. (a) Circles represent the observed individual data; solid line represents the observed median; dashed
lines represent the observed 5th and 95th percentiles; shaded areas show 95% confidence intervals of model-predicted median, 5th and 95th percentiles
based on 500 visual predictive check runs incorporating between-subject variability and residual variability. (b) Solid line and shaded area represent
observed and 95% confidence interval of model-predicted Kaplan–Meier curve for overall survival, respectively.
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with advanced solid tumors. The dose-expansion phase of the study
enrolled patients with locally advanced and metastatic UC who had dis-
ease progression on, were ineligible for, or refused prior chemotherapy
and who received durvalumab 10mg/kg q2w via intravenous infusion.3

Data on tumor size (sum of longest diameter) and OS from UC patients
in the expansion study, with a cutoff date of October 2016, were used in
this analysis. Tumor measurements were done at weeks 6, 12, and 16
after first dose and then every 8 weeks afterward. Tumor assessments
were performed by blinded independent central review, using RECIST
v. 1.1 criteria.

Tumor kinetic model development
A nonlinear mixed-effects model was developed to describe longitudinal
tumor data in UC patients after durvalumab treatment. The model
assumes that the dynamics of tumor size are governed by kg and kkill,
ensuring a steady-state tumor size as the competition between tumor
growth and killing reaches an equilibrium:

TSðtÞ05kg3TSðtÞ2kkill3TSðtÞ23RimðtÞ (1)

where TS(t) is the tumor size at time t; kg and kkill are tumor growth and
killing constants, respectively; and Rim(t) is a delay function representing
the delay time in immune response, modeled using a transit compart-
ment model (see Supplementary Material). The mean transit time for
the delay, DTIM, is modeled by using a mixture model consisting of two
mixture populations, one with no delay (DTIM5 0) and the other with
a nonzero delay time.
Between-subject variability was included for kg, kkill, and DTIM (for

the subpopulation with nonzero DTIM). Various between-subject vari-
ability and residual error models, as well as variance-covariance matrix
structures, were explored and evaluated based on the objective function
value and model stability. The selected base model assumes log-normal
distribution for the between-subject variability of DTIM and Box-Cox

distributions for the between-subject variability of kg and kkill, using the
following eta-transformation function:

~hi5
ðehiÞg21

g
(2)

where hi is a normally distributed random variable, ~hi is the transformed
random variable, and g is the Box-Cox parameter. The residual errors
were described using an additive error model.

Dropout and survival model development
The time to death and time to dropout from study were modeled with
parametric hazard models, using the model-predicted tumor size over
time as covariates in the model. Different model structures were evalu-
ated, including different probability distribution assumptions (exponen-
tial, Weibull, and Gompertz-Makeham) for survival and dropout times,
as well as different combinations of tumor kinetic variables (e.g., baseline
tumor size, percent change in tumor size over time, and absolute tumor
size over time) as covariates in the model. The best model selected was
an exponential model with predicted absolute tumor size and percent
change in tumor size over time as time-varying covariates for both OS
and dropout, as well as predicted disease progression status and time
since progression as additional covariates for dropout:

hOSðtÞ5h0 OS3exp
�

uTS OS3TSðtÞ1uPC OS3PCðtÞ
�

(3)

hDOðtÞ5h0 DO3exp
�

uTS DO3TSðtÞ1uPC DO3PCðtÞ1uPD DO

3PDðtprevÞ1uTPD DO3TPDðtÞ
�

(4)

Figure 5 Simulated and observed tumor response (top) and 1-year survival rate (bottom) by covariate subgroups. Dots represent the observed data; gray
bars represent the simulated data; error bars represent the 95% confidence intervals of the simulated data based on 500 trial simulations incorporating
parameter uncertainty, between-subject variability, and residual variability; dashed horizontal lines represent the simulated response/survival rate in the
overall study population. The number of subjects in each covariate subgroup in the observed data are presented in Table 1 and Supplemental Table S9.
Bsln, baseline; ECOG, Eastern Cooperative Oncology Group performance status; IC, immune cell PD-L1 expression; LDH, lactate dehydrogenase; LN,
lymph node; LOT, line of therapy; N/L, neutrophil-to-lymphocyte ratio; TC, tumor cell PD-L1 expression.
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where hOS(t) and hDO(t) are the hazard of death and dropout at time t,
respectively; h0_OS and h0_DO are the corresponding baseline hazard;
TS(t) is the model-predicted tumor size at time t for each individual;
PC(t) is the percent change in tumor size from baseline to time t, calcu-
lated as (TS(t)/TS(0) – 1) 3 100; PD(tprev) is the predicted disease pro-
gression status at the previous visit (5 1 if >20% and >5-mm increase
in tumor size from last nadir, 0 otherwise); and TPD(t) is the duration
since last time when PD is switched from 0 to 1 when the current PD
status is 1; and uTS_OS, uTS_DO, uPC_OS, uPC_DO, uPD_DO, and uTPD_DO
are the respective covariate coefficients.

Model fitting
The tumor kinetic and OS/dropout models were fitted sequentially.
First, the parameters of the tumor kinetic model were estimated by fit-
ting the model to the longitudinal tumor size data. Then the individual
parameters estimated from the final tumor kinetic model were used as
input to the OS/dropout model to simulate the longitudinal tumor size
over time, which is used as covariates in the models, and the correspond-
ing parameters were estimated by fitting the models to the OS and drop-
out data. All model parameters were estimated using NONMEM v. 7.3
(Icon Development Solutions, Ellicott City, MD).

Covariate analysis
Covariate analyses were performed on the tumor kinetic, OS, and drop-
out models to evaluate the effects of various potential prognostic and
predictive factors on tumor kinetic parameters, survival, and dropout
hazards. The covariate selection for the full model was based on theoreti-
cal plausibility and understanding of the mechanism of action of the
drug. For continuous covariates, power functions or linear function,
where appropriate, were used to describe the covariate effects. For cate-
gorical covariates, the covariate effect was modeled as the relative change
in the parameter value compared with the reference value. Full covariate
models for tumor kinetics and for dropout or survival were constructed
by including all covariates of interest on the corresponding parameters,
and all covariate effects were estimated simultaneously from the full
models. Covariate forest plots were constructed by calculating the rela-
tive changes in parameter values at the extreme values (5th to 95th per-
centiles or full range) of each continuous covariate or at the alternative
values of each categorical covariate, using the estimated covariate effects
and associated confidence intervals based on standard error estimates
from NONMEM. Stepwise backward elimination was conducted on the
full covariate models to identify significant covariates (P< 0.001 for
tumor kinetics and P< 0.05 for overall survival and dropout models) to
be included in the final models, using the SCM routine in PsN (Peal-
speaks-NONMEM). Nonparametric bootstraps (500 runs) were con-
ducted to estimate the confidence intervals of the parameter estimates
from the final models.

Model evaluation and validation
The model performance was evaluated by standard goodness-of-fit plots,
precision of parameter estimation based on NONMEM covariance run
or bootstrap, and VPCs. Five hundred VPC runs were simulated by
using the final tumor kinetic, OS, and dropout models, using the covari-
ate information from study 1108 UC population (with the same sample
size as the original dataset in each VPC run) and the between-subject
variability and residual errors randomly sampled from the distributions
estimated from the tumor kinetic model. The time to death and time to
dropout were simulated by using the predicted tumor size over time, as
well as the baseline characteristics in each simulated individual in each
VPC run. The simulated tumor size data were censored by the simulated
dropout time and the actual data cutoff time in each individual and
compared with the observed tumor kinetic data from UC patients in
study 1108.

Model simulations
To predict the percentage of patients with greater than 30% best tumor
shrinkage and the 1-year survival rate, 500 trial simulations were con-
ducted with 500 patients in each trial randomly resampled from the UC
patient population in study 1108. In each simulated trial, parameter
uncertainties were incorporated by resampling from 500 bootstrap runs
of the tumor kinetic, OS, and dropout models. The simulation results
for tumor shrinkage and 1-year survival rate were summarized across all
simulated trials to calculate the mean and 95% confidence intervals of
the predictions.

SUPPLEMENTARY MATERIAL is linked to the online version of the arti-
cle at http://www.cpt-journal.com
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