Table 1.
Dependent variable | Independent variable | Coefficient (std. coeff.) | Factor P | Adj. R2 (rms) | Model P (n) |
---|---|---|---|---|---|
(Butterfly species richness)0.5 (5° quadrats) | VGT land cover diversity | 0.221 (0.514) | <10−6 | 0.904 | ≪10−6 |
Maximum PET | 0.00332 (0.249) | <10−5 | (1.01) | (72) | |
Minimum elevation | 0.00030 (0.239) | <10−5 | |||
Sampling | 0.00478 (0.216) | <10−5 | |||
(Butterfly species richness)0.5 (2.5° × 5° quadrats)* | VGT land cover diversity | 0.217 (0.390) | <10−6 | 0.710 | ≪10−6 |
Maximum PET | 0.00206 (0.156) | 0.00180 | (1.61) | (161) | |
Minimum elevation | 0.00069 (0.168) | 0.00040 | |||
Sampling | 0.00012 (0.392) | <10−6 | |||
(Butterfly species richness)0.5 (2° quadrats) | VGT land cover diversity | 0.191 (0.407) | <10−6 | 0.622 | ≪10−6 |
Maximum PET | 0.00386 (0.231) | <10−6 | (1.96) | (371) | |
Sampling | 0.00201 (0.347) | <10−6 | |||
Jaccard values for butterflies (community similarity) | Jaccard value for VGT land cover composition | 0.0891 | <10−4 | 0.547 | <10−4 (23) |
Sampling intensity should be interpreted with caution. Standardized coefficients, estimating the relative importance of each variable, are included after the regression coefficient. The rms errors of multiple regression models provide additional evidence that the predictability of butterfly richness increases with sampling grain.