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Biodiversity plays a vital role for ecosystem functioning in a
changing environment. Yet theoretical approaches that incorpo-
rate diversity into classical ecosystem theory do not provide a
general dynamic theory based on mechanistic principles. In this
paper, we suggest that approaches developed for quantitative
genetics can be extended to ecosystem functioning by modeling
the means and variances of phenotypes within a group of species.
We present a framework that suggests that phenotypic variance
within functional groups is linearly related to their ability to
respond to environmental changes. As a result, the long-term
productivity for a group of species with high phenotypic variance
may be higher than for the best single species, even though high
phenotypic variance decreases productivity in the short term,
because suboptimal species are present. In addition, we find that
in the case of accelerating environmental change, species succes-
sion in a changing environment may become discontinuous. Our
work suggests that this phenomenon is related to diversity as well
as to the environmental disturbance regime, both of which are
affected by anthropogenic activities. By introducing new tech-
niques for modeling the aggregate behavior of groups of species,
the present approach may provide a new avenue for ecosystem
analysis.

T ilman (1) proposed that understanding the role of species
diversity for ecosystem functioning lies in quantifying interspe-

cific tradeoffs that organisms face within the constraints of their
environment. Species may, for example, exhibit tradeoffs in the
types of resources they use or the environmental conditions under
which they have their optimum growth rate. To focus on key
functional relationships and rates of biogeochemical processes,
ecosystem studies often aggregate species into functional groups on
the basis of their role in these processes. Species within a functional
group share similar resources and predators, whereas differences
among species within a group are mainly expressed as variation in
the efficiency of resource use or predator avoidance andyor sen-
sitivity to other environmental variables (2) (e.g., temperature). It
follows from this definition that species within functional groups
compete more strongly with each other for resources, whereas those
in different functional groups, though still potentially competing,
either are relatively more complementary in resource use or
interact through trophic interactions.

In this study, we focus on the functional group as the basic unit
of ecosystems and explore how diversity may affect its function-
ing. The dynamics of a functional group consisting of n species
may be modeled by accounting for the dynamics of each sepa-
rately. However, constructing models of aggregate group behav-
ior instead has several advantages. Species distinctions are
sometimes imprecise, and in any case a species-based approach
necessarily ignores intraspecific variation. In contrast, a contin-
uum approach that accounts for the distribution of response
characteristics within a functional group may incorporate such
variation and thereby allow for better understanding of group
behavior. Moreover, such an aggregated approach for functional
groups can facilitate incorporation into more complex ecosystem
models. We will present a theoretical framework inspired by

recent moment approaches in ecology (3–7) to derive equations
that describe the aggregate properties of a group of species in
changing environments.

Species within functional groups share some essential analo-
gies with alleles in a haploid species, which allows us to apply the
fundamental theory of natural selection (8) to describe aspects
of their behavior. Just as the fitness of a genotype affects that
genotype’s frequency in future populations, relative productivity
of a species will affect its future proportion of the total biomass
of a functional group.

Barton and Turelli (9) used a moment closure technique to
approximate genetic variance and the effects of disruptive selection
in a diploid population. The approach suggested here is to model
the moments of a group of species (biomass, and the means,
variances, and higher moments of phenotypic characters). Most
genetic studies have focused on equilibrium behavior (10, 11) or
transient behavior of the genetic variance (12). In ecology, research-
ers have summarized the role of species richness for ecosystem
functioning for the equilibrium case (13, 14) and treated the general
statistical properties for group performance with heterogeneous
species in a varying environment (14–16). Our approach uses
quantifiable interspecific tradeoffs to predict the dynamics of
functional group properties in nonequilibrium situations.

Model
Consider a local group of species competing for the same resource
and assume that growth rates are a function of a time-varying
environmental factor, E, which can be either abiotic or biotic—for
example, temperature, resource concentration, or predator abun-
dance. Certain morphological or physiological traits of the species,
such as structures facilitating uptake at low resource densities or
antipredatory defenses, can influence the severity of the imposed
limitation. Because of energy and time constraints, species face
tradeoffs. Those that allocate internal resources to traits that reduce
the impact of a limiting factor necessarily incur a disadvantage with
respect to another limiting factor.

We introduce a variable, x, which we call the species pheno-
type, to represent this dependency. Every species, j, is defined by
a unique value of xj, and the spectrum of all species (x1, x2, . . . ,
xj, . . . , xN) comprises the whole group. The growth function of
the jth species, i.e., its per capita instantaneous growth rate, is
influenced by its phenotype (xj), the present value of the
environmental variable (E), and the total biomass of the group
(CT 5 (Cj) because of density-dependent effects. The dynamics
of a group of N species can be described by

Ċj 5 f~xj , E, CT!zCj 1 ij ~j 5 1, 2, . . . , N!, [1]

See commentary on page 10979.
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where Ċj denotes the rate of change in the biomass of the jth
species (Cj), and ij is the input from external sources such as
dispersal from adjacent patches.

The multispecies model (Eq. 1) serves the purpose of repre-
senting the dynamics of the biomass of every species in the
functional group in terms of endogenous processes (e.g., com-
petition for resources) and exogenous processes (e.g., immigra-
tion). Each species, j, has a fixed rate of external biomass input,
ij. If no intrinsic growth occurs, i.e., f(xj, E, CT) 5 0, and the
input rates are held constant, each species will settle into a
steady-state biomass determined by the input rate and the sum
of all loss rates. Intrinsic growth redistributes biomass away from
this externally driven distribution.

We focus on three macroscopic properties to characterize
intrinsic patterns, which can be calculated from the distribution
of biomass over the phenotype aspect: total biomass, CT, average
phenotype, xavg, and phenotypic variance, V:

CT 5 O
j 5 1

N

Cj [2]

xavg 5
1

CT
O

j 5 1

N

Cjzxj , [3]

V 5
1

CT
O

j 5 1

N

Cjz~xavg 2 xj!
2. [4]

Results
First we explore the basic response of the multispecies model
(Eq. 1) to different rates of environmental variability. The first
case we consider is that of a constant directional rate of change
in the environmental variable. Such a constant directional
change is very unrealistic but allows us to explore the basic
behavior of the system. To do this, one can use either a very long
transect with a large number of species or a circular boundary
condition with fewer species. We have chosen the latter because
it allows us to run the simulation for as long as needed for the
system to stabilize. We let E(t) 5 mod[czt; Emax], where c is the
rate of change of the environmental variable, and Emax is the
maximum environmental value and species type. We are here
assuming that we have appropriately scaled the species type into
the units of the environmental variable. The distance from the
optimum, on the circle, can be calculated as:

H~x, E! 5 min$ux 2 Eu, Emax 2 ux 2 Eu%. [5]

We fix the functional form of f(x, E, CT) and simulate the
system numerically. For simplicity, we chose a Gaussian growth
function:

f~x, E, CT! 5 pze2@H~x,E!#2
zS1 2

CT

K D 2 d. [6]

The parameter p represents the per capita fertility of the
species in the absence of density effects, whereas d is the
mortality (or dilution) rate. For any value of E, the species
characterized by the phenotype xopt 5 E is the one with the
highest growth rate at that time. We define the distance between
the optimal and the average phenotype as Dx 5 xopt 2 xavg.

During the simulation, the biomass distribution will follow the
environmentally determined optimum with a certain lag, Dx, and
travel at constant speed, forming a traveling wave along the
phenotype axis with a stable shape. This means that, even though
species are constantly replaced in the community, the group
properties reach equilibrium, and we can examine the relation-
ships among these properties. As shown in Fig. 1, the higher the
rate of change of the environmental variable, the lower CT and
the higher both Dx and V.

If E changes at variable rates, more complex dynamics result.
To simulate a seasonal environment, we let E(t) oscillate around
a fixed value, x, with frequency v, as:

E~t! 5 x 1 d sin~vzt!. [7]

Such an environmental signal could represent annual or diurnal
temperature, for example. Because there is no need of any
boundary condition in this more realistic case, we redefine
H(x, E) 5 x 2 E and again use Eq. 6 as the growth function. In
slowly changing phases of the cycle of E near its limits, Dx
decreases, which causes V to decrease accordingly, while the
total biomass increases, implying that the best competitor is
dominating the community at the expense of all other species.
During the subsequent acceleration phase of E, however, the
species distribution fails to track the accelerating optimum
species type set by E(t). A new separated peak occurs in the
distribution, which thereby becomes bimodal (see Fig. 2B). We
have also done simulations that show that similar abrupt tran-
sitions may be caused by directional environmental change, if the
change is accelerating through time. Biologically speaking, this
means that an abrupt transition of species occurs in the com-
munity within a very short time. This phenomenon deserves

Fig. 1. Solutions for numerical simulations of the multispecies model (Eq. 1) with constant rate of change of the environmental variable E. (A) The difference
between the optimal type and the current average type. (B) The total biomass (dotted line) and the species type variance (solid line). The points on the lines
indicate for which values the model was evaluated numerically. Parameters of growth function (Eq. 6) were: p 5 0.6, K 5 10, and d 5 0.1. The value of
immigration, ij, was equal for all species and set to 0.01. All initial biomasses were set to 0.1, and we used 100 species with a range of phenotypes between 0
and 20.
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further attention, because ongoing global changes may very well
cause accelerating environmental changes (17, 18), which are too
rapid for existing phenotypic variances and thus might lead to
abrupt turnovers in species compositions.

Deriving an Aggregate Model. The multispecies model described in
Eq. 1 has the disadvantage that it needs many equations, and that
no understanding regarding the aggregated properties can be
derived without simulations. Using moment approximation
methods, however, we can reduce the multispecies model to
three equations that capture the dynamics of the macroscopic
characteristics of the group, such as the total biomass in the
community, the average phenotype, and the phenotypic variance
(i.e., a measure of species diversity). The simplified system
elucidates the mechanisms underlying the influence of pheno-
typic variance on ecosystem characteristics. Inspired by a variety
of recent moment closure approaches in ecology (3–7), we use
a moment closure technique to approximate the dynamics of
model (Eq. 1) in terms of centralized moments. Truncating the
power series for f, and making an approximation for skewness
and kurtosis, we obtain the following aggregate model (terms in
curly brackets are related to external input dynamics; see Ap-
pendix for the derivation and parameter estimation):

The rate of change of the total biomass is given as

CT < @f0 1 Vzf2#zCT 1 $I%, [8]

where fi 5 [(diydxi)f(x)]yi! are scaled derivatives of f (see
Appendix), and I is the total external input of biomass. Here we

use fi as shorthand for fi(xavg). Note that, because the growth
function has a maximum at xopt, we expect the second derivative,
f2, to be negative, as long as xavg is in the neighborhood of xopt.
The term in square brackets represents the productivity of the
whole group of species. Productivity is thus determined by the
growth rate of the average species (represented by f) and a
negative term (because f2 is less than zero) proportional to
phenotypic variance. Thus, for large V, the average growth rate
of the whole group is lower because of a higher proportion of
suboptimal species. In agriculture, the functional group (crop) is
often represented by one single species to minimize V and thus
to optimize productivity by choosing a species close to the
optimum. The drawback of low phenotypic variance is elucidated
in the next equation for the rate of change of the average
phenotype of the group:

ẋavg < Vzf1 1 H I
CT

~x̃ 2 xavg!J, [9]

where x̃ is the average phenotype of the external input of
biomass. Eq. 9 represents an analogy to the fundamental theo-
rem of natural selection: the succession of the average phenotype
of the group towards the one with optimal productivity is
determined by phenotypic variance V. Note that f1 will have the
same sign as (xopt 2 xavg), and thus the first term tends to move
the average phenotype towards the currently optimal phenotype
with a rate determined by the phenotypic diversity. Thus, high
phenotypic variance means fast successional response of this
functional group in response to a change in the environment.

Fig. 2. The general behavior of model (Eq. 1) in the case of a seasonally changing environment. (A) The average phenotype xavg (dashed line) tracks the
environmental sinusoidal factor E(t) 5 15 1 6* sin(2*piy365*t) (solid line) over the period of one year. (B) The period of oscillation of the other two macroscopic
characteristics of the system, the total biomass CT (solid line), and the standard deviation s 5 sqrt(V) (dashed line), is 6 months. (C) Four snapshots of the species
distribution obtained during the decreasing phase of the environmental factor (see A) when it equals 12.75 (black circle), 12.25 (dark gray circle), 11.75 (light
gray circle), and 11.25 (white circle). All these distributions are unimodal. The circle denotes the dominating species, i.e., with the maximum abundance. (D)
During the subsequent increasing phase of E(t), the distributions of species appear to be bimodal, and the transition of the dominating species is far from being
smooth. The simulation has been run by using the Gaussian growth function (Eq. 6) and 250 species whose phenotypes uniformly range from 0 to 30. Other
parameter values are set to: p 5 0.6, K 5 10, d 5 0.1, and l 5 0.1.
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The following equation shows the closure scheme we use to
approximate the rate of change of the phenotypic variance using the
average phenotype and a rough approximation of the skewness,
which seems to be sufficient in most cases. The positive constants
a and b are estimated by fitting the first term to the actual skewness
and the second term to the actual kurtosis (see Appendix):

V̇ < bz~xopt 2 xavg!
3zf1 1 ~a 2 1!zV2zf2

1 H I
CT

@Ṽ 2 V 1 ~x̃ 2 xavg!
2#J. [10]

Note that f1 always has the same sign as (xopt 2 xavg), so the first
term is always positive (zero exactly at the optimum). The second
term is always negative, because f2 , 0 and a . 1 (19) and thus
when xopt 5 xavg, i.e., when the average type is also the optimal
type and environmental conditions are constant, the phenotypic
variance will decline because of competitive exclusion. Changes
in the environment cause xopt to differ from xavg, and thus the first
term increases above zero thereby increasing the phenotypic
variance. Simulations have shown that over time, changing
environments alone cannot generally sustain phenotypic vari-
ance without the external input of seed biomass. Thus, the
importance of the amount and phenotypes of external inputs—
seeds, immigrants, or propagules—becomes obvious.

An Example. To provide an example of the proposed approach, we
use a growth function based on the tradeoff between predator
defense and growth, such as displayed in phytoplankton com-
munities (20, 21). In this case, the main environmental factor,
E(t), represents predator density, and we use a reddened noise
time series to mimic natural population fluctuations (22):

LOG10~E~t!! 5 O
q 5 1

64 1
qk zsin~tz2zpzqz36521 1 gq!, [11]

where gf is a vector with values chosen from a uniform random
distribution [0, 2p], q is the frequency, and k determines the
‘‘color’’ of the variation (we used k 5 1). Note that this time
series repeats its pattern with a period of 365.

On the basis of energy-allocation theory, we assume that an
investment in a beneficial trait, such as the ability to lower predator
selectivity s(x), has a metabolic cost r(x). To incorporate self-
limitation, we use a traditional logistic function, in which density
dependence is taken into account via the total group biomass, CT.
The per capita growth rate of species x can be given as:

f~x, E, CT! 5 pzS1 2
CT

K D 2 r~x! 2 s~x!zgzE 2 d , [12]

where g represents the specific grazing rate, and d is the system
dilution rate. If we interpret x as the investment in predator
defense, x is constrained to be positive, and we define the
metabolic cost as r(x) 5 rzx, r being a constant. The benefit of
this investment is a decrease in predator selectivity, and we
choose a negative exponential s(x) 5 e2x to reflect this effect.
Note that the optimal species type can be found by setting the
first derivative of Eq. 12 equal to zero and solving for x, giving

xopt 5 maxH0, lnSgzE
r DJ. [13]

We simulate the multispecies model (Eq. 1, using Eq. 12 as the
growth function) with 100 species and calculate CT, xavg, and V
over time from the resulting species distribution. These calcu-
lated values are then compared to those obtained by simulating
the approximated Eqs. 8–10 and to a homogeneous model with

a single phenotype chosen to represent the whole group and the
value of x chosen to maximize productivity over the course of the
simulation. All models were driven by an identical environmen-
tal time series E(t), as described above.

The comparison between the results obtained via the multi-
species model (Eq. 1), the aggregate model (Eqs. 8–10), and the
homogeneous model are shown in Fig. 3. These simulations show
that our approximation well represents the dynamics with de-
creasing precision for higher moments. Even though the variance
approximation is rather crude, it still provides a sufficiently good
estimate to approximate average species type and total biomass
successfully. We hope that further refinements will improve this
estimate in the future. Note how the increasing predation peaks
at time 380, 400, and 440 cause biomass of the single-species
model to decrease more sharply than the adaptive model, where
the community moves towards more predation-tolerant species.
This important feature is well captured by the approximation.

Discussion
The theoretical framework we present here allows us to relate an
important component of diversity, phenotypic variance within
functional groups, to crucial aspects of ecosystem function. Most
intriguing is the balance between short-term productivity with
low variance and optimal phenotypes, and long-term productiv-
ity in changing environments with higher phenotypic variance
causing better adaptive capacity. The adaptive model had about
6% higher productivity than the model with a fixed phenotype,
which was chosen iteratively to yield the highest possible long-
term productivity for a single-species model. Any other pheno-
type would have performed worse under the given environmen-
tal scenario. Thus even if short-term productivity is hampered by
suboptimal species being present, long-term productivity may be
higher for a system with adaptive possibilities. This conclusion
relates to the recent debate regarding whether observed rela-
tionships between species richness and ecosystem functioning is
because of sampling effects (23) rather than overyielding (13,
24). This work shows that, whatever the outcome of that debate,
the presence of such a ‘‘sampling effect’’ can itself lead to higher
functional group efficiency in a fluctuating environment.

The importance of external inputs for sustaining phenotypic
variance in this simple model highlights the fact that no site is
independent of the surrounding area, and that a metacommunity
approach is necessary to understand adaptive phenomena of eco-
systems over larger spatial scales. Davis and Shaw (25) suggest that
adaptive responses of vegetation to climate change occur at many
levels, including phenotypic plasticity, genetic adaptation, succes-
sion, and migration processes, stressing that genetic variation is
linked to migration and dispersal processes. Spatiotemporal heter-
ogeneities give the advantage to different species at different times,
and dispersal can compensate for the local loss of species, pheno-
types, or genotypes. Evolutionary processes act to moderate the
effect of unfavorable growing conditions. All of these factors act as
buffers against extinction by increasing the potential for greater
phenotypic diversity and will result in better long-term productivity
of the functional group.

In conclusion, we have suggested an approach for ecosystem
theory that extends previous equilibrium-type analyses to dy-
namic environments and focuses on the properties of the basic
ecosystem unit, the functional group. Furthermore, we suggest
that the phenotypic variance may be a more appropriate measure
of diversity when attempting to relate diversity to ecosystem
functioning. We have provided a simple example that uses a
measure of phenotypic diversity explicitly as a state variable and
have derived simple and intuitive equations to describe the effect
of diversity on ecosystem function. The result is an approach that
is simple enough to analyze theoretically, but which captures
aspects of the inherent nature of ecosystems as complex adaptive
systems.

Norberg et al. PNAS u September 25, 2001 u vol. 98 u no. 20 u 11379

EC
O

LO
G

Y



Fig. 3. Simulation results of a group of prey with tradeoffs in predator defense vs. net growth (Eq. 12). The multispecies model was an implementation of Eq.
1. The approximation was based on Eqs. 8–10. (A) The forcing function of the model was a red-noise time series simulating predator density over 2 successive
years with yearly repeating patterns (see Methods). (B) Prey group total biomass over time. For the fixed type model, the value of the species type was chosen
to minimize the error relative to the multispecies model. (C) The succession of the average phenotype over time. The approximation captures quite accurately
the dynamics of a changing community consisting of 100 species, by using only two additional equations for the average phenotype and the phenotypic variance.
Note that we show the standard deviation instead of the variance. (D) The approximate vs. the reference variance. Although not perfect, our approximation
captures most of the dynamics of the variance and provides a simple closure scheme for obtaining CT and xavg. We used 100 species with a uniform distribution
of x between 0 and 8. Parameters for the growth function Eq. 12 were: p 5 2, g 5 1, r 5 0.1, d 5 0.1, and K 5 10. Immigration was set to 0.001 for each
species, and initial biomasses were 0.01. Coefficients for approximating the skewness and the kurtosis were a 5 2.122 and b 5 0.015, respectively.
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Appendix
Moment derivations: To derive our moment closure, we consider
species continuously distributed over aspect space. The model,
which is directly analogous to Eq. 1, is:

Ċ~x! 5 f~x, E, CT!zC~x! 1 i~x!.

The same derivation can be done with the original discrete-
species system. We approximate the response function using a
Taylor expansion around the average type xavg:

f~x! 5 O
i 5 1

`

fi~xavg!~x 2 xavg!
i,

where fi(x) 5 [(diydxi)f(x)]yi!.
The rate of change of total biomass, CT, can then be written:

ĊT 5 E c~x!zf~x!dx 1 E i~x!dx

5 E O
i 5 0

`

fi~xavg!~x 2 xavg!
izc~x!dx 1Ei~x!dx.

Using the central moments Mi 5 (1yCT)*(x 2 xavg)izc(x)dx, we
can write the previous equation as a function of higher moments

ĊT 5 CTzO fi~xavg!Mi 1 I.

The corresponding equation for mean species type, xavg, can be
found by defining S 5 xavgzCT. Then we have:

Ṡ 5 E xzc~x!zf~x!dx 1 E xzi~x!dx.

Expanding yields:

Ṡ 5 xavgzO
i

fi~xavg!Mi 1 CTzO fi~xavg!Mi 1 1 1 Izx̃,

where x̃ is the average type of immigrating species.
By the quotient rule we have:

ẋavg 5 O
i

fi~xavg!Mi 1 1 1
I

CT
~x̃ 2 xavg!.

We can derive the higher moments in a similar fashion, recalling
that xavg changes with time:

Ṁj 5 O
i 5 1

`

fi~xavg!z@Mi 1 j 2 MizMj 2 jzMj 2 1zMi 1 1#

1
I

CT
F O

i 5 0

j Sj
iD~x̃ 2 xavg!

j 2 izM̃i 2 Mj 2 jzMj 2 1z~x̃ 2 xavg!G,

where M̃i is the distributional moment of order i for immigrating
species. Expanding, and recalling that M0 5 1 and M1 5 0, we
have:

ĊT 5 CT@f~xavg! 1 f2~xavg!M2 1 f3~xavg!M3 1 . . .# 1 I

ẋavg 5 f1~xavg!M2 1 f2~xavg!M3 1 . . . 1
I

CT
~x̃ 2 xavg!

V̇ 5 Ṁ2 5 f1~xavg!M3 1 f2~xavg!~M4 2 M2
2!

1 . . . 1
I

CT
~~Ṽ 2 V! 1 ~ x̃ 2 xavg!

2!.

To close the system, we approximate the moments higher than
order two by using the lower level moments. A common ap-
proximation for the 4th-order moment is the square of the
second order moment multiplied by a factor, here a (a factor
equal to three gives an exact result for the Gaussian distribution).
The distribution of species types is usually skewed as a result of
the optimally growing species being on either side of the current
average species type as the forcing function varies over time. The
best estimate we have found so far for the skewness is (xopt 2
xavg)3 b. We estimate factors a and b by finding the minimum of
the following functions:

h~a! 5 O
t

~Kt 2 azVt
2!2, k~b! 5 O

t

~Wt 2 bz@xopt 2 xavg#
3!2,

where K is the kurtosis, W is the skewness, and V is the variance
of the distribution, all estimated from simulation results. The
contributions of the skewness and the kurtosis to the change in
V are important, whereas their contributions to total biomass
and average type are negligible and can be omitted for simplicity.
Substituting our approximations for M3 and M4 yields Eqs. 8–10.
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