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Abstract

Pancreatic cancers arise through a series of genetic events both inherited and acquired. Inherited 

genetic changes, both high penetrance and low penetrance, are an important component of 

pancreatic cancer risk, and may be used to characterize populations who will benefit from early 

detection. Furthermore, pancreatic cancer patients with inherited mutations may be particularly 

sensitive to certain targeted agents, providing an opportunity to personalized treatment. Family 

history of pancreatic cancer is one of the strongest risk factors for the disease, and is associated 

with an increased risk of caners at other sites, including but not limited to breast, ovarian and 

colorectal cancer. The goal of this chapter is to discuss the importance of family history of 

pancreatic cancer, and the known genes that account for a portion of the familial clustering of 

pancreatic cancer.

Family History and Risk of Pancreatic Cancer

Family history is a long-recognized risk factor for pancreatic cancer and an important 

predictor of disease risk. Studies have suggested that approximately 5-10% of pancreatic 

cancer patients report a close relative with pancreatic cancer1,2. Most epidemiological 

studies have demonstrated a 2- to 3-fold increase in risk of pancreatic cancer among 

individual with affected first-degree relatives (FDRs)3–12. However, some studies have 

shown even higher risk. A Swedish study reported a standardized incidence ratios (SIR) for 

pancreatic cancer of 1.73 [95%CI: 1.13-2.54] in offspring with at least one parent presented 

with pancreatic ductal adenocarcinoma (PDAC)13. In a prospective study from the National 

Familial Pancreas Tumour Registry (NFPTR), the SIRs for pancreatic cancer in comparison 

to the SEER (Surveillance, Epidemiology, and End Results) rates were 6.4 [95% CI: 

1.8-16.4] and 32.0 [95% CI: 10.2-74.7] in individuals with two and three FDRs with 

pancreatic cancer14.
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Familial clustering was considered the first evidence supporting the genetic predisposition to 

pancreatic cancer. Reports of multiple siblings in one generation and individuals in three 

consecutive generations affected by pancreatic cancer are strong evidence of a hereditary 

form of the disease following the Mendelian inheritance15–19. This was later supported by 

segregation analyses, which favored a major gene model that was predicted to follow an 

autosomal dominant patterns of a rare allele20. As demonstrated in the observational 

epidemiologic studies, individuals with a family history of pancreatic cancer are at an 

increased risk of developing the disease themselves. In addition, a population-based twin 

study in Europe has estimated the heritability for pancreatic cancer to be 36% [95% CI: 

0-53%]21. As more evidence of the genetic basis of pancreatic cancer has emerged, an 

operational definition of familial pancreatic cancer (FPC) was proposed to facilitate 

investigations of the inherited components of the disease. FPC is defined as kindreds with at 

least a pair of FDRs diagnosed with PDAC. Comparing to the general population, FPC 

kindred members have a 7- to 9-fold increased risk of pancreatic cancer14,22. Risk is even 

higher among members of FPC kindreds with a young-onset case (< 50 years; SIR = 9.31 

[95% CI: 3.42-20.28]) than those without (SIR = 6.34 [95% CI: 4.02-9.51])22.

Both prospective and retrospective studies have found increased risks of other cancers in 

relatives of pancreatic cancer patients, particularly breast cancer23,24, melanoma24, 

ovarian25, and colorectal cancer24,26. Study from NFPTR reported an increased risk of dying 

from cancer of the breast (weighted standardized mortality ratio (wSMR) = 1.66 [95%CI: 

1.15-2.34]), ovarian (wSMR=2.05 [95%CI: 1.10-3.49]), bile duct (wSMR = 2.89 [95%CI: 

1.04-6.39] and bladder (wSMR = 1.90 [95%CI: 1.00-3.30]) in FDRs of FPC probands27. 

Elevated mortality of colon cancer (wSMR = 2.31 [1.30-3.81]) and prostate cancer (wSMR 

= 2.31 [1.14-4.20]) were also observed among the relatives of young-onset (< 50 years old) 

pancreatic cancer probands27. These findings suggest a shared genetic etiology between 

pancreatic cancer and several other cancers, and the potential benefits of surveillance at-risk 

relatives for cancers with established screening guidelines.

Pancreatic Cancer Genes

Pancreatic cancer is more prevalent in families with several hereditary syndromes, for which 

the predisposing genes have been identified, including BRCA1 and BRCA2 associated with 

hereditary breast and ovarian cancer (HBOC), STK11 associated with Peutz-Jeghers 

syndrome (PJS), CDKN2A/p16 associated with familial atypical mole and multiple 

melanoma (FAMMM), mismatch repair (MMR) genes associated with Lynch syndrome, and 

PRSS1 associated with hereditary pancreatitis (HP). These genetic syndromes are reported 

to be associated with a substantially higher risk of pancreatic cancer. The recent discovery of 

germline mutations in PALB2 and ATM gene in FPC kindreds has extended the list of 

established high- and moderate-risk pancreatic cancer genes (Table 1).

BRCA1/2

BRCA1 and BRCA2 gene are well-known high-penetrant predisposing genes for hereditary 

breast and/or ovarian cancer (HBOC). These genes are involved in the DNA damage 

response and DNA double-strand breaks repair. Pancreatic cancer is the third most common 
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cancer associated with BRCA1/2 mutations, though the penetrance at age 70 is much 

lower28–31. The prevalence of BRCA2 mutations in pancreatic cancer patients is 1.4-8.2% 

for patients unselected for family history32–36, about 6-16% among FPC patients37–42, and 

up to 17.2% in families with 3 or more pancreatic cancers38,41,43. Comparing to the general 

population, the risk of pancreatic cancer is about 2-6 fold in BRCA2 carriers28,44 and 2-5 

fold in BRCA1 carriers 29,30,44. Several studies had reported a higher risk of pancreatic 

cancer in BRCA2 carriers than in BRCA1 carriers28,31,44–46. BRCA1/2 mutation carriers are 

at particularly high risk (SIR = 4-10) for early onset pancreatic cancer28–30,44. FDRs of 

BRCA1/2 carriers, regardless of their carrier status, have a significantly higher risk of 

pancreatic cancer than the general population44,46.

PALB2

PALB2 gene is a tumor suppressor that interacts closely with both BRCA1 and BRCA2 
during double-strand DNA repair. Mutations of PALB2 had previously been associated with 

familial breast cancer47. Jones et al. first reported the discovery of truncating mutations of 

PALB2 gene in four FPC probands from the NFPTR 48. Since then, pathogenic mutations of 

PALB2 gene have been found in 0.4-4% FPC families, majority of which were families with 

history of both pancreatic cancer and breast/ovarian cancer49–55.

ATM

ATM is a breast cancer susceptibility gene that coordinates the DNA double-strand breaks 

repair. Deleterious mutations of ATM gene were first reported by Roberts and his colleagues 

in two FPC families with at least three members affected by pancreatic cancer56. In the 

subsequent analysis, four additional ATM mutations were found in 166 FPC patients 

compared to none in 190 spouse controls56. To date, ATM mutations are found in 1-5% 

patients with pancreatic cancer35,36,42,57–59.

STK11

Peutz-Jeghers syndrome (PJS) is caused by germline mutations in the STK11 gene60–62. PJS 

patients are at very high risk of developing cancer during their lifetimes, particularly 

gastrointestinal cancer and gynecological cancer. The cumulative risk of developing any 

gastrointestinal cancer is 38-66% at age 7063. Compared to the general population, PJS 

patients have a 76-140 fold elevated risk for pancreatic cancer64–66. The cumulative risk of 

developing pancreatic cancer at age 70 in PJS patients is 11-55%64–67.

CDKN2A

CDKN2A is a tumor suppressor gene that is considered a major cause of familial melanoma. 

In melanoma-prone families of European ancestry, pancreatic cancer is the second most 

common type of cancers associated with CDKN2A mutations. Longitudinal studies in these 

families have found a 15- to 80-fold increased risk of pancreatic cancer in carriers of 

CDKN2A mutations comparing to the general population68–73. The risk of developing 

pancreatic cancer is also higher in FDRs of carriers than in FDRs of non-carriers (RR = 7.4 

[95%CI: 2.3-18.7])74.
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Mismatch repair genes

Hereditary non-polyposis colorectal cancer (HNPCC), also known as Lynch Syndrome, 

accounts for 2-5% of all colorectal cancer. It is caused by inactivating mutations of DNA 

mismatch repair (MMR) genes: MLH1, MSH2, MSH6 and PMS2. While several studies 

found no increase in risk of pancreatic cancer in Lynch Syndrome patients75–78, others 

reported an approximately 7- to 10-fold elevated risk of developing pancreatic cancer in 

carriers of MMR gene mutations79–82. The relative risk of pancreatic cancer is higher at 

younger age79,80. The cumulative risk of developing pancreatic cancer at age 70 among 

mutation carriers was estimated to be 3.68% [95% CI: 1.45% - 5.88%] 80.

PRSS1

Hereditary pancreatitis (HP) is autosomal-dominant disorder characterized by recurrent 

episodes of acute pancreatitis in childhood and frequent progression to chronic pancreatitis. 

Germline mutations in PRSS1 are responsible for the majority of HP cases. Comparing to 

the general population, the risk of pancreatic cancer is about 69-fold higher in HP patients, 

and the median age of cancer onset was at least 15 years earlier 83–86. About 20-50% HP 

patients would develop pancreatic cancer at age 7083–85,87. The risk is even higher among 

smokers with HP who tend to develop pancreatic cancer 20 years before non-smokers85,88.

Germline Mutations in Sporadic Cases

Inherited genetic alterations are not restricted to patients with FDRs affected by pancreatic 

cancer. While current guidelines recommend germline genetic testing for pancreatic cancer 

patients with an first degree relative with pancreatic cancer or pancreatic cancer patients 

with a family history indicative of one of the above mentioned genetic syndromes, patients 

with apparently sporadic pancreatic cancer may also harbor mutation in a pancreatic cancer 

susceptibility genes. In fact, the discovery of the role of BRCA2 in pancreatic cancer was 

bases upon the observation of Three germline mutations in BRCA2 was found in 41 (7.3%) 

sporadic pancreatic cancer patients32. Subsequent studies have show that in a series of 306 

unselected PDAC patients, 14 carried mutations in BRCA1 or BRCA2 while only 2 of the 

14 had a family history of PDAC33. Salo-Mullen et al. reported a 7.4% prevalence of BRCA 
mutations in 27 PDAC patients of Ashkenazi Jewish ancestry without a family history of 

breast, ovarian or pancreatic cancer34. Studies have reported 0-3% sporadic or unselected 

pancreatic cancer patients carrying PALB2 mutations, leading to an aggregated prevalence 

of 0.75%55. Recently, evaluation of 854 pancreatic cancer patients, twelve of them had 

germline BRCA2 mutations, ten with ATM, three with BRCA1, and two with PALB236. 

Larger scale studies are currently underway to evaluate the mutation prevalence in 

apparently sporadic pancreatic cancer and expanding genetic testing beyond the current 

guidelines.

Targeted Therapy

Understanding genetic predisposition of pancreatic cancer has important implication for the 

development and translation of targeted therapies. Tumors with mutations in BRCA1/2, 

PALB2, and ATM are highly sensitive to DNA-damaging related treatments such as 
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crosslinking agents89–91 and poly(ADP-ribose) polymerase inhibitors (PARPi)92–95. 

Preclinical studies have demonstrated improved sensitivity to chemotherapeutic agents and 

ionizing radiation in pancreatic cancer cells treated by these agents96–98. The clinical 

benefits of using crosslinking agents and PARPi in patients with pancreatic cancer are 

currently being investigated. Preliminary results have shown promising efficacy of these 

agents, particularly in patients with BRCA2-associated pancreatic cancer99–102.

Common Low-Risk Susceptibility Loci

Genome-wide association studies (GWAS) allow for the unbiased evaluation of common 

genomic variants associated with pancreatic cancer. To identify common susceptibility 

variants, five pancreatic cancer GWAS have been conducted by the Pancreatic Cancer 

Cohort Consortium (PanScan) and the Pancreatic Cancer Case Control Consortium (PanC4) 

in populations of European ancestry, including PanScan I in 2009103, PanScan II in 2010104, 

PanScan III in 2014105, PanC4 in 2015106 and a recent imputation analysis of GWAS data 

from PanScan I–III107. A total of 16 pancreatic cancer susceptibility loci located in 13 

genomic regions have been discovered in European populations (Table 2).

PanScan I

PanScan I was a two-stage GWAS including 1,896 patients with incidence pancreatic cancer 

and 1,939 controls in the discovery stage, as well as 2,457 cases and 2,654 controls in the 

replication stage. The most significant variant (rs505922) on chromosome 9q34.2 was 

mapped to the first intron of ABO blood group gene 103. The association of ABO loci with 

pancreatic cancer has been robustly replicated in studies of European105,106,108,109 and 

Asian populations110–112. These findings are consistent with the observation that individuals 

with blood group O had a lower risk of pancreatic cancer than those with groups A or B. 

About 17% to 19.5% of all pancreatic cancers in populations of European descent was 

attributable to the inheritance of a non-O blood group113,114.

PanScan II

From 3,851 pancreatic cancer cases and 3,934 controls, PanScan II identified three novel 

genomic regions on chromosome 13q22.1 (a large non-genic region), chromosome 1q32.1 

(NR5A2) and chromosome 5p15.33 (TERT-CLPTM1L) to be significantly associated with 

pancreatic cancer104. The locus on chromosome 13q22.1 (rs9543325) was mapped to a large 

gene desert flanked by the KLF5 and KLF12 genes. Both genes encode a transcription factor 

involved in cell transformation, proliferation, and carcinogenesis. Several studies have 

reported the overexpression of the KLF5 gene in pancreatic cancer 115–118. The KLF2 gene, 

on the other hand, was found to be downregulated in PDAC tumor tissues, and its expression 

may suppress the malignant transformation of PDAC cancer cells through its regulation of 

beta-catenin/TCF signaling119.

Two variants on chromosome 1q32.1 are associated with pancreatic cancer independently. 

The first significant variant (rs3790844) identified in PanScan II is located in the first intron 

of the NR5A2 gene104. Imputation analysis of PanScan I–III detected the second variant in 

the upstream of NR5A2 (rs2816938). NR5A2 encodes the nuclear receptor subfamily 5 
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group A member 2, a transcription factor that activates or inhibits transcription of specific 

target genes. Overexpression of NR5A2 was observed in resected PDAC tumor tissues and 

was associated with reduced survival time in PDAC patients120. Heterozygous Nr5a2 mice 

exhibit increased rates of pancreatic acinar to ductal metaplasia and impaired recovery after 

chemically induced acute pancreatitis121,122. Loss of Nr5a2 accelerates the development of 

oncogenesis driven by Kras121,122. These findings suggest a tumor suppressor role of 

NR5A2 that protects the pancreas from KRAS driven pre-neoplastic changes.

Four independent pancreatic cancer risk loci have now been identified in the multi-cancer 

TERT-CLPTM1L region on chromosome 5p15.33. The first pancreatic cancer risk locus 

identified in PanScan II is located in the intron 13 of CLPTM1L (rs401681). PanScan III 

reported a second independent risk locus on chromosome 5p15.33, tagged by a synonymous 

variant within the second exon of TERT (rs2736098) 105. A third independent risk locus 

located in the first intron of TERT gene (rs2853677) was discovered through a candidate 

gene analysis in 5,550 pancreatic cancer cases and 7,585 control subjects from PANDoRA 

(PANcreatic Disease ReseArch) consortium and PanScan 123. Recently, imputation of 

PanScan I–III and replication in PANDoRA and PanC4 found a fourth risk locus for 

pancreatic cancer in this genomic region (rs35226131), which is located about 200bps 

upstream of the transcriptional start site of TERT 107. The chromosome 5p15.33 region 

contains two plausible candidate genes: TERT, which encodes the catalytic subunit of 

telomerase reverse transcriptase and CLPTM1L, which encodes the cleft lip and palate-

associated transmembrane 1 like protein. TERT is a component of the protein and RNA 

complex that maintains telomere ends. Mutations in TERT promoter region were frequent in 

multiple tumor types and were correlated with increased TERT expression and telomerase 

activation124. Common variants in the TERT region were associated with leukocyte telomere 

length in patients with breast and ovarian cancer125. A recent study had reported an 

association between the minor allele of rs401681 and shorter telomere length in pancreatic 

cancer patients, which was consistent with the observation that telomere shortening occurs 

as an early event in pancreatic tumorigenesis126–128. Overexpression of CLPTM1L gene are 

observed in lung and pancreatic cancer tissues129–131. CLPTM1L protects tumor cells from 

genotoxic apoptosis and is required for Ras-induced oncogenic transformation129,130,132. It’s 

also found that overexpression of CLPTM1 may lead to an abrogation of normal cytokinesis 

and promote cell proliferation in pancreatic cancer cells131.

PanScan III

The PanScan III study population combined 1,582 newly genotyped pancreatic cancer cases 

and 5,203 control subjects with PanScan I cohort and sought replication in 2,576 cases and 

6,662 controls from the PANDoRA consortium. Four new risk loci for pancreatic cancer was 

identified on chromosome 7q23.2 (LINC-PINT), 16q23.1 (BCAR1), 13q12.2 (PDX1) and 

22q12.1 (ZNRF3). The signal on 7q32.3 was marked by an intronic variant (rs6971499) in 

LINC-PINT, a long intergenic p53-induced non-protein coding RNA located between 

MKLN1 (Muskelin 1) and KLF14 (Kruppel-like factor 14). Muskelin is an intracellular 

protein that mediates cell adhesive and cytoskeletal responses to the extracellular matrix133. 

KLF14 is a member of the Kruppel-like family of transcription factors that may act as a 

suppressor of KRAS-mediated cell growth through regulation of the cyclin A promoter134. 
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Loss of KLF14 may also trigger centrosome amplification, aneuploidy and spontaneous 

tumorigenesis135. KLF14 has also been associated with several metabolic phenotypes 

including type-2 diabetes mellitus (T2DM), a known risk factor for pancreatic cancer136–139.

A synonymous variant residing in the last exon of BCAR1 was noted on 16q23.1 

(rs7190458). Breast cancer anti-estrogen resistance 1 (BCAR1), also known as p130Cas is a 

member of the Cas (Crk-associated substrate) family of adaptor proteins with important 

regulatory roles in migration, cell cycle control and apoptosis140. Altered expression and 

activity of p130Cas is known to promote metastasis and drug resistance in multiple 

cancers140,141. In addition, two chymotrypsinogen gene, CTRB1 and CTRB2 are also 

located closely to the detected signal. As important members of a family of serine proteases 

secreted by the pancreas into the gastrointestinal tract142, these two genes are plausible 

target for susceptibility variants at this locus. The detected signal for pancreatic cancer is 

also in proximity of a susceptibility locus (rs7202877) for type-I and type-II diabetes143,144 

that was found to impair beta-cell function145 and influences expression of CTRB1/2 in 

pancreas tissues146.

The top ranked variant on chromosome 13q12.2 (rs9581943) is located in the promoter 

region of the PDX1 (pancreatic and duodenal homeobox1 protein 1) gene. Pathway analysis 

of GWAS data identified PDX1, along with NR5A2, HNF1A, and HNF4G, as important 

genes for pancreatic development147. The protein encoded by PDX1 is a transcriptional 

activator of several genes. It is essential in the early development of pancreas148, and plays a 

major role in beta-cell function and glucose-dependent regulation of insulin gene expression. 

Heterozygous mutations in PDX1 resulted in impaired glucose tolerance and symptoms of 

diabetes as seen in maturity-onset diabetes of the young type 4 (MODY4) and late-onset 

T2DM149–151.

The signal on chromosome 22q2.1 (rs16986825) maps to an intron in ZNRF3 (zinc and ring 

finger 3), which encodes a cell surface transmembrane E3 uniquitin protein ligase that is a 

negative regulator of the WNT signaling pathway152. Additionally, a low-penetrance breast 

cancer gene, CHEK2, is also located in proximity to the detected signal. This gene encodes a 

cell-cycle checkpoint kinase that cooperates with p53, BRCA1 and ATM and regulates cell 

division in response to DNA damage153. Germline mutations and variants of CHEK2 had 

been implicated in susceptibility to several cancer types154–158, including familial pancreatic 

cancer41,42,159.

PanC4

PanC4 was conducted on 9,925 pancreatic cancer cases and 11,569 controls, pooling 4,164 

newly genotyped cases and 3,792 controls from nine studies in the PanC4 consortium with 

PanSan I and II cohorts in the gene discovery stage, and analyzed an independent set of 

2,497 cases and 4,611 controls from the PANDoRA consortium in the replication stage. Not 

only this study replicated all previously identified risk loci for pancreatic cancer in European 

populations, three novel associated signals were also detected on chromosome 17q25.1 

(LINC00673), 7p13 (SUGCT) and 3q29 (TP63)106. Significant association was also found 

on chromosome 2q13.3 (ETAA1), a region with prior suggestive evidence in the Han 

Chinese160.
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The top variant on 17q25.1 (rs11655237) maps to LINC00673 (long inter-genic non-protein 

coding RNA 673). This association subsequently replicated in a Han Chinese population 

(rs11655237, OR = 1.26, P = 3.95×10−14)161. Through its epigenetic regulation of gene 

expression, LINC00673 may function as an oncogene in several types of cancers. 

Overexpression of LINC00673 promotes tumor proliferation, invasion and metastasis in 

non-small-cell lung cancer 162–164 and tongue squamous cell carcinoma165, and was 

correlated with poor prognosis in breast cancer166. In contrast, expression of LINC00673 

was significantly lower in PDAC cancer cells than in normal cells and tissues and 

overexpression of LINC00673 in the PDAC cell line substantially reduced the rate of cell 

proliferation. It was found that the single-nucleotide change at rs11655237 creates a 

miR-1231 binding site, which diminishes the effect of LINC00673 in an allele-specific 

manner and thus confer susceptibility to pancreatic tumorigenesis 161.

PanC4 reported a significant association on 7p13 with an intronic variant (rs17688601) of 

the SUGCT (succinyl-CoA:glutarate-CoA transferase) gene. Mutations of this gene cause a 

benign form of glutaric aciduria (glutaric aciduria type III), a rare metabolic abnormality 

characterized by persistent isolated accumulation or excretion of glutaric acid 167. The role 

of this gene in pancreatic cancer risk is unclear.

Two strongly correlated intronic variants of TP63 (tumor protein p63) were found to be 

associated with pancreatic cancer in PanC4 (top variants rs9864771). Protein encoded by 

TP63 (p51/p63) is a p53 homologue with pleiotropic functions including cell proliferation, 

survival, apoptosis, differentiation, senescence, and aging. Frequent overexpression of p63 

was observed in resected PDAC tissues168. It was suggested that different isoforms of p63 

have opposite effects. While TAp63 induces cell death and cell cycle arrest with tumor 

suppressor features169, DNp63 as the predominant isoform in pancreatic cancer cell lines, 

promotes pancreatic cancer growth, motility and invasion170,171. As a tumor suppressor, p63 

had reduced anti-oncogenetic effects compared with p53 in human cancer cells172. However, 

loss of p63 can cooperate with loss of p53, leading to higher tumor burden and metastasis as 

seen in genetic mice models168,171. It is hypothesized that it is the ratio of TAp63 and 

DNp63 that determines the biological outcome and chemo-sensitivity.

Imputation Analysis of PanScan I–III

Recently, an imputation analysis of the GWAS data in 5,107 cases and 8,845 controls from 

PanScan I–III had uncovered three new pancreatic cancer signals on chromosome 1q32.1 

(NR5A2), 8q24.21 (MYC), and 5p15.33 (CLPTM1L-TERT), all of which are independent 

from previously reported susceptibility variants107.

The detected variants on 8q24.21 (rs10094872) is a novel risk loci for pancreatic cancer, 

independent from the previously reported loci with suggestive evidence in PanScan III 

(rs1561927). These two variants are both located in the 2 Mb region known to contain 

multiple susceptibility loci that influence risk of bladder, breast, prostate, colorectal, lung, 

ovarian, pancreatic, and renal cancer173–177. MYC (MYC proto-oncogene, bHLH 

transcription factor) is the gene located in the closest proximity to the detected variant. 

Oncogene MYC is a transcription factor that has been implicated in the pathogenesis of one-

third of all human malignancies, and may play an important role in KRAS-driven neoplastic 
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transformation in the pancreas178. MYC overexpression occurs in up to 42% of advanced 

PDAC179,180. Activation of MYC in adult mice has led to the development of ductal 

adenocarcinomas with metastasis to the liver181. Although evidence have suggested 

regulatory roles of the 8q24.21 risk loci in the expression of MYC, functional analysis are 

warranted to allow a deeper understanding of the underlying mechanism178.

GWAS in Asian Populations

Two GWAS have been conducted in populations of Asian descent (Table 3). The Japanese 

pancreatic cancer study of 991 cases and 5,209 controls found suggestive associations on 

chromosome 6q25.3 (FOXQ1), 12p11.21 (BICD1) and 7q36.2 (DPP6) 182. The second 

GWAS in a Chinese population of 3,584 pancreatic cancer cases and 4,868 controls 

(ChinaPC) identified five susceptibility loci on chromosome 21q21.3 (BACH1), 21q22.3 

(TFF1), 10q26.11 (PRLHR), 22q13.32 (FAM19A5), and 5p13.1 (DAB2)160. The most 

significant association identified in ChinaPC was for rs372883, a variant located in the 3′ 
untranslated region (3′UTR) of BACH1 (BTB domain and CNC homolog 1) gene on 

chromosome 21q21.3. BACH1 is a transcription factor that belongs to the cap ‘n’ collar type 

of basic region leucine zipper factor family (CNC-bZip). Recent studies have demonstrated a 

critical role of BACH1 in cell migration and metastasis through its regulation of metastasis-

related gene expression in breast, colon and prostate cancer 183–185. The second significant 

association was detected on chromosome 21q22.3 (rs1547374). This region harbors the 

trefoil family protein 1 (TFF1) gene that encodes secretory proteins expression in 

gastrointestinal mucosa. Upregulated expression of TFF1 in precursor lesions of PDAC, 

including pancreatic intraepithelial neoplasia (PanIN), intraductal papillary-mucinous 

neoplasms (IPMNs) and mucinous cystic neoplasms (MSNs), suggests its potential 

involvement at the early stage of pancreatic carcinogenesis 186–188. Recent studies found that 

reduced expression of TFF1 in the invasion front of human PDAC was associated with 

lymph node metastasis and poor survival in patients with PDAC189. In pancreatic cancers, 

expression of TFF1 promotes tumorigenesis by suppressing oncogene-induced senescence 
190 and is correlated with increase metastasis191. An intronic variant (rs2255280) in DAB2 
(clathrin adaptor protein) gene region on 5p13.1 was among the identified susceptibility loci 

in ChinaPC. Frequent loss expression of DAB2 in human malignant cancer cells suggests its 

potential role as a tumor suppressor192. Overexpression of DAB2 inhibits cell growth, 

migration and invasion, and was correlated with poor survival in cancer patients193–196. 

Significant association on 10q26.11 was observed for a regulatory variant of PRLHR 
(prolactin releasing hormone receptor) gene (rs12413624). Polymorphisms of this gene was 

associated with colorectal cancer197. A intronic variant of FAM19A5 (family with sequence 

similarity 19 member A5) gene on 22q13.32 was also associated with an increased risk of 

pancreatic cancer (rs5768709). This gene encodes a TAFA protein expressed predominately 

in brain and may function as brain-specific chemokines or neurokines198. Prior to the 

ChinaPC study, there is no implication of PRLHR or FAM19A5 in the risk of pancreatic 

cancer and thus their susceptibility role is currently unknown.
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Current Status of Screening High-Risk Populations

Screening and early detection of pancreatic cancer offer the best chance of reducing the high 

mortality rates of this disease. The goal of screening asymptomatic individuals is to identify 

pancreatic cancer at early stage or, ideally to identify high-grade precancerous lesions that 

can be resected to prevent the development of cancer. Because of the low incidence of 

pancreatic cancer in the general population, population level screening will demand a highly 

specific screening assay. Selective screening of individuals at increased risk for pancreatic 

cancer is considered worthwhile. The International Cancer of the Pancreas Screening 

(CAPS) Consortium recommends screening on FDRs of FPC patients, patients with PJS, 

and carriers of CDKN2A/p16, BRCA2, and carriers of MMR gene mutations with ≥1 

affected FDR199 . FDRs of FPC patients represent a group of high-risk individuals that are 

relatively easy to identify in clinical settings. Of all identified risk factors for pancreatic 

cancer, PJS confers the greatest risk for the disease, making PJS patients good candidates for 

pancreatic cancer screening. Among the established pancreatic cancer genes, germline 

BRCA2 mutations followed by ATM account for the highest percentage of inherited 

pancreatic cancer36,42,58,40,34. It is recommended that BRCA2 mutation carriers with ≥1 

affected FDR and those with two or more affected family members should be considered for 

screening, particularly Ashkenazi Jewish individuals. In addition, given the substantially 

higher risk of pancreatic cancer in patients with CDKN2A/p16 and mismatch repair (MMR) 

gene mutations, screening is also recommended to those mutation carriers with >1 affected 

FDRs199.

Endoscopic ultrasonography (EUS) and/or MRI/magnetic resonance 

cholangiopancreatography (MRCP) are recommended by CAPS as initial screening tools. 

However, the CAPS Consortium could not reach consensus on ages to initiate or stop 

surveillance, the interval for follow-up imaging, nor on the long-term management of initial 

abnormal results199. Screening and early detection strategies should be accompanied by 

effective treatment or preventive strategies if they are to produce a significant survival 

benefit. Given morbidity and mortality associated with pancreatic surgery, there is little 

consensus about when surgery is required for pancreatic lesion in asymptomatic high-risk 

individuals199. Multidisciplinary assessment is however recommended to make 

individualized decision of the necessity of surgical intervention. The lack of consensus on 

many aspects of pancreatic cancer screening underscores the need for more research to fill 

the knowledge gap and to make evidence-based decisions.

Summary and Future Directions

Pancreatic cancer is rare and deadly disease with the highest case-fatality rate of any major 

cancer. Due to the lack of effective means for prevention, diagnosis and treatment, 

pancreatic cancer remains a major public health challenge. Family history, cigarette 

smoking, chronic pancreatitis, and diabetes are well-established risk factors for pancreatic 

cancer. Pancreatic cancer is fundamentally a genetic disease caused by both inherited and 

acquired genetic mutations. Family-based heritability analysis reported 36% of pancreatic 

cancer was due to genetics. Familial pancreatic cancer kindreds and patients affected by 

certain genetic syndromes, for example HP, PJS, HBOC, FAMMM, and HNPCC, are at 
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particularly high risk of pancreatic cancer. About 15-20% of FPC are caused by germline 

mutations in one of the established pancreatic cancer gene (BRCA2, ATM, PALB2, PRSS1, 

STK11, BRCA1, CDKN2A, MLH1, MSH2, MSH6, and PMS2). The genetic basis of 

susceptibility underlying the majority of FPC cases, however, remains unexplained. To date, 

GWAS of pancreatic cancer have discovered 16 low-risk susceptibility loci in European 

populations and 5 in Asian populations, many of which had strong biological plausibility. 

Together, these GWAS loci explained < 5% of pancreatic cancer. Screening, surveillance and 

management guidelines for genetically high-risk individuals are currently evolving. DNA-

damaging related agents are promising in treating pancreatic cancer caused by mutations in 

BRCA1, BRCA2, PALB2 or ATM genes. Identification of disease-causing genes can aid in 

the characterization of individuals at highest genetically defined risk in which effective 

prevention approach can be developed.
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Table 1

Pancreatic Cancer Predisposing Genes

Genes Predisposition Syndromes Risk of Pancreatic Cancer†

BRCA2 Hereditary breast and/or ovarian cancer SIR = 2.20 – 5.90

BRCA1 SIR = 1.60 – 4.73

PALB2 Familial breast cancer Increased

ATM Increased

STK11 Peutz-Jeghers syndrome SIR = 76.2 – 139.7

PRSS1 Hereditary Pancreatitis SIR = 53 – 87

CDKN2A Familial atypical multiple mole and melanoma syndrome SIR = 14.8 – 80.8

Mismatch repair genes (MLH1, MSH2, MHS6 and 
PMS2)

Hereditary non-polyposis colorectal cancer No effect up to SIR = 10.68

†
SIR = standardized incidence ratio
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