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Summary

The eukaryotic helicase is an 11-subunit machine containing an Mcm2-7 motor ring that encircles 

DNA, Cdc45 and the GINS tetramer, referred to as CMG (Cdc45, Mcm2-7, GINS). CMG is 

“built” on DNA at origins in two steps. First, two Mcm2-7 rings are assembled around duplex 

DNA at origins in G1 phase, forming the Mcm2-7 “double hexamer”. In a second step, in S phase 

Cdc45 and GINS are assembled onto each Mcm2-7 ring for production of two CMGs that 

ultimately form two replication forks that travel in opposite directions. Here we review recent 

findings about CMG structure and function. The CMG unwinds the parental duplex and is also the 

organizing center of the replisome; it binds DNA polymerases and other factors. EM studies reveal 

a 20-subunit core replisome with the leading Pol ε and lagging Pol α-primase on opposite faces of 

CMG, forming a fundamentally asymmetric replisome architecture. Structural studies of CMG at a 

replication fork reveal unexpected details about how CMG engages a DNA fork. The structures of 

CMG and the Mcm2-7 double hexamer on DNA suggest a completely unanticipated process about 

the production of bidirectional replication forks at origins.
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1. Introduction

Cells have several DNA and RNA helicases that are involved in a variety of processes such 

as genome replication, transcription, translation, and repair. [1–4] In all cell types, the 

replicative helicase is a hexameric ring that encircles one strand of DNA and motors along it, 

acting as a wedge to separate the duplex (reviewed in [5, 6]). The circlular shape may have 

evolved to increase the grip on DNA for unwinding long chromosomes. This review focuses 

on the eukaryotic CMG helicase, the 11-subunit enzyme that unwinds genomic DNA for 

replication in eukaryotic cells.
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The replicative helicases of bacteria and archaea are composed of six identical subunits (i.e. 

homohexamers), while the eukaryotic replicative helicase has six different, but homologous 

subunits referred to as Mcm2-7 [1, 2]. Mcm2-7 does not become an active helicase until it 

associates with Cdc45 and the GINS heterotetramer (Psf1,2,3 and Sld5), and the term 

“CMG” was coined by the Botchan lab to refer to the 11-subunit helicase (Cdc45, Mcm2-7, 

GINS) [7, 8]. CMG was first identified in the Drosophila melanogaster (D.m.) system [7, 8], 

and human and Saccharomyces cerevisiae (S.c.) CMG have also been confirmed to have 

helicase activity [9, 10]. CMG can be isolated intact from budding yeast with numerous other 

proteins that bind to it, referred to as the RPC (Replisome Progression Complex). The RPC 

includes CMG along with Ctf4, Pol α-primase, Mrc1, Tof1, Csm3, Mcm10, FACT, and TopI 
[11, 12].

The Mcm2-7 subunits of CMG and the archaeal MCM homohexamer track on ssDNA 3’-5’ 

and the ATP site is based on the AAA+ fold (ATPases Associated with various cellular 

Activities); in contrast bacterial helicases are homohexamers with ATP sites based on the 

RecA fold and track the opposite direction, 5’-3’ along DNA (reviewed in [5, 6]). In an 

interesting mystery of nature, sequence homology reveals that most of the replication 

apparatus of bacterial cells evolved independently from the apparatus of eukaryotic/archaeal 

cells, consistent with the opposite tracking directions of their replicative helicases [13, 14]. In 

contrast, the core machinery of transcription and translation are homologous in all domains 

of life.

The Mcm2-7 ring has the order of Mcm3, 5, 2, 6, 4, 7 [15]. The Cdc45 and GINS subunits 

are not catalytic and are proposed to bring the Mcm2-7 motors into proper configuration for 

activity [1, 8, 16]. The Mcm2-7 ring, like the homohexamer helicases, has an appearance of 

two stacked rings because each subunit is dumbbell shaped, composed of an N-terminal 

domain (NTD) and a C-terminal domain (CTD) (Figure 1a). We refer here to the ring 

formed by the 6 NTD domains as the N-tier, and the ring formed by the 6 CTDs as the C-

tier. The AAA+ and RecA based ATPase motors are found in the C-tier of both bacterial and 

archaeal/eukaryotic replicative helicases.

The ATP sites of hexameric helicases are located at subunit interfaces and require residues 

from both subunits for catalysis [3, 4]. Interfacial ATP sites is a common feature of many 

ATP-driven ring-shaped oligomers as exemplified by clamp loaders that open and close 

polymerase processivity clamps onto DNA [17, 18], protein unfoldases like ClpX that feed 

protein chains into proteolytic chambers [19, 20], the Rho transcription terminator RNA 

translocase [21], and DNA packaging motors of phage [22].

CMG is the final product of a two-step process that first loads two Mcm2-7 rings onto an 

origin in G1 phase, forming a head-to-head inactive Mcm2-7 double hexamer (Mcm2-7 DH) 
[2, 23–27]. Then, in S phase, Cdc45 and GINS are assembled onto each Mcm2-7 to form two 

active CMG helicases for bidirectional replication forks [1, 2, 25, 28, 29]. The entire process 

requires many proteins and kinases that do not travel with replisomes [2, 23–27]. New 

Mcm2-7 rings can not be loaded in S phase, and therefore the separation of CMG assembly 

into two distinct cell cycle stages limits origin firing to only once per cell cycle. Cell biology 

studies and in vitro single-molecule techniques demonstrate that the two CMGs come apart 
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to form two replication forks; each CMG travels 3’-5’ while encircling ssDNA [30–32]. The 

detailed mechanism of these origin initiation steps are still relatively unknown, but 

successful reconstitution of replication from an origin using recombinant proteins promises 

detailed mechanistic understanding in the near future [27, 33, 34]. This review focuses on 

advances in the last 3-4 years on the structure and function of CMG helicase.

2. CMG helicase is a central scaffold for replisome organization

Replicative helicases act in the context of a large machinery referred to as the “replisome”. 

Replisomes contain, at a minimum, a helicase, primase, DNA polymerases, sliding clamps, 

and a clamp loader in all cell types (reviewed in [1, 2, 14, 29, 35, 36]). While the E. coli 
replisome contains a helicase and identical DNA polymerases (Pol) for the two daughter 

strands [37–39], eukaryotes contain three replicative DNA Pols, Pol ε and Pol δ, for bulk 

chromosome replication, and Pol α-primase that functions to prime DNA synthesis by Pols 

ε and δ [35, 40]. Numerous biochemical and cell biology studies in the Kunkel and Burgers 

laboratories and their collaborators, have elegantly demonstrated that Pol δ functions mainly 

on the lagging strand and Pol ε functions mainly on the leading strand [40–47]. Biochemical 

assays using recombinant CMG have identified the mechanisms by which the three DNA 

Pols are targeted to their respective strands [9, 37, 48, 49]. In addition, recent studies have 

indicated that Pol δ sometimes extend the first leading strand primer at an origin before 

being taken over by Pol ε [50–52]. In vitro assays have identified the minimal protein 

requirements for both leading and lagging strand synthesis, and for replication fork rates on 

chromatized DNA consistent with in vivo observations [9, 34, 48, 52–54].

While some replisome protein contacts are transient, CMG forms sufficiently strong contacts 

to other proteins to reconstitute and isolate larger complexes in the absence of DNA [37–39]. 

Structural studies demonstrate that CMG forms a direct complex with Pol ε, referred to as 

CMGE [37, 39]. CMG also binds a homotrimeric Ctf4 (AND-1 in human) that cross-links 

CMGE to Pol α-primase [38, 39]. The protein organization of this core replisome, consisting 

of 20 different subunits, has been determined by EM as illustrated in Figure 1b,c [39]. Due to 

domain mobility, neither the full Pol ε nor Pol α-primase were visualized, but sufficiently 

large amounts of these Pols were observed to determine the overall organization of the core 

replisome. Cross-linking mass spectrometry and EM studies confirmed that Pol ε binds the 

C-tier of CMG while Pol α-primase-Ctf4 bind to the N-tier of CMG [39]. The DNA 

threading shown in Fig. 1 is demonstrated for S.c. CMG [55] and this model enables Pol ε-

PCNA to extend the leading strand DNA as the unwound leading template strand emanates 

from the central channel of CMG. This arrangement is consistent with earlier footprinting 

results in the Xenopus system which predicted that Pol ε is right beneath CMG [30]. The 

DNA threading through CMG in Fig. 1 also provides Pol α-primase ready access to the 

unwound lagging strand at the “top” of CMG for repeated re-initiation of the numerous short 

(i.e. 100-200 bp) lagging strand fragments. A flexible joint in Pol ε appears to tether the 

NTD active domain to the CTD domain that binds CMG, possibly enabling the catalytic 

NTD of Pol ε to dynamically come on and off the 3’ terminus, thereby providing access of 

translesion polymerases or other enzymes to the 3’ terminus as needed [55–57].
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3. Mcm2-7 is assembled onto dsDNA to form a Mcm2-7 double hexamer

EM studies of D.m. Mcm2-7, S.c. Mcm2-7-Cdt1 and Mcm2-7 of a parasitic eukaryote 

(Encephalitozoon cuniculi) reveal two major states of the Mcm2-7 ring (Figure 2a) [58–60]. 

In one state, the ring is essentially planar and the Mcm2/5 subunits connect to form a closed 

ring. The other state is a left-handed spiral and there is a gap between the Mcm2/5 subunits. 

These EM studies are supported by earlier biochemical studies in S. cerevisiae that predicted 

a gap between the Mcm2/5 subunits [61]. The presence of ATPγS favors the closed state, 

presumably due to ATP binding at the Mcm2/5 ATP site bringing the subunits together for 

catalysis. Opening at the Mcm2/5 interface is required for loading two Mcm2-7 hexamers 

onto dsDNA, a process that also involves 1-2 ORC (Origin Recognition Complex), Cdc6 and 

Ctd1 [23, 26, 31, 62–65].

EM studies of the Mcm2-7 DH in the absence of DNA reveal two closed Mcm2-7 rings that 

are locked together via the N-tiers, and the hexamers are slightly askew from one another 

which suggested that the dsDNA would be distorted [66]. Subsequent cryoEM studies of the 

Mcm2-7 DH bound to dsDNA demonstrate that the DNA zig zags through the Mcm2-7 DH, 

but the DNA is not unwound (Figure 2b) [67]. There are many interesting details about how 

the Mcm2-7 DH engages dsDNA, some of which will be described later in this review.

4. The mechanism of CMG translocation along DNA

Negative stain EM of D.m. CMG revealed the organization of the CMG subunits [58]. The 

Cdc45/GINS accessory proteins bind one side of Mcm2-7, bridging the Mcm2/5 and Mcm3/

Mcm5 interfaces, and appear to form a small secondary channel (see Figure 1a). Cross-

linking studies of CMG on DNA demonstrate that Cdc45 guards the Mcm2/5 gate and helps 

keep DNA inside Mcm2-7 during translocation [68]. The high resolution structure of S.c. 

CMG shows that the secondary channel, suggested to possibly bind one strand [39, 58], is 

filled-in by amino acid side chains instead [69].

Interestingly, both the S.c. and D.m cryoEM CMG structures reveal a rigid N-tier ring, 

apparently stabilized by Cdc45 and GINS, and a highly flexible C-tier motor ring with two 

major conformers [69, 70]. Deletion of the N-tier of the archaeal MCM homohexamer retains 

minimal helicase activity, indicating that the C-tier contains the intrinsic translocation 

process and that the N-tier may facilitate processivity [71, 72].

The two S.c. CMG helicase conformer structures in the resolution range of 3.7 Å to 4.8 Å 

show that the C-tier of one CMG conformer is planar and stacks parallel to the N-tier ring, 

referred to as the “compact” conformer of CMG (Fig. 3a, left) [69]. In the other CMG 

conformer, the CTD domains of all 6 subunits undergo rotatational and translational 

movements, with the CTDs of Mcm7,4,6,2 showing the largest movements and forming a C-

tier in the shape of a right-handed partial spiral. This shape change leads to an expanded 

distance between the N- and C-tiers, and therefore this conformer of CMG is referred to as 

the “extended” conformer (Fig. 3a, right) [69]. It is important to note that in both conformers, 

the C-tier ring is formally closed because even in the extended conformer with the partial 

spiral C-tier, a domain-swapped alpha helix of Mcm5 clearly binds to the CTD of Mcm2. In 
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the D.m. CMG helicase in the resolution range of 7.4 Å to 10.2 Å, the C-tier motor ring 

always stacks nearly parallel to the N-tier ring, with the CTD of Mcm2 packing against the 

CTD of Mcm5 either extensively (compact conformation) or with less surface area (relaxed 

conformation) [70]. Due to the lower resolution it is not clear whether the Mcm2/5 gate in the 

C-tier motor ring of the relaxed conformation is open or formally closed (e.g. like the 

domain swap in S.c. CMG). These different conformers of the C-tier motor ring of the CMG 

helicase suggest possible mechanisms for translocation along DNA, as illustrated in Figure 

3b,c and discussed below.

The conformational changes between the compact and extended conformers of S.c. CMG 

are proposed to be driven by ATP binding and hydrolysis and suggest either of two types of 

inchworm driven motions along DNA (Figures 3b and 3c) [69]. One inchworming hypothesis 

is driven by the distance changes between the N- and C-tiers (Figure 3b). This model 

requires cooperativity between N- and C-tiers, both of which bind DNA. DNA binding to 

both the N-tier and C-tier of S.c. CMG and an archaeal MCM has been demonstrated 
[55, 73, 74]. Interestingly, DNA is bound to the C-tier of D.m. CMG in the ATPγS state, but 

the DNA is shifted into the N-tier in the absence of ATPγS, implying a potential N- and C-

tier cooperation during translocation and DNA twisting for origin initiation [70]. The other 

inchworming hypothesis is driven by the flat to spiral ring conformation changes in the C-

tier (Figure 3c) [69]. Movements in the C-tier ring are also supported by cryoEM analysis of 

the S.c. Mcm2-7-Cdt1 complex, which shows both planar and spiral C-tier conformations in 

Mcm2-7 and has led to an inchworm proposal similar to that of Figure 3c [60]. In the case of 

Mcm2-7-Cdt1 there is a topological discontinuity in the C-tier ring (e.g. an opening between 

Mcm2 and Mcm5). However, we note that the open spiral conformation observed in 

Mcm2-7-Cdt1 occurs before Mcm2-7 loading onto DNA. As discussed earlier, the Mcm2/5 

gate in CMG is either closed by a domain swap (S.c. CMG) or the gate status is unclear 

(D.m. CMG).

Replicative helicases of bacteria and of Bovine Papillopa Virus (BPV) E1 are homohexamer 

rings, and a very different translocation process is proposed [5, 6]. The crystal structure of 

BPV E1-ssDNA-ADP suggests a rotary ATP hydrolysis staircasing translocation process 
[5, 6, 75]. Co-crystal structures of E. coli Rho-ssRNA, a hexameric RNA translocase, and 

bacterial replicative helicase DnaB–ssDNA also suggest a rotary sequential ATP hydrolysis 

staircasing process [21, 76]. In the rotary sequential ATPase staircase mechanism, nucleic acid 

binding elements lining the inner channel of the hexamer ring move in response to ATP/

ADP, and as ATP is hydrolysed sequentially around the ring, DNA is moved through the 

central pore escorted one subunit at a time with each ATP hydrolysis event [5, 75]. Neither the 

helicase nor the nucleic acid actually rotate. When one subunit hydroylzes ATP, its DNA 

binding elements come off DNA and travel a linear path over DNA to leapfrog the other five 

DNA binding subunits and then rebinds DNA, thereby going from one end of the staircase to 

the other. Although these leapfrog movements require further experimental support, the 

staircase hypothesis is compelling because simple permutation of each subunit conformer 

around the ring invokes the sequential staircasing process [5, 6, 21, 75].

Whether CMG translocates by inchworming or by staircasing will require further study. But 

the current information on CMG is hard to reconcile with a staircasing model. For example, 
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not all the ATP sites of CMG are needed for helicase activity [7], while each site is needed 

for the T7 gp4 replicative helicase [62], as predicted for a strict sequential hydrolysis process. 

Stochastic models of ATP hydrolysis for CMG would eliminate this concern. However, 

mutational studies of individual ATP sites within CMG give highly asymmetric results. Only 

two individual ATP site mutants, Mcm 2/5 and Mcm5/3, eliminate helicase activity [7]. 

Individual mutations in the other ATP sites give only 20-50% reduction of helicase activity 
[7]. Interestingly, the two essential sites for helicase activity are nearest to the hinge motion 

between the compact and extended structures of CMG [69]. Asymmetry in ATP site action is 

accentuated by a recent CMG-forked DNA-ATP structure that shows only four subunits of 

the C-tier in CMG interact with the leading strand ssDNA (Mcm 3,5,2 and 6), and only three 

ATP sites are filled (Mcm6/2, Mcm2/5 and Mcm5/3) [55]. One may speculate that some of 

the ATP sites and DNA binding elements of CMG are utilized for another function besides 

helicase action (e.g. initiation at an origin).

5. CMG binds both dsDNA and ssDNA at a forked junction

Thus far, the structure of a helicase at a DNA forked junction has not been determined. 

However, biochemical studies of CMG, in both the S.c. and Xenopus systems, show that 

CMG functions by steric exclusion like other ring shaped replicative helicases [30, 77]. In the 

steric exclusion model the helicase ring encircles only one strand of DNA at a forked 

junction, excluding the other strand and acting as a moving wedge to melt the duplex 
[30, 78–83]. It is widely believed that during the steric exclusion process, the helicase ring has 

no specific or direct contact with the unwinding point. This stands in contrast with some 

earlier models that suggested that duplex DNA may enter half way through the helicase and 

then split, with one strand extruded out a side channel between the N- and C-tiers while the 

other strand continues through the central channel. But the biochemical studies cited above 

have largely discarded the “side channel extrusion” model.

To visualize a helicase at a forked structure, cryoEM studies of D.m. CMG and S.c. CMG 

have been performed on a forked DNA using either ATPγS or AMPPNP, respectively, but 

did not visualize the forked junction [55, 70]. It is possible that ATP hydrolysis is needed for 

CMG to translocate from the 3’ end of the leading strand to the forked junction. To test this 

possibility a forked junction with two biotin- streptavidin (SA) blocks on the duplex was 

constructed, enabling use of ATP while at the same time blocking helicase mediated 

unwinding as illustrated in Figure 4a. [55] Indeed, this strategy worked and yielded the first 

glimpse of how a helicase engages a replication fork (Figure 4a-d) [55]. CryoEM 2D 

averages of CMG-forked DNA side views showed that the N-tier abuts the SA blocks at the 

forked junction (Figure 4b). Thus CMG translocates on DNA N-tier first, pushed by the C-

tier motors from behind. This N-tier first orientation is not unique, as it has been noted for 

the eukaryotic BPV E1 helicase [5, 75, 84]. Low resolution EM and FRET studies of D.m. 

CMG and archaeal MCM arrived at different conclusions and thus the orientation of CMG 

on DNA requires further study [16, 81]. Because S.c. CMG-forked DNA is the only helicase 

thus far to be visualized on a forked junction, this review will utilize the N-tier first 

orientation of CMG on DNA.
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The S.c. CMG-forked DNA structure supports the steric exclusion model in overview, but 

shows that CMG binds the dsDNA at a forked junction, unexpected from traditional steric 

exclusion models [55]. Five of the six Mcms have a zinc finger (ZF) that have a bound zinc 

atom and these ZFs form protrusions at the top surface of the N-tier; the exception is Mcm3 

which has a conserved sequence of the ZF region but does not have the cysteine residues to 

coordinate zinc. The dsDNA stem is contacted directly by the ZF domains of Mcm 7, 4, 6 

(and maybe 2) which importantly bind both Watson and Crick strands (Figure 4c), placing 

the unwinding point just under these protrusions and holding the duplex at a 28° angle 

(Figure 4b,c). The duplex separation point is located on the floor of the ZF protrusions 

(Figure 4d), and while the lagging strand is not visualized in the structure, the lagging strand 

nucleotide at the base of the unwinding point is positioned to exit at a gap between the ZF 

domains of Mcm3/5 (Figure 4d,e). Because GINS bridges Mcm3/5 at the N-tier, this 

possible exit point would place the lagging ssDNA directly over the GINS, the position to 

which Pol α-primase locates and thus making strategic biological sense. The unwinding 

point is also in close proximity to two loops of the Mcm4 and Mcm7 OB domains, 

suggesting side chains are actively involved in unwinding the ss/ds junction (Figure 4f). It is 

interesting to note that the ZF region of Mcm3 (lacking zinc) is wrapped by the N-terminus 

of Mcm7, and there is an increased distance between the ZF protrusion of Mcm3 and Mcm5, 

relative to the ZF protrusions of the other Mcms. This arrangement creates a “shelf” at the 

bottom of the protruding ZFs between Mcm3 and Mcm5, and this might form the floor of an 

exit path for the lagging strand (Figure 4c).

Notably, ZF4 binds the future lagging strand in dsDNA, and therefore both strands of the 

duplex are engaged by CMG, and the unwinding point is at the top of the N-tier, but just 

beneath the protruding ZFs, which likely explains inhibition of S.c. CMG by a lagging 

strand dual SA block [77]. Interestingly, S. c. Mcm10 binds to CMG and enables S.c. CMG 

to rapidly traverse the dual SA lagging strand block by steric exclusion [54]. The exact 

mechanism by which Mcm10 promotes this bypass is not yet understood. In overview, the 

unwinding point is just beneath the surface envelope of CMG, at the floor of the ZF 

protrusions at the top surface of CMG (Figure 4d), and the unwound lagging strand might 

“glance off the top” of CMG through a cleft, just after the ZF’s of Mcm7,4,6 bind the 

duplex, supporting a steric exclusion mechanism as originally proposed for CMG by work in 

Xenopus extracts [30].

Observation of extensive interactions between the helicase and the ss/dsDNA junction were 

unanticipated by classic steric exclusion models, and brings up interesting questions 

regarding the mechaniochemical forces used to unwind DNA. Hexameric helicases are 

proposed to unwind DNA by either: 1) “passive unwinding”, in which the helicase simply 

translocates on ssDNA and takes advantage of spontaneous thermal DNA fraying, and 2) 

“active unwinding”, in which the energy of ATP hydrolysis is coupled to strand unwinding 
[85, 86]. Given that CMG has extensive interactions with the ss/DNA junction, certain 

residues might actively participate in destabilizing the duplex, but this remains untested.

Hexameric helicases have DNA binding loops within the C-tier motor that project into the 

central channel. In eukaryotic CMG and the related archaeal MCM, these loops are referred 

to as PSI and H2I. Mutational studies in archaeal MCM show that the H2I loops can be 

Li and O’Donnell Page 7

Bioessays. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deleted without inhibiting helicase activity [71]. Furthermore, the Bovine Papilloma Virus E1 

helicase contains the PS1 loops, but lacks H2I loops. Therefore we focus below on the PS1 

loops of CMG, although the reader should keep in mind that little is known about the H2I 

loops in CMG, and their function may come to light in future studies.

After DNA unwinding at the top of the N-tier, the PS1 loops in the C-tier reach up to the 

nexus of the N- and C-tier to grasp the leading ssDNA where it binds in a right hand spiral to 

the PS1 loops of Mcm 2,3,5,6 (Figure 4d) [55]. It is noteworthy that each PS1 loop binds two 

phoshodiester bonds, and that only 4 of the 6 PS1 loops bind the ssDNA (PS1 loops of 

Mcms 2,4,5,6; and not Mcm 3 or 7). S.c. CMG has a wide central channel and can slide over 

dsDNA [77]. Given the size of the channel and interaction with only 4 PS1 loops, the DNA 

hugs one side of the central channel.

6. The C-tier motor ring engages the lagging strand DNA in the Mcm2-7 

double hexamer but with the leading strand in CMG

A cryoEM structure of the S.c. Mcm2-7 DH loaded onto dsDNA has been determined to 3.9 

Å [67] and shows unanticipated differences compared to the CMG-forked DNA structure. A 

60-bp duplex is resolved in the central channel of the Mcm2-7 DH. The two hexamers are 

laterally offset by about 20 Å and are tilted, producing two 15° bends in the DNA in each of 

the two N-tiers (Figure 2b). These bends cause the dsDNA to zig zag through the Mcm2-7 

DH, but the dsDNA does not unwind. Like CMG, the ATP sites of Mcm6/2, Mcm2/5 and 

Mcm5/3 are filled, but the Mcm2-7 DH has a fourth occupied site, at the Mcm3/7 interface.

An important distinction between the DH and CMG structures is that the PS1 loops bind the 

future lagging DNA strand in the Mcm2-7 DH, while PS1 loops of CMG only bind the 

leading strand (Figure 5). As with CMG, only 4 PS1 loops are involved in DNA binding in 

the Mcm2-7 DH, but surprisingly they are not the same set of PS1 loops as those that bind 

DNA in the CMG-forked DNA structure. In the Mcm2-7 DH, the PS1 loops of Mcm 3,7,4,6 

bind the lagging strand and the PS1 loops of Mcm 2,5 do not engage DNA. This feature may 

have evolved in the Mcm2-7 DH to accommodate the need for the Mcm2/5 gate to open up 

for extrusion of the lagging strand DNA. In CMG the PS1 loops of 6,2,5,3 bind the leading 

strand and the PS1 loops of Mcm 4,7 do not engage DNA (the loops of the Mcm 2-7 DH and 

CMG are compared in Figure 5a-d). Hence, there appears to be a division of labor in that 

Mcm2, 3, 5, and 6 function to translocate on DNA (via their respective PS1 loops), and 

Mcm4 and 7 function to separate the duplex (via their respective OB loops). In another 

striking distinction with CMG, the Mcm2-7 DH PS1 loops each bind only one 

phosphodiester bond, compared to the CMG PS1 loops that each bind two phosphodiester 

bonds.

7. The mplications of structural studies to origin function

The lagging strand is next to the Mcm2/5 gate in the Mcm2-7 DH, and assuming that the 

PS1 loops track 3’-5’ like in the active helicase, each Mcm2-7 hexamer would pull on the 

lagging strand to produce a ssDNA loop at the tight interface between them. This 

arrangement suggests a process for extruding the lagging strand to the outside of the 
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Mcm2-7 ring, a preresquisite to form a helicase that functions by steric exclusion and 

encircles only the leading strand. We note that unwinding activity of the Mcm2-7 DH has 

not been examined or detected yet, and understanding the initial unwinding step remains an 

important goal. The location of the lagging strand near the Mcm2/5 gate in each of the 

Mcm2-7 hexamers of the Mcm2-7 DH aligns the lagging strand with the 2/5 gate, 

suggesting it may be expelled from the interior of Mcm2-7 through the Mcm2/5 gate, 

leaving the leading ssDNA inside. The transition of Mcm2-7 from encircling dsDNA to 

encircling ssDNA remains an unidentified and important step of replication initiation.

The Mcm2-7 DH structure indicates that the lagging strand is the tracking strand in the 

Mcm2-7 DH state. If pushing of the lagging strand creates ssDNA loops between the 

hexamers, as hypothesized in Figure 6a,b this may be the process by which the lagging 

strand is extruded out of the Mcm2/5 gate. When Cdc45 and GINS bind Mcm2-7 and block 

the 2/5 gate, the PS1 loops of Mcm2-7 may organize on the leading strand trapped inside, 

and 3’-5’ tracking will produce bidirectional forks (illustrated in Figure 6c-d). Mcm10 is 

reported to be involved in this process, although the exact details of Mcm10 action are not 

understood. One may presume that the transition from the Mcm 2-7 DH to two CMGs may 

require several intermediate conformational steps, a subject of intense future investigations 
[67].

8. A quality control mechanism for bidirectional replication from the origin

Several in vivo and in vitro studies have demonstrated that two CMGs are formed before 

sufficient DNA unwinding occurs for RPA to bind the ssDNA [24, 87–89]. Given the CMG 

orientation in which the N-tier leads the C-tier, the two head-to-head CMGs at an origin are 

directed inward, toward one another. Therefore each CMG must pass the other CMG to 

leave the origin as illustrated in (Figure 6 c,d). Interestingly, the E. coli DnaB helicases have 

also been demonstrated to pass one another at the origin [90]. This architecture carries 

important implications for quality control at an origin. Specifically, if either CMG were to 

continue to encircle dsDNA, it would block movement of the other CMG that transitioned 

from dsDNA to encircling ssDNA. Thus, the head-to-head orientation ensures that both 

CMGs must transition to encircle opposite ssDNA strands before they can pass one another 

and leave the origin. This feature results in a previously unknown quality control checkpoint 

that ensures that each origin produces two bidirectional forks, or none at all.

9. Conclusions and prospects

The 11- subunit CMG is the most complex of the cellular replicative helicases and many 

recent advances have been made. Low resolution EM determined the overall organization of 

subunits within CMG, and cryoEM has determined atomic models of CMG from both 

Drosophila and yeast [69, 70, 91]. Furthermore, the structure of active CMG at a replication 

fork held many unexpected surprises revealing an intimate connection of the steric exclusion 

helicase with the ds and ss portions of the fork in the N-tier ring of the helicase [55]. The 

organization of the leading Pol ε and lagging Pol α-primase attached to CMG have also 

been determined, giving a more detailed view of how the helicase organizes a replisome than 

currently understood for any system [39]. Through its connections to other proteins CMG 
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helps dictate polymerase asymmetry at the fork [9, 37, 39, 48], stimulates CMG unwinding to 

fork rates observed in vivo [49, 52, 92], and enables forks to displace nucleosomes [53].

Despite these advances, there are numerous questions that remain about CMG. Many of 

these questions are now within reach. The mechanism by which CMG translocates along and 

unwinds DNA needs to be studied by new techniques rather than only structural approaches, 

and the same could be said for homohexameric helicases. The structure of CMG on forked 

DNA shows an internal unwinding point with residues close to the surface, and whether 

CMG actively facilitates DNA unwinding using amino acid side chains should soon be 

forthcoming. Although CMG assembly at origins has been reconstituted in vitro [27, 33, 34], 

only the first two steps of this multi-step process have been elucidated [65, 67, 93]. Several key 

steps during helicase activation are largely unknown. But these mechanistic processes are 

now within grasp.

The replication process is highly interconnected with many processes of genomic integrity, 

including transcription, telomere replication, DNA damage checkpoints, interfacing with 

recombination intermediates, tracking through chromatized DNA while maintaining 

epigenetic information – all interweave with the replisome machinery. Considering that 

CMG leads the way at replication forks, and interacts with many proteins, the prospects are 

extremely bright for exciting new discoveries about the workings of this central and complex 

machine.
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Figure 1. Eukaryotic CMG helicase and orientation to other proteins in a replisome
a) Top view (left) and side view (right) of CMG, indicating the Mcm2-7 motor ring and the 

Cdc45 and GINS accessory factors (PDB ID 3JC5). b) Selected EM 2D averages of CMG in 

side view, with additional proteins as indicated (adapted with permission from Fig. 5 in [39]). 

c) Illustration of the core eukaryotic replisome, see text for details.
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Figure 2. The Mcm2-7 motor and Mcm2-7 double hexamer
a) Illustration of the density shell from negagtive stain EM of Mcm2-7 from 

Encephalitozoon cuniculi (adapted with permission from Fig. 5 in [59]) b) Cut-open view of 

the 3D density map of Mcm2-7 double hexamer from S. cerevisiae loaded on 60 base pairs 

of double stranded DNA (adapted with permission from [67]).
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Figure 3. Possible translocation processes
a) CMG alternates between the compact and extended conformers (PDB 3JC5, and 3JC7). b) 

Inchworm process proposed for movements between the N- tier and C-tier (N-tier in solid 

red, because it directly contributes to translocation by binding DNA). c) Inchworm process 

proposed for planar to spiral movments solely in the C-tier (N-tier shown in light blue, 

because it is a processivitiy ring and does not participate in inchworm translocation).
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Figure 4. Structure of CMG on forked DNA
a) Top: Blocked fork strategy to determine the CMG-forked DNA structure with ATP. 

Bottom: 2D averages of CMG side views at the streptavidin blocks of the fork. b) Atomic 

model of CMG in cartoon view, showing dsDNA entering the N-tier at a 28° angle, and the 

ds/ssDNA junction going through the CMG structure. c) Top view of the zinc finger domains 

(ZF) of CMG encircling the dsDNA. Both Watson and Crick strands of the duplex are 

contacted by the ZF’s which enter the CMG ZF protrusions. A possible lagging strand exit 

path at the floor between the protruding ZFs of Mcm3 and Mcm5 is marked by a dashed 

green arrow. The N-terminal loop of Mcm7 is highlighted in red shadow, which extends to 

and wraps around Mcm3 ZF to pull it away from Mcm5 FZ and towards Mcm7 ZF. d) 

Cartoon illustration of CMG illustrating the ZF protrusions from the N-surface and that the 

DNA unwinding point resides inside CMG at the floor of the ZF protrusions. The position of 

the lagging strand is suggested by the gap between ZF3/5. e) Close up space filling view of 

the ZF and OB regions of Mcm2-7 within the CMG-forked DNA structure, showing how 

they encircle the dsDNA and the gap between ZF3/5. f) Cut out showing the OB loops of 

Mcm4,7 that approach the forked nexus within the N-tier, and the PS1 loops of Mcm 6,2,5,3 

that bind the ssDNA in the C-tier. Panels a and b are adapted with permission from Fig. 6a,b 

and Fig. 7a of [55].
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Figure 5. Comparison of DNA binding elements in the motors of the Mcm2-7 DH and CMG
Panels a,b) Mcm2-7 DH PS1 loops of Mcm3,7,4,6 bind the DNA, which is the future 

lagging strand. Panels c,d) The CMG Mcm6,2,5,3 PS1 loops bind the leading strand. 

Adapted with permission from Figures 4g and 6d of [67].
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Figure 6. Proposed model for origin initiation
a) The Mcm2-7 hexamers are oriented head-to-head (N-to-N) at the origin. b) The PS1 loops 

of the Mcm2-7 DH track on the lagging strand and thus might pull it toward the central 

connection of the tight Mcm2-7 DH, producing ssDNA loops composed of the future 

lagging strand. c) The lagging ssDNA has been extruded outside the Mcm2-7 ring, and two 

CMGs have formed in S phase. d) the CMGs pass one another to leave the origin and 

produce bidirectional replication forks. Red arrows indicate the direction of DNA 

movement, and blue arrows indicate the direction of CMG movement. Adapted with 

permission from Figure 8 of [45] and Figure 6 of [67].
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