
RESEARCH ARTICLE

Extending the paleontology–biogeography

reciprocity with SDMs: Exploring models and

data in reducing fossil taxonomic uncertainty

Anderson Aires Eduardo1,2*, Pablo Ariel Martinez1,2, Sidney Feitosa Gouveia1,3, Franciely

da Silva Santos1, Wilcilene Santos de Aragão1, Jennifer Morales-Barbero4,

Leonardo Kerber5, Alexandre Liparini1,2
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Abstract

Historically, studies aimed at prospecting and analyzing paleontological and neontological

data to investigate species distribution have developed separately. Research at the inter-

face between paleontology and biogeography has shown a unidirectional bias, mostly

focusing on how paleontological information can aid biogeography to understand species

distribution through time. However, the modern suit of techniques of ecological biogeogra-

phy, particularly species distribution models (SDM), can be instrumental for paleontologists

as well, improving the biogeography-paleontology interchange. In this study, we explore

how to use paleoclimatic data and SDMs to support paleontological investigation regarding

reduction of taxonomic uncertainty. Employing current data from two neotropical species

(Lagostomus maximus and Myocastor coipus), we implemented SDMs and performed

model validation comparing hindcasts with dated fossil occurrences (~14k and ~20k years

back present, respectively). Finally, we employed the hindcasting process for two South

American fossil records of a misidentified species of caiman (Caiman sp.) to show that C.

latirostris is the most likely species identity of these fossils (among four candidate species:

C. latirostris, C. yacare, C. crocodilus, and Melanosuchus niger). Possible limitations of the

approach are discussed. With this strategy, we have shown that current developments in

biogeography research can favour paleontology, extending the (biased) current interchange

between these two scientific disciplines.

Introduction

Integration of scientific fields profoundly benefits the bodies of knowledge involved and pro-

motes the discovery of novel solutions to old and new questions. After a long history of
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separate development, the study of distribution, evolution and diversity of species have been

invigorated by a recent integration of paleontological and neontological approaches [1,2]. In

the beginning, this interchange mostly focused on macroevolutionary research through devel-

opment of methods to resolve evolutionary relationships of living and extinct lineages using

biogeographic data [3]. More recently, however, integration between paleontology and eco-

logical biogeography–paleobiogeography–has flourished as an approach to investigate patterns

of- and processes affecting- species distribution through time [4–7]. A central focus of this

emerging field has been to understand the effect of climatic shifts and species interactions on

past species distribution and extinction [4–13].

An important tool in this modern biogeography–paleontology interchange has been the

suite of techniques comprising species distribution modelling (SDM). This integration has

boosted biogeography and paleobiogeography with a more in-depth understanding of tempo-

ral changes in species distributions and their interactions with environmental changes through

time, while also relying on more powerful methods of statistical and ecological modelling

[4,5,13]. Furthermore, the increasing development and availability of paleoclimatic data have

improved temporal range and resolution of SDM applications, including thousand-year basis

sequences (e.g., [14]). This availability of data at high spatial and temporal resolution, together

with SDM techniques, opens more opportunities for this interchange between paleontology

and biogeography than previously appreciated.

So far, however, the recent developments in the paleontology–biogeography interchange

have been largely unidirectional, in the sense that they have focused largely on how paleonto-

logical information–through fossil records–can aid biogeographers to understand species

distributions through time [4,5,13,15]. However, this suite of techniques of ecological biogeog-

raphy, particularly SDM, can be instrumental for paleontologists as well, but have remained

poorly explored (e.g., [16]). For example, one important problem for paleontologists is uncer-

tainty in the taxonomic identification due to the fragmentary nature of fossil records [17].

SDM can help to at least lessen this problem. That is, provided that the candidate taxa of the

fossil exhibit distinguishable environmental preferences, SDM can discriminate between

niches, and then assign an ambiguous fossil to one (or a few) most likely species according to

their actual potential niches. Note though that we do not mean that SDM can be used to taxo-

nomically identify a fossil–which should be a task for paleontological taxonomists. Instead,

SDM can be useful to reduce taxonomic uncertainty when niches of involved species are dis-

tinguishable. Although simple, we argue this strategy can be a useful element in the paleontolo-

gist toolkit.

To assist fossil identification, however, SDM will depend on paleoclimatic data layers that

are reliable and that match fossils’ ages, as well as on accurate model estimation. These consti-

tutes critical aspects for the approach we advocate here. To address these requirements, dated

fossils of extant species can help to assess the reliability of paleoclimatic data layers and the

model accuracy. These fossils can be used to validate hindcast models that are built from rec-

ords of the present. If models can accurately predict the species occurrence in the fossil loca-

tion at the period corresponding to the fossils age, then this model can correctly discriminate

the climatic settings that characterize the species niche. Consequently, we can use the reverse

reasoning to use competing models of candidate species to discriminate among each other and

assign the fossil to the more likely species. Here, it is inevitable to rely on the inherent assump-

tions of SDMs [18]. Thus, this step explicitly assumes (i) that the species distribution is in equi-

librium with the environment, i.e., that the species currently occupies all those areas suitable

for it [16], and (ii) that climatic niches are conserved through recent geological time [18].

(additional caveats, inherent to the proposed approach, are presented in the Discussion).

Paleontology-biogeography reciprocity and SDMs
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Thereby, in this study our first aim is to assess the reliability of the paleoclimatic data in the

context of high temporal and spatial resolutions [19], as well as model accuracy to predict the

spatial and temporal positions of known fossils. To do this, we use two living rodent species

that have well-known current distributions and that are represented by dated fossils that

were found outside of their current distribution. We then built upon this by using an SDM

approach and assessed its use in reducing taxonomic uncertainty of fossils identified up to tax-

onomic level of genus. Using two fossil occurrences of a caiman (Caiman sp.), we employ

SDM to address the question of which species (among four candidate species) is the more

likely to be represented by the fossils, according to their climatic preferences.

Material and methods

Data compilation

We implemented SDMs for two rodent species, Lagostomus maximus, Myocastor coypus, and

four caiman species, Caiman yacare, Caiman latirostris, Caiman corcodilus, Melanosuchus
niger (see section “Evaluating paleoclimatic data and models” for ecological and paleontologi-

cal details). Occurrence records of the current distribution of these six species were obtained

from the online platforms Species Link, available at www.splink.org.br, and Global Biodiver-

sity Information Facility (GBIF), available at www.gbif.org. For the caiman species, we supple-

mented our dataset with records found in the literature (see Table C in S1 File), totalizing 315

records (91 for C. yacare, 92 for C. latirostris, 105 for C. c. crocodilus and 27 for Melanosuchus
niger) after data cleaning to remove duplicates and suspicious records (i.e., records with dubi-

ous taxonomic identification and points of occurrence out of the IUCN species range). Thus,

we certify that uncertainties related to the current distribution of species will not affect the

models.

To describe the climatic settings of the species distributions, we used four non-collinear

(i.e., r< 0.7) bioclimatic variables (derived from monthly precipitation and temperature) for

the study area (South America) that, in addition, are inherently informative of the major cli-

matic changes undertaken in Neotropics during the later glacial cycle [20–22]. Variables

included mean temperature of the warmest and the coldest quarters (Bio10 and Bio11), and

total precipitation of the driest and wettest quarters (Bio16 and Bio17). These variables were

obtained from [19], which derived from the Hadley Centre Coupled Model (HadCM3) [23],

and consist of a sequence of paleoclimatic data layers at a spatial resolution of 2.5’ (~25 km2)

and a temporal resolution of 1,000 years (1 kyr), from the present back to 130,000 years before

present (or 130 kyr BP). The non-occurrence of non-analogue climates was verified through

Maxent outputs for Clamping, MESS and MoD (see S4–S7 Figs).

Species distribution models

We modeled the species distribution with three algorithms, Maxent [24], Random Forest (RF;

[25]) and Generalized Linear Models (GLM; [26]). The two former are machine-learning algo-

rithms, whereas the latter is a regression-based process [27]. We partitioned the data set in

order to evaluate the models, using 75% as the training set and 25% as a test set. After that, we

employed the full data set for model fitting and projections. Following other authors (e.g. [28–

30]) we employed randomly distributed points as pseudo-absences (without overlap with the

species occurrences) for RF and GLM algorithms. For Maxent we drew background points at

random from South America. We then extracted the climatic conditions of each of these locali-

ties to perform the modelling procedures. To construct the models with Maxent, we used 1000

iterations, 1000 background points, a regularization value of 1, and a convergence threshold of

1x10-5 (see recommendations by [31]). For the RF model, the number of trees used determines

Paleontology-biogeography reciprocity and SDMs
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the model accuracy, so we chose 500 after ensuring this was sufficient for the model to stabi-

lize. Finally, we use GLMs, with a binomial distribution and logistic link. Only linear and qua-

dratic features were allowed in the models.

Model performance was evaluated through cross-validation, using the Area Under the

Receiver Operating Characteristic curve, or AUC [32], and the True Skill Statistic (TSS) [33].

The AUC measures model accuracy using the ratio between the rate of correctly predicted

presences (sensitivity) and the rate of incorrectly predicted absences (1 minus specificity). TSS

compares the number of correct projections (minus those attributable to random guessing) to

a hypothetical set of correct projections. These procedures were repeated 50 times, with resam-

pling of training and test sets for each iteration. We used the Dismo [34] and randomForest

[35] packages in R (version 3.3.1).

Our aim was to evaluate the use of SDM as a tool to assess past species distribution at spe-

cific ages in the geological past, and to reconstruct past species distributions and reduce

uncertainties in taxonomic identification. Therefore, for the paleoclimatic data and model

evaluation (performed with the two rodent species), we compared differences in model per-

formances through the differences of the models’ suitability (or projected environmental

suitability, ranging from 0 to 1) observed at the location of the fossil occurrence. Conceptu-

ally, suitability can be interpreted as a surrogate measure of the probability of occurrence of a

species in an area [24,36]. Then, to address the problem of fossils’ taxonomic uncertainty

(among the four caiman species), we used the approach to assess which of the four candidate

species is more likely to be represented by the fossil specimens. For each species, we used the

minimum suitability value observed at the occurrence points (extracted from the projections

for 0 kyr, i.e., current age) to help us infer the reliability of species occurrence at the fossil

site. In addition, we calculated the pairwise correlation–through Pearson’s correlation–

among the distribution maps obtained from each algorithm for each species at each period to

assess their concordance. Models were generally correlated (Peason’s r > 0.7, with the excep-

tion of C. yacare, which had greater reduction in the suitability in hindcast models; see

Table A-Table M in S1 File, S1–S3 Figs). Therefore, in the main text, we present the results

from Maxent, the results from the other algorithms are in the Supporting Information

material.

Evaluating paleoclimatic data and models

The success of our approach rely directly on accurate models and data. So, we firstly assessed

the reliability of paleoclimatic data and models in correctly predicting the species occurrence

in the fossil location and the period corresponding to the fossils’ age. To this end, we selected

species that had well-known geographic limits, a large number of georeferenced records that

covered their entire distribution, and absolute dated fossil occurrences with known geographi-

cal location (coordinates).

The first species case was Lagostomus maximus (Rodentia, Chinchillidae), a native rodent

from South America. Its current distribution includes central and northern Argentina, south-

ern Paraguay and southern and eastern Bolivia [37,38]. Fossil records of L. maximus have been

identified from the late Pleistocene onwards [39–41]. This species is thought to have been

locally extinct from Uruguay and the extreme southern portion of Brazil since the early Holo-

cene, with last occurrence records in the late Pleistocene [40,41]. We used the fossil material of

L. maximus that was found in the Dolores formation, Uruguay (Table A in S1 File), and was

dated to the late Pleistocene, between 13,898 and 13,941 years BP (calibrated dating; [40]).

This location is marginally outside the current distribution of the species. We built SDMs

from the current distribution and projected them between 13 and 14 kyr BP, with the

Paleontology-biogeography reciprocity and SDMs
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expectation that models for this time period should predict the occurrence of L. maximus at

this location.

The second species was Myocastor coypus (Rodentia, Echimyidae), which is a rodent native

to southern South America, distributed throughout Argentina, Uruguay, Paraguay, Chile,

Bolivia and southern Brazil [42]. Fossil occurrences of this species have been found from the

late Pleistocene into the Holocene [43,44], comprising areas in northern Argentina, Uruguay,

southern Bolivia (inside its current distribution), and southern, southeastern and northeastern

Brazil (areas outside its current distribution) [44–46]. We used a fossil occurrence from north-

eastern Brazil (~2000 km from the current distribution of the species), which is dated to

19,980–20,250 years BP (calibrated dating; [47]) (Table A in S1 File). Here, we also evaluated

the models’ effectiveness in predicting the species occurrence at the true location and age

(between 19 and 20 kyr BP). As this locality is far outside the species’ current distribution, if

models also predict the spatial and temporal position of this fossil accurately, it would indicate

that the approach is effective in describing geographical distributions of species at high spatial

and temporal resolutions, and thus in discriminating among species with inconclusive identifi-

cation but with different climatic niches.

Addressing fossils’ taxonomic uncertainty

To apply the above reasoning in a real case of species misidentification, we choose the case of

the fossils of Caiman sp. (Reptilia, Alligatoridae). This genus of alligators has three living spe-

cies [48]. C. yacare occur at the central-southern South America, including Bolivia, Paraguay,

north Argentina and central-western Brazil (Crocodile Specialist Group, 1996a). C. latirostris
predominates along the Atlantic coast of South America, from northeastern Brazil to Uruguay,

and in northeastern Argentina, Paraguay, eastern Bolivia and central-western Brazil [49]. C.

crocodilus is distributed from Guatemala to southern Amazonia and central-western Brazil

[50]. This species comprises three subspecies, C. c. chiapasius (from Central America), C. c. fus-
cus (from Central America and northwestern South America) and C. c. crocodilus, which

diverged from its conspecifics at 5.5 myr at least, and is broadly distributed in South America

[51]. Additionally, we included in the analysis the species Melanosuchus niger, because it is

morphologically and phylogenetically closely related to the Caiman genus. This species is

found in the Amazon River basin; occurring in northern Bolivia, east of Peru and Ecuador,

and in southern Colombia and Guyana [52].

The oldest fossil record of the genus Caiman is from the middle Miocene, of Colombia

[53]. The late Miocene fossil record of this genus is sparse and the material is poorly preserved

[54], which precludes conclusive identification. Although distributed throughout most of

South America (the southern portion of the continent and central and northern Amazonia),

crocodilian fossils in South America from the Pleistocene that are unambiguously identified to

the species level are rare (and identification is often not feasible from the literature) [54]. For

this case study, we employed SDM to aid in reducing taxonomic uncertainty of two fossil spec-

imens. One fossil specimen, identified to the genus level, was found in Ioiô cave (Table B in S1

File), Iaraquara municipality, Bahia, northeastern Brazil, and was estimated to be late Pleisto-

cene in age (21,520–22,040 years BP, calibrated dating). A second fossil was excavated in Poço

Redondo municipality, Sergipe, northeastern Brazil (Table B in S1 File), and was estimated to

be early Holocene (11,068–11,211 years BP, calibrated dating). The specimen was tentatively

identified as C. latirostris based on the current distribution of the species [55]. Here we imple-

mented hindcast models of three Caiman species (C. yacare, C. latirostris and C. crocodilus cro-
codilus) and Melanosuchus niger, based on records of their current distribution and projected

to 21 and 11 kyr BP to attempt to assign the fossils’ identity to one of the candidate species.

Paleontology-biogeography reciprocity and SDMs
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Results

Paleoclimatic data and models

Model accuracy from Maxent for the rodents L. maximus and M. coypus was high (AUC =

0.91 and TSS = 0.84; AUC = 0.93 and TSS = 0.72, respectively), indicating good model fit. The

projected distribution of L. maximus agreed with its distribution described in the literature

(Fig 1). Model suitability for the specific location of this species was 0.46 and 0.47 for 13 kyr

BP and 14 kyr BP respectively, being 0.17 the lowest suitability observed among occurrence

data (from model’s projection for 0 kyr). Thus, the model was able in predicting the fossil tem-

poral and spatial position.

For M. coypus, where the fossil was recorded ~2,000 km away from the current distribution

of the species, models predicted suitable habitat in the region of the fossil record in the past.

Model suitability at the geographical location of the fossil was 0.41 and 0.50, for 19 kyr BP and

20 kyr BP, respectively, thus being capable in capturing the spatial and temporal position of

the fossil (currently, lowest suitability among occurrence points was 0.04). Together with the

previous result, this shows that the data and the modeling approach employed are valid for our

purposes.

Fossils’ taxonomic uncertainty

In the caiman case, in which we modeled the distribution of four candidate species for two fos-

sil specimens, we found model accuracies of AUC = 0.84 and TSS = 0.56 for C. c. crocodilus,
AUC = 0.85 and TSS = 0.66 for C. latirostris, AUC = 0.96 and TSS = 0.86 for C. yacare, and

AUC = 0.79 and TSS = 0.64 for M. niger. The predicted distributions for the present agreed

with the species known distribution, and tended to be narrower with the older paleoclimatic

data layers (Fig 2). For the fossil from the Ioiô cave, dated to 21,520–22,040 years BP, the hind-

cast models for 21 kyr BP assigned suitability of 0.01 for C. c. crocodilus, <0.001 for C. yacare,

0.09 for C. latirostris, and<0.001 for M. niger, thus C. latirostris is the most likely species to be

represented by these fossils, according to the models (currently, lowest suitability in occur-

rence data was 0.14, 0.01, 0.04, 0.35, for the respective species). For the second fossil from Poço

Redondo, Sergipe, dated to 11,068–11,211 years BP and tentatively identified as C. latirostris,
the models assigned suitability of<0.001 for C. c. crocodilus, C. yacare and M. niger, and 0.04

for C. latirostris, in agreement with the previous identification (orderly, 0.14, 0.01,0.35, 0.04

were the lowest current suitability in the occurrence data).

Discussion

We have shown that the models were able to discriminate occurrence locations of the species

investigated at the time period corresponding to the fossils ages, irrespective of the particular

period, algorithm used, and the potential magnitude of effect the last Pleistocene-Holocene cli-

mate changes have had on these species [11, 14, 15]. In the species cases used for paleoclimatic

data and model evaluation (i.e., the rodents), the fossils occurrences are associated with differ-

ent moments throughout the period of major climatic changes in the last 25 kyr [56–58]. That

is, whether the past species distributions were coincident or not with their current distribution,

and whether they were representative of late interglacial (~6 kyr BP) or the late maximum gla-

cial (~20 kyr BP), in both cases the fossils’ geographic positions were correctly predicted by the

models. Therefore, this preliminary assessment of models and paleoclimatic data validates our

second and main goal of using the reversal reasoning to reduce fossils’ taxonomic uncertainty.

In the case of the caimans, all three algorithms of the presumed species (C. latirostris) also

projected its occurrence at the location and period of the fossils’ ages, which correspond to the

Paleontology-biogeography reciprocity and SDMs
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Fig 1. Results of species distribution modeling (SDM) employing Maxent algorithm, for the species Lagostomus
maximus (left column) and Myocastor coypus (right). The suitability projections for current time are showed in

continuous scale (between 0 and 1). Triangles represent the coordinates of fossil records.

https://doi.org/10.1371/journal.pone.0194725.g001

Paleontology-biogeography reciprocity and SDMs
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maximum glacial and the beginning of the interglacial period. Although models indicated C.

latirostris as the most likely species to be represented by the fossils, these were located in areas

predicted to have relatively low suitability. This may result either from the inherent uncertain-

ties in data and/or models [59,60], or from taphonomic issues associated to fossil transporta-

tion. Caimans are closely associated with rivers, which may transport animals’ carcasses away

from their occurrence area, which would also explain the poor preservation of the fossil mate-

rial [54,61,62]. Despite this, we noted that core areas of projected suitability were not at the

geographical vicinity of the fossil locations, except for C. latirostris SDMs (Fig 2). Still, in gen-

eral, the consensus and success of SDM in reducing the taxonomic uncertainty in this case

reinforces the potential of SDM to investigate different problems of past distributions of spe-

cies [4,5,13].

Fig 2. Results of Maxent algorithm for the caiman species (C. c. crocodilus, C. yacare, C. latirostsris, and M. niger).

The suitability projections for current time are showed in continuous scale (between 0 and 1). Triangles represent the

coordinates of fossil records.

https://doi.org/10.1371/journal.pone.0194725.g002

Paleontology-biogeography reciprocity and SDMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0194725 March 28, 2018 8 / 15

https://doi.org/10.1371/journal.pone.0194725.g002
https://doi.org/10.1371/journal.pone.0194725


Despite the increased use of hindcast models with fossil data (reviewed in [4,5,13]), studies

have used fossils mostly as ancillary data to either build models or validate them (e.g.,

[5,8,9,11,15,63–65]). Of course, as SDM has been developed within ecology and biogeography,

it is expected that external data and questions related to SDMs have so far served most as

subsidiary to these disciplines than otherwise. For example, modelers have included human

demographic data to improve current species distribution patterns (reviewed in [27]). Still,

this integrative approach–specifically involving fossils–has succeeded in providing critical

insights on the general trends of species distribution along recent geological periods, including

assessment of ecological interactions and the drivers of species extinctions [1,2,4–13,66]. Nev-

ertheless, few attempts had been made to use of SDM as a tool to address fossil issues such as

taxonomic uncertainty (e.g., [67]).

In view of the increased popularity and easiness of SDM implementation, paleontologists

can take advantage of the present reasoning to address several problems of species identifica-

tion and distribution. As high-resolution paleoclimatic reconstructions and fossil dating tech-

niques improve in quality and availability, and SDM becomes more sophisticated, new

opportunities to promote more reciprocity between paleontology and biogeography should

take place, benefiting paleontology in its different fields. For instance, hypotheses evaluation

regarding paleodistributions would be favoured, because fossils currently non-identified to the

species level could become informative through the approach we propose here. Investigation

of extinct and living species’ duration could also profit, since the age of the first occurrence

could be reassessed using information from fossil data otherwise considered of insufficient

taxonomic resolution. Investigation of the morphology of extinct species is another paleonto-

logical field that could benefit from the approach outlined here. By increasing the fossil infor-

mation on a particular species, the more consistent the morphological inferences should be,

specially in cases of species with scarce fossil data. In this same sense, studies of morphological

variations across geographic space could benefit from new information obtained from occur-

rences of fossils with improved taxonomic identity.

The major caveats of the use of SDM in paleoecology or paleontology include the implicit

assumption of niche stability through time ([21], but see [6]) and the equilibrium of species

distribution with climate [68], especially regarding niche transferability to different locations

and periods [5,15]. However, this problem pervades the whole field of ecological modeling,

including paleobiogeography, specifically due to the difficulty of validating past models (e.g.,

with fossils). In this regard, this feature adds uncertainty rather than invalidating the models

[69,70]. Users should be aware of these limitations, and account for the multiple sources of

bias and uncertainty [10]. We can also point out three other limitations of this approach. The

first one is the possible existence of unsampled species in the analyses. As the approach deals

with fossil material, it is possible that extinct, unknown species co-occurred with the species

evaluated. A similar issue is that of the existence of known syntopic species, which increases

the possibility of overlapping habitat suitability from models of different species. This certainly

increases with the diversity of taxonomic group investigated. Both cases will create a con-

founding effect between the co-occurring species, this reducing the discriminatory ability of

the SDM. Either way, the approach will still be capable of reducing the uncertainty to fewer

candidate species, to which other discriminatory strategy can be employed.

A third limitation is the requirement of a minimum dataset of occurrences to estimate the

climate preferences of the species. Because the approach focuses on fossils–which are fortu-

itous occurrence data and are the only source of information available for extinct species–

assembling a sufficient number of records of a species from a specific period to build reliable

models can be overly complicated (but see [71]). Thus, the approach will be much more effec-

tive for fossils of living species, such as those investigated here.
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High-resolution paleoclimatic reconstructions have (for now) a limited temporal reach

(usually back to the Pleistocene—Holocene transition; [19,21]), and there are serious technical

limitations in projecting these climatic reconstructions further back in time (for a discussion

regarding climatic variables at the Last Glacial Maximum, see [72]). Therefore, the approach

outlined here is better suited for cases of recently extinct or living species, at least for now. In

this regard, as this approach is more helpful to paleontologists of recent groups, investigations

on these groups should view this reasoning as an opportunity to develop novel questions and

insights.

In summary, using SDM, we evaluated the effectiveness of paleoclimatic data at high spatial

and temporal resolution in accurately predicting paleodistribution of living species, with

known fossil records. In addition, we have shown how this strategy could be useful to reduce

taxonomic uncertainty of the fossil specimens, based on the climatic preferences of the

candidate species. This strategy represents a further interchange between paleontology and

biogeography, with a particular benefit for paleontologist. We highlight the limitations of the

approach, related to the possible existence of known or unknown syntopic species, and the

dependence of a minimal occurrence dataset to produce fair estimates of species climatic pref-

erences. Notwithstanding, this approach can be well explored by the paleontology of recent

groups, which can reward to their biogeography and related fields with fresh insights on spe-

cies identity and distribution.
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tion of the woolly mammoth. PLoS Biol. 2008; 6: 685–692. https://doi.org/10.1371/journal.pbio.0060079

PMID: 18384234

9. Varela S, Lobo JM, Rodrı́guez J, Batra P. Were the Late Pleistocene climatic changes responsible for

the disappearance of the European spotted hyena populations? Hindcasting a species geographic dis-

tribution across time. Quat Sci Rev. 2010; 29: 2027–2035. https://doi.org/10.1016/j.quascirev.2010.04.

017

10. Collevatti RG, Terribile LC, de Oliveira G, Lima-Ribeiro MS, Nabout JC, Rangel TF, et al. Drawbacks to

palaeodistribution modelling: The case of South American seasonally dry forests. J Biogeogr. 2013; 40:

345–358. https://doi.org/10.1111/jbi.12005

Paleontology-biogeography reciprocity and SDMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0194725 March 28, 2018 12 / 15

https://doi.org/10.1016/j.tree.2007.05.005
http://www.ncbi.nlm.nih.gov/pubmed/17573149
https://doi.org/10.1016/j.tree.2013.05.004
https://doi.org/10.1016/j.tree.2013.05.004
http://www.ncbi.nlm.nih.gov/pubmed/23726658
https://doi.org/10.1371/journal.pbio.0060079
http://www.ncbi.nlm.nih.gov/pubmed/18384234
https://doi.org/10.1016/j.quascirev.2010.04.017
https://doi.org/10.1016/j.quascirev.2010.04.017
https://doi.org/10.1111/jbi.12005
https://doi.org/10.1371/journal.pone.0194725


11. Lima-Ribeiro MS, Varela S, Nogués-Bravo D, Diniz-Filho JAF. Potential suitable areas of giant ground

sloths dropped before its extinction in South America: The evidences from bioclimatic envelope model-

ing. Nat a Conserv. 2012; 10: 145–151. https://doi.org/10.4322/natcon.2012.022

12. Pimiento C, MacFadden BJ, Clements CF, Varela S, Jaramillo C, Velez-Juarbe J, et al. Geographical

distribution patterns of Carcharocles megalodon over time reveal clues about extinction mechanisms.

J Biogeogr. 2016; 43: 1645–1655. https://doi.org/10.1111/jbi.12754

13. Svenning J-C, Fløjgaard C, Marske KA, Nógues-Bravo D, Normand S. Applications of species distribu-

tion modeling to paleobiology. Quat Sci Rev. 2011; 30: 2930–2947.

14. Carnaval AC, Moritz C. Historical climate modelling predicts patterns of current biodiversity in the Brazil-

ian Atlantic forest. J Biogeogr. 2008; 35: 1187–1201. Available: http://dx.doi.org/10.1111/j.1365-2699.

2007.01870.x

15. Maguire KC, Nieto-Lugilde D, Fitzpatrick MC, Williams JW, Blois JL. Modeling species and community

responses to past, present, and future episodes of climatic and ecological change. Annu Rev Ecol Evol

Syst. 2015; 46: 343–368.
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59. Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, et al. Model-based

uncertainty in species range prediction. J Biogeogr. 2006; 33: 1704–1711.

60. Stoklosa J, Daly C, Foster SD, Ashcroft MB, Warton DI. A climate of uncertainty: Accounting for error in

climate variables for species distribution models. Methods Ecol Evol. 2015; 6: 412–423.

61. Holz M, Barberena MC. Taphonomy of the south Brazilian Triassic paleoherpetofauna: pattern of

death, transport and burial. Palaeogeogr Palaeoclimatol Palaeoecol. 1994; 107: 179–197.

62. Peterson JE, Coenen JJ, Noto CR. Fluvial transport potential of shed and root-bearing dinosaur teeth

from the late Jurassic Morrison Formation. PeerJ. 2014; 2: e347. https://doi.org/10.7717/peerj.347

PMID: 24765581

63. Maiorano L, Cheddadi R, Zimmermann NE, Pellissier L, Petitpierre B, Pottier J, et al. Building the niche

through time: using 13,000 years of data to predict the effects of climate change on three tree species in

Europe. Glob Ecol Biogeogr. 2013; 22: 302–317.

64. McGuire JL, Davis EB. Using the palaeontological record of Microtus to test species distribution models

and reveal responses to climate change. J Biogeogr. 2013; 40: 1490–1500.

65. Williams JW, Kharouba HM, Veloz S, Vellend M, McLachlan J, Liu Z, et al. The ice age ecologist: testing

methods for reserve prioritization during the last global warming. Glob Ecol Biogeogr. 2013; 22: 289–

301.

66. Varela S, Rodrı́guez J, Lobo JM. Is current climatic equilibrium a guarantee for the transferability of dis-

tribution model predictions? A case study of the spotted hyena. J Biogeogr. 2009; 36: 1645–1655.

https://doi.org/10.1111/j.1365-2699.2009.02125.x
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