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Abstract

Polyploidization has played an important role in the evolution of vertebrates, particularly at

the base of Teleostei–an enormously successful ray-finned fish group with additional

genome doublings on lower taxonomic levels. The investigation of post-polyploid genome

dynamics might provide important clues about the evolution and ecology of respective spe-

cies and can help to decipher the role of polyploidy per se on speciation. Few studies have

attempted to investigate the dynamics of repetitive DNA sequences in the post-polyploid

genome using molecular cytogenetic tools in fishes, though recent efforts demonstrated

their usefulness. The demonstrably monophyletic freshwater loach family Botiidae, branch-

ing to evolutionary diploid and tetraploid lineages separated >25 Mya, offers a suited model

group for comparing the long-term repetitive DNA evolution. For this, we integrated phyloge-

netic analyses with cytogenetical survey involving Giemsa- and Chromomycin A3 (CMA3)/

DAPI stainings and fluorescence in situ hybridization with 5S/45S rDNA, U2 snDNA and

telomeric probes in representative sample of 12 botiid species.

The karyotypes of all diploids were composed of 2n = 50 chromosomes, while majority of

tetraploids had 2n = 4x = 100, with only subtle interspecific karyotype differences. The

exceptional karyotype of Botia dario (2n = 4x = 96) suggested centric fusions behind the 2n

reduction. Variable patterns of FISH signals revealed cases of intraspecific polymorphisms,

rDNA amplification, variable degree of correspondence with CMA3
+ sites and almost no phy-

logenetic signal. In tetraploids, either additivity or loci gain/loss was recorded. Despite

absence of classical interstitial telomeric sites, large blocks of interspersed rDNA/telomeric

regions were found in diploids only.

We uncovered different molecular drives of studied repetitive DNA classes within botiid

genomes as well as the advanced stage of the re-diploidization process in tetraploids. Our

results may contribute to link genomic approach with molecular cytogenetic analyses in

addressing the origin and mechanism of this polyploidization event.
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Introduction

Polyploidization events have played an important role since the early evolution of vertebrates,

with a spectacular example of teleostean fishes, where this entire lineage experienced the so-

called teleost-specific whole genome duplication (TS-WGD) approximately between 226–316

million years ago (Mya) [1], following their divergence from the rest of actinopterygian fishes.

TS-WGD had undoubtedly a major impact on the processes shaping the teleost genomes and to

spur the genome innovations [2,3], while its causative link with diversification and evolutionary

success of this fish clade remains yet controversial [4–6]. Besides, additional whole-genome

duplications (WGDs) took place independently in several teleostean lineages–e.g., Catostomi-

dae [7,8], Cyprinidae [9–13], Cobitidae (e.g., [14]), Callichthyidae [15] and Salmoniformes [16].

Polyploidization is usually accompanied by large-scale and genome-wide changes that are

extensively complex and include–among others–DNA sequence loss, various chromosome

rearrangements, changes in gene expression and epigenetic modifications. These processes are

acting in a species-specific manner, leading to distinct signs and various extent of post-WGD

genome restructuring in order to restore the diploid-like inheritance, to buffer the parental

genomes’ incompatibilities and/or to prevent meiotic irregularities (e.g., [17–22]. As an inte-

gral part of these processes, rapid changes in the amount and composition of repetitive DNA

content occur both on the level of immediate and long-term post-polyploid genome evolution

[19–24]. Distinct repetitive DNA sequences may undergo either biased elimination, leading in

vast majority of cases to the so-called genome downsizing; or they can be amplified and/or

accumulated in gene-poor regions. These changes are thought to be driven by ectopic (non-

allelic) recombination, greatly enhanced by deregulated control of (retro-) transposition activ-

ity [20,23–26].

All these facts imply that cytogenetic mapping of repetitive DNA classes might provide use-

ful tool for elucidating the dynamics of post-polyploid genomes. In fishes, several attempts

have been conducted rather in nascent or synthetic polyploids (e.g., [27–33]) and in genetically

manipulated fishes [34]. Nonetheless, also old-aged WGDs have been recently examined with

success, bringing novel important insights into several long-standing issues [35–38].

The freshwater fish family Botiidae represents one of the 10 major lineages within the cypri-

niform superfamily Cobitoidea [39]. Botiids comprise eight genera with 58 recognized species

[40], with wide distribution throughout South-, East- and Southeast Asia. Many species are

attractive for ornamental fish trade due to conspicuous colour variations. Phylogenetic recon-

structions [41–43] showed that the family contains two main evolutionary lineages–the sub-

families Leptobotiinae and Botiinae–that are long-time separated from each other. Bearing in

mind that all species from the subfamily Leptobotiinae are primarily diploid, whereas those in

Botiinae are (paleo-) tetraploids [42,44], we can assume that the separation of both sub-line-

ages stems from a single evolutionary event, accompanied or directly driven by the whole

genome duplication [42]. Although until now the split of these two sublineages has not been

precisely dated, it is reasonable to assume that since Botiinae contains all species on the Indian

subcontinent, and this region has been isolated from the rest of Asia by the uplift of the Hima-

layan Mountain since 28 Mya [45, 46], the origin of the polyploid subfamily must have taken

place before this event.

To date, cytogenetic reports in Botiidae are limited to conventional Giemsa-stained karyo-

types or basic chromosome counts [42,44,47–49], while molecular cytogenetic data like those

scarcely published in sister loach groups (namely Cobitidae and Nemacheilidae; [50–55]) are

yet non-existent for this lineage.

Containing two sister lineages with diploid and tetraploid levels, botiid loaches represent a

suited model to study the differential patterns of diploid vs. post-polyploid genome evolution
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at the chromosomal level and to track the long-term repetitive DNA dynamics using molecular

cytogenetic approach. Hence, we utilized conventional and molecular cytogenetic protocols,

with the latter involving chromosome mapping of 5S and 45S rDNA and U2 snDNA sites and

telomeric (TTAGGG)n repeats through FISH analysis and we interpreted the observed pat-

terns within a phylogenetic framework. Our results uncovered different molecular drives of

selected cytogenetic markers and the data collectively point to the advanced stage of genome

re-diploidization, with mosaic of diploid and tetraploid genomic regions in all studied tetra-

ploids, corroborating the view of old-aged and rather single WGD event that predated Lepto-

botiinae/Botiinae divergence.

Materials and methods

Ethical statement

The experimental procedures with fishes were approved by the Institutional Animal Care and

Use Committee of the IAPG AS CR, according to directives of the State Veterinary Adminis-

tration of the Czech Republic, permit number 217/2010, and by permit number CZ 02386

from the Ministry of Agriculture of the Czech Republic. All surgery was performed under phe-

noxyethanol anesthesia, and all efforts were made to minimize suffering.

Animals

In this study, 31 individuals representing 12 species (four diploid and eight tetraploid) of the

Botiidae family were analyzed (Table 1). The distribution areas of the examined species are

shown in Fig 1. All analyzed individuals were obtained from the ornamental fish trade and

identified by a trained loach taxonomist (JB). Voucher specimens were deposited to the Fish

collection of the Laboratory of Fish Genetics, IAPG, CAS, Liběchov.

Chromosome preparations

Mitotic chromosomes were obtained mostly from regenerating fin tissue as described by

Völker and Ráb [56], with the modifications of Sember et al. [53] and altered times of fin

regeneration (ranging from three to six weeks). In several cases, chromosome preparations

from head kidney [57] and/or from the lymphocyte cultures [58,59] were performed. Initially,

chromosomes were stained with 5% Giemsa solution (pH 6.8) (Merck, Darmstadt, Germany)

for basic cytogenetic analysis. Selected slides were then destained in cold fixation with

Table 1. List of analyzed species of Botiidae, sample sizes and distribution areas.

Subfamily Species N ID codes Type locality

Botiinae Botia almorhae (Gray, 1831) 3 A0425, A0426, A10048 Uttarakhand: Almorah (India)

(4n) Botia dario (Hamilton, 1822) 1 A7553 India and Bangladesh

Botia udomritthiruji (Ng, 2007) 2 A4830, A4831 Taninthayi: Attaran River (Myanmar)

Chromobotia macracanthus (Bleeker, 1852) 3 A9180, A9181, A9826 Sumatra: Kwanten River (Indonesia)

Sinibotia pulchra (Wu, 1939) 3 A5286, A5287, A3682 Guangxi: Li-Kiang at Yangso (China)

Sinibotia superciliaris (Günther, 1892) 3 A8527, A8528, A8529 Sichuan: Kia-tiang-fu, foot of Omie-shan (China)

Sinibotia zebra (Wu, 1939) 3 A5277, A5279, A5280 Guangxi: Li-Kiang at Yangso (China)

Yasuhikotakia lecontei (Fowler, 1937) 2 A10725, A10727 Ubon Ratchathani: Khemarat (Thailand)

Leptobotiinae Leptobotia elongata (Bleeker, 1870) 2 A8392, A8393 Hunan: Dongting Lake (China)

(2n) Leptobotia guilinensis (Chen, 1980) 4 A5267, A5270, A5272, A5273 Guangxi: Li-Kiang at Yangso (China)

Leptobotia microphthalma (Fu and Ye, 1983) 3 A5294, A5285 Sichuan: Leshan County: Min River drainage (China)

Parabotia fasciatus (Dabry de Thiersant, 1872) 1♂, 1♀ A8391 A3680 Yangtze River (China)

https://doi.org/10.1371/journal.pone.0195054.t001
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methanol: acetic acid 3:1 (v/v) and re-used for the other techniques. For fluorescence in situ
hybridization (FISH), slides were dehydrated in an ethanol series (70%, 80% and 96%, 3 min

each) and stored in a freezer (-20˚C).

At least ten metaphases per specimen and method were analyzed, mostly sequentially. In a

few metaphases, plates with incomplete 2n were selected to demonstrate patterns of a

Fig 1. Distribution areas of the investigated species of Botiidae. 1 –B. almorhae, 2 –B. dario, 3 –B. udomritthiruji, 4 –Ch.macracanthus, 5 –L. elongata, 6 –L.

guilinensis, 7 –L.microphthalma, 8 –P. fasciatus, 9 –S. pulchra, 10 –S. superciliaris, 11 –S. zebra, 12 –Y. lecontei.

https://doi.org/10.1371/journal.pone.0195054.g001

Repetitive DNA dynamics in genome of diploid and tetraploid botiid loaches

PLOS ONE | https://doi.org/10.1371/journal.pone.0195054 March 28, 2018 4 / 27

https://doi.org/10.1371/journal.pone.0195054.g001
https://doi.org/10.1371/journal.pone.0195054


particular marker (see the figure legends). Chromosomes were classified according to Levan

et al. [60], but modified as m–metacentric, sm–submetacentric, st–subtelocentric, a–acrocen-

tric, where st and a chromosomes were scored as uni-armed to calculate NF value (Nombre

Fondamental, number of chromosome arms).

CMA3/DAPI staining

Fluorescent staining was performed sequentially or in separate experiments by GC-specific

fluorochrome Chromomycin A3 (CMA3) (Sigma-Aldrich) and AT-specific fluorochrome

DAPI (Sigma-Aldrich), following Mayr et al. [61] and Sola et al. [62].

DNA isolation and probe preparation

Whole genomic DNA was extracted from fin tissue using the i) conventional phenol-chloro-

form-isoamylalcohol method [63] with PhaseLock Eppendorf tubes (5PRIME, Gaithersburg,

USA) to prevent protein contamination, or ii) the Qiagen DNAeasy Blood & Tissue Kit (Qiagen,

Hilden, Germany). 5S and 28S rDNA fragments were obtained by polymerase chain reaction

(PCR) using primers and thermal profiles described in Sember et al. [53]. U2 snDNA amplifica-

tion was done by PCR with primers: U2F (5’-ATCGCTTCTCGGCCTTATG-3’) and U2R

(5’-TCCCGGCGGTACTGCAATA-3’) [64], using thermal profile described in Scacchetti et al.

[65]. The resulting PCR products were purified using NucleoSpin Gel and PCR Clean-up

(Macherey-Nagel GmbH, Düren, Germany). DNA fragments of U2 snDNA were cloned to

pDrive Cloning Vector (Qiagen) and transformed into QIAGEN EZ Competent Cells (Qiagen).

Selected recombinant plasmids were isolated by QIAprep Spin Miniprep Kit (Qiagen) and

sequenced in both strands by using BigDye™ Terminator Cycle Sequencing Kit v.1.1 (PE Applied

Biosystems, Darmstadt, Germany) according to manufacturer’s instructions and products puri-

fied with DyeEx Spin Kit (Qiagen). Sequencing was performed on ABI Prism 3130 (Applied Bio-

systems). Chromatograms of obtained sequences were assembled using SeqMan Pro 10.1.2

(LaserGene, DNASTAR, Madison, Wl). The sequences were aligned and manually revised in

BioEdit 7.0.5.3 [66]. The resulting consensus sequences were confirmed using NCBI BLAST/N

analysis [67] and selected clones used to construct FISH probes. For construction of 5S and 28S

rDNA probes, cloned fragments from the botiid species Botia almorhae (5S and 28S) and the

nemacheilid species Schistura bolavenensis (28S) were utilized (for details, see Sember et al. [53]).

DNA probes were labelled in a PCR reaction with biotin-16-dUTP (Roche, Mannheim,

Germany) or digoxigenin-11-dUTP (Roche), respectively. For each slide, 200 ng of one (uni-

colour FISH) or two (dual-colour FISH) probes and 25 μg of sonicated salmon sperm DNA

(Sigma-Aldrich) were used. The final hybridization mixtures were prepared according to Sem-

ber et al. [53].

Telomeric (TTAGGG)n repeats were detected by FISH using a commercial telomere PNA

(peptide nucleic acid) probe directly labelled with Cy3 (DAKO, Glostrup, Denmark) according

to the manufacturer’s instructions, with a single modification concerning the prolonged

hybridization time (1.5 h).

FISH analysis

Dual-colour FISH experiments were performed essentially according to Sember et al. [53].

Probes were detected by Anti-Digoxigenin-FITC (Roche) and Streptavidin-Cy3 (Invitrogen

Life Technologies, San Diego, CA, USA). Experiments with altered labelling (e.g., biotin for

28S and digoxigenin for 5S rDNA) were included to verify the observed patterns. All FISH

images presented here have pseudocoloured signals–red for the 28S rDNA and U2 snDNA

probes and green for the 5S rDNA. In uni-colour FISH, hybridization signals of U2 snDNA
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probes were detected using the Cy3-conjugated streptavidin (Invitrogen, San Diego, CA,

USA), followed by additional signal enhancement using biotinylated Anti-Streptavidin and

second round of Streptavidin-Cy3 detection (Vector Laboratories, Burlingame, USA) accord-

ing to Fuková et al. [68]. Finally, all FISH slides were mounted in medium containing antifade

and 1.5 μg/ml DAPI (Cambio, Cambridge, United Kingdom).

Microscopy and image processing

Giemsa-stained chromosomes and FISH images were inspected using a Provis AX70 Olympus

microscope with a standard fluorescence filter set. FISH images were captured under immer-

sion objective 100× with a black and white CCD camera (DP30W Olympus) for each fluores-

cent dye using Olympus Acquisition Software. The digital images were then pseudocoloured

(blue for DAPI, red for Cy3, green for FITC) and superimposed with MicroImage software

(Olympus, version 4.0). Karyotypes from Giemsa-stained chromosomes were arranged in

IKAROS (Metasystems) software. Final images were optimized and arranged using Adobe

Photoshop, version CS6.

Molecular phylogenetic analyses

The phylogenetic hypothesis was based on the analyses of three molecular markers: mitochon-

drial cytochrome b (cyt b) gene and nuclear recombination-activating gene 1 (RAG1) and

interphotoreceptor retinoid-binding protein (IRBP). The primers and PCR reaction protocols

for cyt b and RAG1 followed Šlechtová et al. [42] and Šlechtová et al. [69], and Chen et al. [70]

for the IRBP amplification. All three genes were sequenced for each of the 39 analyzed speci-

mens of Botiidae.

Chromatograms were edited and assembled using SeqMan Pro 10.1.2 (LaserGene, DNAS-

TAR). The sequences were aligned in BioEdit 7.0.5.3 [66] and evaluated based on their amino

acid translation.

Alignments of all three genes were concatenated into a single 3020 bp dataset (1116 bp of

cyt b, 910 bp of RAG1 and 994 bp of IRBP). The sequences with GenBank accession numbers

KU517025-KU517132 were published in Bohlen et al. [49]. Newly obtained sequences were

deposited in GenBank under the accession numbers MF681728 to MF681780.

The phylogenetic analysis of the concatenated dataset was performed using the partitioned

Bayesian inference in MrBayes 3.2.2 [71]. The dataset was partitioned by genes and codon

positions, involving in total nine partitions. Prior to the analyses, the MEGA 5.10 software [72]

was used to estimate the most suited model for each gene partition under the Bayesian infor-

mation criterion (BIC). The Bayesian analyses were performed in two independent runs of 10

million generations, each employing six Markov chain Monte Carlo (MCMC) analyses, with

default heating conditions, starting with random trees and a sampling frequency of each 100

generations. The parameter settings corresponded to the best-fit models. After applying a

burn-in of first 25% of generated trees, a 50% majority rule consensus tree was built and statis-

tical supports of clades were assessed by posterior probabilities.

Results

Sequence analysis of RAG1, IRBP and cyt b
The phylogenetic relationships between the analyzed specimens were reconstructed using the

mitochondrial cytochrome b gene and the nuclear genes RAG1 and IRBP. All acquired recon-

structions were highly congruent, independent of the gene used. Consequently, the datasets

were concatenated into a single matrix of 3020 bp.
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The resulting phylogenetic analysis of the concatenated dataset identified two major line-

ages; the one collecting all four species of the subfamily Leptobotiinae and the other all eight

species of the subfamily Botiinae (Fig 2). Within the Leptobotiinae, the single species of Para-
botia was sister to a group collecting the three analyzed species of Leptobotia. Within the Botii-

nae, two sublineages were visible, one containing the single species of Chromobotia plus a

cluster of three species of Botia, while the second sublineage was composed from the single

species of Yasuhikotakia as sister to a group of three species of Sinibotia.

All recovered lineages had the maximum statistical support in all analyses. In addition, all

analyzed species were identified as monophyletic and well-separated lineages with high statisti-

cal support.

Sequence analysis of U2 snDNA

PCR amplification of U2 snDNA resulted consistently in a fragment approximately 180 bp in

size, containing partial sequence of U2 snRNA coding region. Searches with the BLAST/N

program at NCBI yielded repeatedly high similarity results with the U2 snRNA gene region of,

e.g., the perciform fish Argyrosomus regius (95% identity; e.g., GenBank accession number

JF799429.1) or platyfish Xiphophorus maculatus (95% identity; e.g., GenBank accession num-

ber XR_002753210.1). Sequences for six species (diploid L. elongata and P. fasciatus and

Fig 2. Phylogenetic relationships and karyotype characteristics of inspected botiids. 2n, karyotype description, NF and idiograms showing chromosomes bearing 45S

(red), 5S (green) rDNA and U2 snDNA (violet) sites are plotted onto phylogenetic tree obtained by Bayesian analysis based on the mitochondrial (cyt b) and nuclear

(RAG1, IRBP) genes. Polymorphic rDNA sites are in brackets. The asterisk denotes species’ karyotypes already published in Bohlen et al. [49], with the st and a

chromosome pairs being here scored together in one st-a category.

https://doi.org/10.1371/journal.pone.0195054.g002
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tetraploid B. almorhae, Ch.macracanthus, S. pulchra and Y.morleti–with the latter represent-

ing another botiid species, not subjected to cytogenetic/phylogenetic analyses in this study)

were deposited in GenBank (accession numbers MG874999-MG875004).

Patterns of karyotype differentiation

Fig 2 provides an overview about 2n, karyotype composition, NF and chromosomal distribu-

tion of 5S, 45S rDNA and U2 snDNA sites mapped onto a phylogenetic framework. The

present study gives the first karyotype description of B. almorhae, B. udomritthiruji and L.

microphthalma, while karyotypes of further six species were described formerly and are revised

here. The remaining species under study, namely L. guilinensis, S. pulchra and S. zebra, had

been karyologically examined in our previous work [49]. In addition, the present study

extended for the first time the basic karyology in this fish group by mapping of tandemly

repeated DNA sequences in all species under study.

Karyotype analysis. Karyotypes of all analyzed species were composed of comparatively

small chromosomes, gradually decreasing in size, which made the estimation of karyotype

composition difficult. All karyotypes displayed slight prevalence of uni-armed elements. Chro-

mosome complements of the tetraploids showed apparently smaller overall size compared to

diploids.

In all but one species the chromosome number corresponded to their diploid (2n = 2x =

50) and tetraploid (2n = 4x = 100) level, respectively (Figs 2 and 3). A single tetraploid species

B. dario displayed karyotype with reduced 2n = 96, with presence of four distinctly large meta-

centric chromosomes (S1A Fig). As preparations from a single specimen of B. dario in our

sampling provided only a limited number of complete and/or well-spread metaphases, the

results obtained are rather treated with caution and presented in separate file (S1 Fig; for

details, see a figure legend).

A notably conservative karyotype structure was observed among the diploid botiid species

under study, with only minor differences in karyotypes and NF values ranging from 66 to 70

(Figs 2 and 3). while species of tetraploid origin showed slightly more variability in this sense

(Fig 3, S1A Fig), with NF ranging from 124 to 150 (Fig 2). No intraspecific karyotype variabil-

ity was evidenced within our sampling.

CMA3/DAPI staining. CMA3 labelled GC-rich regions associated exclusively with 45S

rDNA sites in chromosomes of majority of species (Fig 4, S1B and S2 Figs). Exceptionally,

CMA3- positive signal was found embedded in a single major locus of 5S rDNA site, along

with other CMA3
+ regions non-related to rDNA in selected specimen of Ch.macracanthus

(S3A and S3D Fig). In genome of S. superciliaris, four out of six CMA3
+ regions did not corre-

spond either to 5S or 45S rDNA sites (S3H and S3J Fig). Slight intraspecific variability was

recorded in number of CMA3
+ sites in complements of B. almorhae (2 or 3), L. guilinensis (2, 3

or 4), L.microphthalma (4 or 5) and S. pulchra (4, 5 or 8) (Fig 4 and S3F Fig). In most cases,

this feature mirrored the variability of 45S rDNA sites within respective genomes as revealed

by FISH, while in one S. pulchra individual with eight CMA3
+ sites (Fig 4D), this association

remained inconclusive.

FISH with 5S, 28S rDNA and U2 snDNA probes. Partial idiograms showing rDNA phe-

notypes (i.e., numbers and position of rDNA clusters) and distribution of U2 snDNA sites in

the phylogenetic context are summarized in Fig 2. The number of 45S rDNA clusters identified

based on mapping of 28S rDNA probe was found in tetraploids to range from two to five.

Remarkably, while several tetraploids (B. dario, B. udomritthiruji, S. superciliaris, S. zebra)

showed only two 45S rDNA loci (Fig 5B, S1C, S4C and S4D Figs), the diploids displayed

rather elevated site numbers of this rDNA class—up to four in L. guilinensis and even six in
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L. elongata (Figs 4B and 5D and S4A Fig); with up to five sites in L.microphthalma (deduced

from CMA3 pattern; Fig 4C). The position of 45S rDNA cistrons along chromosomes was

exclusively terminal in all specimens examined.

Fig 3. Karyotypes of botiid species after Giemsa staining. (A) B. almorhae, (B) B. udomritthiruji, (C) Ch.macracanthus, (D) L. elongata, (E) L.

microphthalma, (F) P. fasciatus, (G) S. superciliaris, (H) Y. lecontei. Bar = 10 μm.

https://doi.org/10.1371/journal.pone.0195054.g003
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5S rDNA clusters were mainly located in pericentromeric regions or distributed along the

entire short (p) arms of some st-a chromosomes (Figs 5 and 6; S1C, S3A, S3H, S4, S5B, S5F

and S5H Figs). Both in diploids and tetraploids we found generally higher number of 5S

rDNA sites than encountered for the 45S rDNA class. The number of 5S rDNA FISH signals

ranged from three to eight in majority of species (Figs 2 and 5 and S1C and S4 Figs), but also a

sole intense signal was found in one specimen of Ch.macracanthus (S3A and S5B Figs). In B.

almorhae and B. udomritthiruji, two and four st chromosomes, respectively, showed double 5S

rDNA sites, with the major one terminally-located and the minor dot-like site detected in the

interstitial position (Fig 5A and 5B). The minor sites were not always visible–mostly the chro-

mosomes from the fin clipping procedure gave a greater resolution as they appeared more

decondensed. Likewise, some metaphases allowed identifying intriguing organization of two

tandem blocks of 45S rDNA regions on just one chromosome in Y. lecontei (S4E Fig).

We also found exceptional variability of multiplied 5S rDNA sites in a single species Y.

lecontei, where one specimen displayed at least 13 5S rDNA signals after FISH (with the range

of 13–16) (S4E Fig), while the second exhibited from 17 up to 24 clusters (Fig 6C). Multiplied

5S rDNA sites were located almost exclusively in terminal parts of st-a chromosomes. The

intensity of signals was rather similar in both Y. lecontei specimens.

Fig 4. CMA3/DAPI staining in selected botiid species. Mitotic metaphases of (A) B. almorhae, (B) L. guilinensis, (C)

L.microphthalma, (D) S. pulchra. For better contrast, pictures were pseudocoloured in red (for CMA3) and green (for

DAPI). Open arrows indicate CMA3-positive sites whose interindividual site-number variability is depicted in insets.

Bar = 10 μm.

https://doi.org/10.1371/journal.pone.0195054.g004
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Further, slight intraspecific variability in the number of 5S and/or 45S rDNA was observed

also in other botiid species under study–particularly in Ch.macracanthus, P. fasciatus (5S

rDNA; Fig 5C and 5E and S3A and S5B Figs), B. almorhae, L.microphthalma, S. pulchra (45S

Fig 5. rDNA FISH in selected botiid species. 28S rDNA (red, arrows) and 5S rDNA (green, arrowheads) probes mapped on mitotic chromosomes of

(A) B. almorhae, (B) B. udomritthiruji, (C) Ch.macracanthus, (D) L. guilinensis, (E) P. fasciatus, (F) S. pulchra. Chromosomes were counterstained with

DAPI (blue). Note the presence of double sites of the 5S rDNA on one chromosomal pair in B. almorhae (A-inset) and two chromosomal pairs in B.

udomritthiruji (B). Polymorphic rDNA sites in L. guilinensis (D), P. fasciatus (E) and S. pulchra (F) are boxed. Bar = 10 μm.

https://doi.org/10.1371/journal.pone.0195054.g005

Fig 6. 5S rDNA and U2 snDNA dual-colour FISH in selected botiid species. U2 snDNA (red, arrows) and 5S rDNA (green, arrowheads) probes

mapped on mitotic chromosomes of (A) B. udomritthiruji, (B) L.microphthalma, (C) Y. lecontei. Chromosomes were counterstained with DAPI (blue).

Note the significant spreading of 5S rDNA sites in Y. lecontei (C; 24 signals—arrowheads). The metaphase spread of B. udomritthiruji displays

incomplete chromosome set (2n = 97), however the number of two U2 snDNA-bearing chromosomes was consistently observed on all other (including

complete though less representative) metaphases in our dataset and with respect to Fig 5B, the number of 5S rDNA-bearing chromosomes is also

complete. Bar = 10 μm.

https://doi.org/10.1371/journal.pone.0195054.g006
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rDNA; Figs 4A, 4C, 5A and 5F and S4B Fig) and in L. guilinensis (both rDNA classes, Figs 4B

and 5D and S3F Fig). P. fasciatus was the only species in which the sex of the examined speci-

mens was determined, and both sexes showed different rDNA phenotypes (Fig 5E). Addition-

ally, size polymorphism between homologous 45S rDNA clusters as well as the presence of

major vs. minor 5S rDNA loci displaying different size and signal strenght was apparent (e.g.,

Figs 4A, 4C and 5A–5C and S1C, S2D–S2F, S3C, S4A and S4E Figs). With respect to signal

intensities, few metaphases in Ch.macracanthus specimen No. A9826 (i.e., the one with a sin-

gle intense 5S rDNA site) suggested a putative presence of additional two-to-three minor dot-

like sites, however, due to inconsistency of these observations we leave this issue inconclusive.

By contrast, U2 snDNA showed identical distribution on one pair of chromosomes both in

diploids and tetraploids (Fig 6, S1D and S5 Figs), with a sole exception of diploid species L.

microphthalma (four FISH signals; Fig 6B).

Based on combination of sequential experiments together with comparative analysis of

morphology of rDNA/U2 snDNA-bearing chromosomes, none of the FISH probes derived

from these distinct classes of multigene families displayed overlapping signals. Therefore, these

motifs represent independent chromosomal markers due to their location on distinct chromo-

somes in tested species.

Telomeric FISH. The FISH with a probe complementary to the conserved vertebrate

(TTAGGG)n telomeric motif revealed exclusively terminal location in tetraploid botiid species,

with no detectable additional interstitial telomeric sequences (ITSs) (Fig 7, S1E and S6 Figs).

Remarkably, no ITSs (and neither any other of specific repetitive DNA classes analyzed here)

were present even in prominent DAPI+/AT-rich centromeric regions of large-sized m chro-

mosomes in B. dario (S1E Fig).

Fig 7. PNA FISH with telomeric probe in selected botiid species. Mitotic metaphases of (A) B. almorhae, (B) B. udomritthiruji, (C) Ch.macracanthus,
(D) L. guilinensis, (E) P. fasciatus, (F) S. pulchra. For better contrast, pictures were pseudocoloured in green (telomeric repeat probe) and red (DAPI).

Open arrows point to chromosomes with remarkable large-sized telomeric signals (C-F). Bar = 10 μm.

https://doi.org/10.1371/journal.pone.0195054.g007
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In contrast, genomes of all analyzed diploid species shared the presence of several large-

sized telomeric signals located terminally and interspersed with some or all 45S rDNA sites

(Fig 7C–7F). Based on sequential experiments, two such ITS-like signals were found in L. elon-
gata to be allocated within two non-homologous 45S rDNA sites, with the remaining four

rDNA clusters lacking this association (S3B and S3E Fig). By contrast, a single pair of 45S

rDNA signals found in one L. guilinensis individual entirely overlapped with the correspond-

ing ITS-like sites (S3C and S3F Fig) and similar condition was observed in L.microphthalma
specimen with four 45S rDNA loci (S3G and S3I Fig). Finally, based on the comparisons of

non-sequential FISH and CMA3/DAPI staining results in P. fasciatus, this last diploid species

under study does not seem to be exceptional regarding this observed peculiarity (Figs 5E and

7F,S2C Fig).

Discussion

Update on karyotype of botiid loaches

Out of 58 recognized species of botiid loaches, the number of those cytogenetically studied

attained at present 34 ([44,47–49,73,74] and references therein) including new karyotype

description of three species reported herein (B. almorhae, B. udomritthiruji, L.microphthalma)

and three species (B. histrionica, Syncrossus reversa, Yasuhikotakia nigrolineata) where only 2n

had been reported formerly [42]. The karyotypes of six species revised here (B. dario, Ch.

macracanthus, L. elongata, P. fasciatus, S. superciliaris and Y. lecontei) differed to various extent

from those in previous reports. While the karyotype of L. elongata in our analysis agreed well

with a previous report of Yu et al. [75], those of Ch.macracanthus, P. fasciatus and Y. lecontei
deviated slightly from former descriptions [48,74,75] due to different morphological classifica-

tion of some chromosomal pairs resulting likely from difficulties associated with small size of

botiid chromosomes and their gradual transitions both in size and centromere position.

Finally, the karyotypes of B. dario (2n = 96) and S. superciliaris (2n = 100) described here are

not consistent with those reported by Rishi and Haobam [76], Khuda-Bukhsh et al. [77] and

Yue et al. [47] even in terms of 2n as the previous works described 2n = 90 or 98 for B. dario
and 2n = 96 in S. superciliaris, respectively. The observed incongruences may have resulted

from the description of karyotypically different populations or by mis-determination of some

species in the earlier studies.

All but one tetraploid botiid loach species under study retained 2n that corresponds to their

ploidy level, i.e., 2n = 4x = 100, implying no major interchromosomal rearrangements follow-

ing the polyploidization event detectable by conventional staining. The only exception was B.

dario, with derived karyotype comprising 2n = 96. Accordingly, all four diploid botiids under

study shared the same 2n = 50 chromosomes and nearly identical NF. Karyotypes composed

of 50 chromosomes are consistently found also in other loach families like Balitoridae [74],

Cobitidae [44,78], Nemacheilidae ([53,79] and references therein), and Vaillantelidae [80],

and they are also typical for many members of the suborder Cyprinoidei–a sister clade to

loach groups [44,81]. Therefore, 2n = 50 may represent the putative ancestral state for Cyprini-

formes and its wide distribution across the whole group indicates its strong evolutionary

conservatism.

Apart from the subtle karyotype changes, the generally reduced chromosomal size in tetra-

ploid botiids compared to their diploid counterparts might reflect the commonly observed

process of genome downsizing, with deletions through ectopic recombination acting as the

main underlying mechanism [20,25,82]. In addition to these predicted deletions, also peri-

centric inversions along with other types of centromeric shifts (such as centromere reposi-

tioning; [83]) can alter chromosomal morphology without affecting 2n and thus might be
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responsible for interspecific differences in tetraploids’ NF. Moreover, multiple inversions have

been invoked as the postzygotic reproductive barrier contributing to speciation and adaptation

[84,85], also in several fish groups (e.g., [86–89]) and they often largely contribute to gradual

structural and sequence divergence of homologous or homeologous chromosomes within a

re-diplodizing polyploid genome [90,91]. Finally, we also cannot rule out the possible involve-

ment of reciprocal or non-reciprocal translocations, however the sound evidence for these

rearrangements is missing in our study. In contrary, the indications for the origin of derived

karyotype of B. dario through series of Robertsonian (Rb) translocations are strong, as the four

largest elements of its karyotype are of metacentric morphology and they exhibit twice the size

of average uni-armed element found within the complement. It is therefore highly likely that

Rb translocations involving eight uni-armed chromosomes gave rise to the observed number

of large-sized metacentrics.

Physical mapping of chromosomal markers

Chromosomal distribution of CMA3
+/GC-rich regions. CMA3-positive (CMA3

+) sites

confined to major 45S rDNA sites, i.e., nucleolar organizer regions (NORs) represent the pre-

vailing pattern observed in species investigated here, matching the trend previously identified

in overwhelming majority of fish species across the teleost phylogeny [92,93]. Similarly to

some members of the related loach families Cobitidae [94–96] and Nemacheilidae [53],

genomes of three species (Ch.macracanthus, S. superciliaris and S. pulchra) showed additional

CMA3
+ sites non-related to rDNA. This pattern was occasionally found also in other fish

groups (e.g., [97–99]). Furthermore, just one conspicuous CMA3
+ site from those detected in

one specimen of Ch.macracanthus (subjected to sequential analysis of CMA3/DAPI staining

and rDNA FISH) was embedded within a single major 5S rDNA site–an arrangement that is

otherwise infrequent among fishes ([53,100] and references therein). Small intraspecific varia-

tion in the distribution of CMA3
+ sites in B. almorhae, L. guilinensis, L.microphthalma and S.

pulchra reflected variable NOR phenotypes and corroborated similar or higher intraspecific

variability of this marker found in other loach fishes [53,95,96].

Differential patterns of variability in genomic organization and distribution of 5S, 45S

rDNA and U2 snDNA. The mapping of tandemly repeated sequences by means of FISH has

proven to be very useful in exploring fish genome architecture as well as large amount of evo-

lutionary, ecological and taxonomic questions [101–103]. In this study, three tandemly

repeated multigene families– 5S/45S rDNA and U2 snDNA–were used to compare diploid vs.

polyploid genome dynamics in botiid loaches.

In most fishes [104–106], including other loach families [51–53,55] the ancestral diploid pat-

tern appears to be one pair of NOR/45S rDNA sites and the emerging information suggest similar

scenario for U2 snDNA. In 5S rDNA, however, the situation has been found to be too variable

and complex to reconstruct the ancestral situation ([106,107]; for examples in loaches and cypri-

niform polyploids, see: [30,33,50,53,55,108]). Contrary to expectations, our present results show

that the number of 45S rDNA signals range from two to six in diploid botiids, thereby exceeding

frequently the expected number. In contrast, the 45S rDNA phenotypes in tetraploids exceeded

the corresponding expected number of four clusters only in one specimen of S. pulchra (five sig-

nals). Moreover, four out of eight tetraploid botiid species displayed only two 45S rDNA signals

instead of the expected four. This site-number reduction might reflect the gradual processes lead-

ing to elimination of excessive rDNA clusters in (especially ancient) polyploids.

FISH with minor (5S rDNA) ribosomal cluster unveiled generally higher and more variable

number of sites compared to 45S rDNA, similarly to those found in nemacheilid loaches [53]

and other cypriniforms (e.g., [30,33]), while yet another related groups display the inverse
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situation (i.e., high number of variable 45S rDNA sites vs. conservative pattern with low site-

number of 5S rDNA [27,50]).

An unusual pattern was observed in B. almorhae and B. udomritthiruji, where 5S rDNA site

turned out to be partially shifted from a terminal to interstitial position (or vice versa) in one

(B. almorhae) and two (B. udomritthiruji) pairs of st chromosomes, creating thus double 5S

rDNA site. Similarly to what has been proposed in other (not only) fish groups ([109] and ref-

erences therein), a peri- or paracentric inversion might have mediated the transfer of few 5S

rDNA transcriptional units from the original cluster to a new location. However, especially

considering the large size of such 5S rDNA-bearing chromosomes, even reciprocal or non-

reciprocal translocations cannot be currently excluded from consideration.

Associations of rDNAs with para/pericentric inversions in fishes have been repeatedly doc-

umented [53,88,97,109–111] and might also be responsible for the emergence of large-sized

tandemly organized 45S rDNA cluster on just one homolog in Y. lecontei (as in the scenario

proposed in Ghigliotti et al. [112]), being clearly coupled with tandem amplifications driven

by unequal crossing-overs [112–114]. The latter mechanism is, together with possible recipro-

cal translocations between the rDNA loci and subsequent random segregation of rDNA-bear-

ing chromosomes in meiosis, highly likely responsible for size heteromorphism of both rDNA

clusters and for subtle site-number polymorphisms repeatedly observed in other botiids under

study regardless their ploidy level (as well as in many other fish groups). In some cases, if not

entirely deleted, the amount of rDNA sequences might be reduced below the resolution level

of FISH, which might explain, for instance, the 5S rDNA intraspecific site-number variability

in Ch.macracanthus. In P. fasciatus, despite the site-number polymorphism of 5S rDNA is

associated with the sex of the analyzed specimens, the undersampling does not permit us to

infer any meaningful conclusions about the presence of cryptic sex chromosomes.

One of the most intriguing results of our study is the tremendously increased and variable

number of 5S rDNA sites in the tetraploid species Y. lecontei. Over the last decade, many stud-

ies have provided evidence of rapidly amplified loci for both major and minor rDNA class in

fishes ([106,107] and references therein) including both nascent and ancient polyploids

[28,31,33,98]. Several mechanisms have been put forward to explain this phenomenon includ-

ing i) unequal crossing-over and ectopic recombination ii) activity of transposable elements

(TEs), iii) extrachromosomal replication and reintegration via extrachromosomal circles of

rDNA or combined effect of the three (for comprehensive discussion, see: [115,116]). While

the terminal distribution of 5S rDNA sites in Y. lecontei might favour the first possibility

[116,117], the significant difference in the loci number of 5S rDNA between the two analyzed

individuals might argue in favour of rDNA dispersion through the action of TEs, as being re-

peatedly indicated in teleosts through FISH and/or DNA sequence analysis ([53,57,106,115,

118–120] and references therein).

Small nuclear RNAs (snRNAs; U1, U2, U4/U6 and U5) are indispensable components of

spliceosome–a ribonucleoprotein complex responsible for removing introns from the vast

majority of eukaryotic primary mRNA transcripts (reviewed in [121,122]). In recent years, U2

snDNA became a novel marker in fish cytogenetic studies. Together with species in our study,

this tandemly repeated multigene family has been mapped already in about 80 species placed

in ten fish orders (reviewed in [105]; among more recent papers, see, e.g.: [89,123–125]), with

our study adding the first records for Cypriniformes. About half of the surveyed teleost fish

species exhibits a single pair of U2-bearing chromosomes and internal or proximal chromo-

somal localization [89,105,124].

Contrary to expectations, FISH labelled only one chromosome pair bearing U2 snDNA in all

but one botiid species regardless their ploidy level. As the only exception, the diploid species L.

microphthalma displayed four signals. Such result confirms, on one hand, the high conservatism
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of chromosomal distribution of this multigene family and, on the other hand, it also indicates

advanced stage of genome homogenization and re-diploidization in tetraploid botiids.

To sum up, our results unmasked differential molecular drives in three multigene families,

with increasing variability in the direction U2 snDNA< 45S rDNA< 5S rDNA, implying vari-

ous extent and degree of interplay between two broadly accepted models of long-term repetitive

DNA molecular evolution (i.e., concerted and birth-and-death evolution [29,32,107,126–130]).

The observed patterns do not reflect the phylogenetic relationships of the species, neither their

ploidy level; which hampers the exact identification of the driving forces at present. However,

the hybridization patterns of multigene families collectively imply a significant re-diploidization

in genomes of tetraploid botiids and thus corroborate the view of an old and rather single WGD

event at the base of Leptobotiinae/Botiinae split. This is particularly noticeable on fully re-diploi-

dized U2 snDNA sites, while observed gains and losses in rDNA loci indicate more complex

evolutionary dynamics. Cases of intraspecific polymorphisms and rDNA amplification together

with evidence of associated chromosome rearrangements may suggest a role of repetitive DNA

in dynamic processes leading to post-polyploid genome divergence and possibly to speciation.

The current dataset along with the supposed age of botiid WGD makes it, on the other hand,

difficult to draw any conclusions about the origin of this polyploidization (i.e., whether it was

autopolyploidy or allopolyploidy). Despite some previous studies [48] presumed an autopoly-

ploidization as the underlying mechanism using conventionally stained chromosomes only, it

remained unclear on which facts they built this conclusion. Current data are, however, sufficient

enough to reinforce the conclusion from our previous study [49] that S. zebra is not a hybrid

between the tetraploid species S. pulchra and the diploid species L. guilinensis.
Inferences from distribution of telomeric (TTAGGG)n sequences. In all tetraploid

botiid species, FISH with probe complementary to telomeric (TTAGGG)n repeats showed sig-

nals only in their usual location at termini of all chromosomes. Interstitial telomeric sequences

(ITSs), representing often hallmarks of chromosomal repatternings during the course of kar-

yotype evolution (reviewed in [131,132]), were not observed. Neither in B. dario with karyo-

type derived by Rb translocations, where only large tandemly arranged AT-rich/DAPI-

positive blocks were apparent in the fusion points. Remarkably, all analyzed diploid species

displayed large terminal blocks of telomere-like sequences, all of them being interspersed with

NORs/45S rDNA sites. A similar pattern was previously described in genomes of several fish

groups ([53,132–134] and references therein) as well as in other evolutionarily distant organ-

isms (e.g., [131,135–137]). The evolutionary significance of this merged and co-amplified

rDNA/telomeric arrangement is still under debate, however, the accumulating evidence of this

phenomenon deserves greater attention ([135–137] and references therein). It has been sug-

gested that major rDNA sites might play a supportive role in stabilization of chromosomal ter-

mini and, reciprocally, telomeres might be involved in nucleolar organization ([135,138]; for

more references, see [134]). Besides that, telomeric position effect on NOR expression had

been considered (e.g., [139]), but no disruption of NOR activity was documented in some

other studies [53,135]. Neither our results are consistent with this hypothesis, since some dip-

loid botiids (at the species or individual level) showed all 45S rDNA regions being entirely co-

localized with (TTAGGG)n repeats, with at least some of them evidently retaining the tran-

scriptional activity. By analogy, the presence of various repetitive DNA classes embedded

within rDNA clusters does not seem to negatively interfere with the transcription activity of

NORs in some other fishes ([37,140,141] but see [142,143]). Finally, the stretches of co-ampli-

fied telomeric/rDNA repeats might have occurred rather as a consequence of TE activity and

double-strand break repair mechanisms utilizing several recombinational pathways and de
novo DNA synthesis [144,145], especially when considering the high recombinogenic potential

of both involved tandemly repeated DNA classes [117,145].
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Phylogenetic interpretation of the molecular cytogenetic markers

When the number and position of 5S/45S rDNA and U2 snDNA sites were mapped onto our

phylogenetic tree, almost no correlation between the cytogenetic markers and the phylogenetic

relationships of the species was apparent (Fig 2), implying mostly different evolutionary trajec-

tories, unrelated and independent with respect to evolution of this fish group and corroborat-

ing findings from some other teleosts [106,118]. Surprisingly, diploid botiids appear to have

gone through more pronounced changes of rDNA phenotypes in terms of polymorphisms and

gaining new rDNA sites than their tetraploid counterparts, except for Y. lecontei that exhibits a

significant increase of amplified 5S rDNA loci. Interestingly, all diploid species shared this

high repetitive DNA dynamics despite conservative karyotype macrostructure–similarly to

nemacheilids [53] and several other fish groups (e.g., [87,146] and references therein).

In addition, all analyzed diploid species further shared remarkable large terminal blocks of

telomere-like sequences, all of them being coincident with NORs/45S rDNA sites. Since only

genomes of diploid species possessed such pattern, this arrangement likely arose after the

divergence of Leptobotiinae from Botiinae, but before the split between Leptobotia and Para-
botia. The alternative hypothesis that such arrangement was already present in ancestral botiid

lineage before WGD, is less parsimonious, because even if rapid preferential elimination of

conjugated rDNA/telomeric sites took place in polyploids, the probability of at least few of

them being still preserved in some species is not negligible.

Within tetraploids, the sister species B. almorhae and B. udomritthiruji shared the presence

of double sites of the 5S rDNA cluster on some chromosomes and a pericentromeric position

of U2 snDNA in a small metacentric pair in contrast to the rest of the species under study,

where the position of U2 snDNAs was found to be terminal, occupying p-arms of a given st-a

chromosome pair. With regards to the occurrence of Rb translocations in the later Botia spe-

cies included in the dataset, our analysis evidenced chromosomal rearrangements mainly in

this tetraploid genus. In addition, 45S rDNA sites were probably homeologous between ana-

lyzed botiids, in contrast to variable 5S rDNA phenotypes.

Conclusion

To sum up, the findings from the current study allowed us to reach following conclusions: i)

selected cytogenetic markers showed different molecular drives, being in agreement with pro-

posed modes of long-term molecular evolution of tandemly arrayed sequences, ii) the evolution

of these markers does not seem to follow the phylogenetic relationships of studied botiids, ii)

diploids showed unexpectedly higher dynamics of rDNA phenotypes compared to tetraploids,

iii) individual tetraploid genomes followed distinct patterns of genome repatterning, but gener-

ally exhibit iv) high degree of rediploidization, with mosaic of diploid and tetraploid genomic

regions in all studied polyploids, corroborating the view of already old-aged and rather single

WGD event that predated Leptobotiinae/Botiinae divergence, especially with regards to uni-

formly re-diploidized number of U2 snDNA sites. Our findings thus point to intense post-poly-

ploid genome dynamics and possible impact of repetitive DNAs on genome divergence. Finally,

the current cytogenetic dataset will contribute to the follow-up research aimed at integrated in-

depth cyto-genomic analysis addressing the mechanistic nature of botiid polyploidization event.

Supporting information

S1 Fig. Karyotype and mitotic chromosomes of B. dario after different cytogenetic proto-

cols. (A) Karyotype arranged from Giemsa-stained chromosomes, (B) CMA3/DAPI staining.

(C) Dual-colour FISH with 28S rDNA (red, arrows) and 5S rDNA (green, arrowheads) probes.

(D) Uni-colour FISH with U2 snDNA (red, arrows) probe. (E) PNA FISH with telomeric
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probe. Due to low number of complete and/or well-spread metaphases, besides complete plates

with 2n = 96 (A,D) also incomplete plates with 2n = 95 (B,C) and 2n = 91 (E) had to be

selected, providing however sufficient data to present required features (e.g., absence of ITSs

in large-sized metacentric chromosomes; E). For better contrast, images were pseudocoloured

in red (for CMA3) and green (for DAPI) for CMA3/DAPI staining (B) and in green (telomeric

repeat probe) and red (DAPI) for telomeric PNA FISH (E). Bar = 10 μm.

(TIF)

S2 Fig. CMA3/DAPI staining in the rest of examined botiid species. (A) B. udomritthiruji,
(B) L. elongata, (C) P. fasciatus, (D) S. superciliaris, (E) S. zebra, (F) Y. lecontei. For better con-

trast, pictures were pseudocoloured in red (for CMA3) and green (for DAPI). Open arrows

indicate CMA3-positive sites. The metaphase spread of S. superciliaris (D) is incomplete

(2n = 97), but the number of CMA3
+ signals is congruent with S6F Fig. Bar = 10 μm.

(TIF)

S3 Fig. Selected sequential experiments clarifying conjugated or independent location of

distinct cytogenetic markers. Metaphases are arranged sequentially in Ch.macracanthus (A,

D), L. elongata (B,E), L. guilinensis (C,F), L.microphthalma (G,I) and S. superciliaris (H,J) after

CMA3/DAPI staining (D,E,F,I,J) and corresponding dual-colour FISH with 28S rDNA (red,

arrows) and 5S rDNA (green, arrowheads) probes (A,H) or PNA FISH with telomeric probe

(B,C,G). For better contrast, images were pseudocoloured in red (for CMA3) and green (for

DAPI) for CMA3/DAPI staining and in green (telomeric repeat) and red (DAPI) for telomeric

PNA FISH. Note the co-localization of single interstitial 5S rDNA site (A; open arrowhead)

with prominent CMA3
+ band (D) in Ch.macracanthus. Notice also partial overlap of extended

telomere-like sequences (B; open arrows) with a set of CMA3
+/45S rDNA sites in L. elongata

(E; open arrowheads) and complete interspersion of these sequences in L. guilinensis (C,F) and

L.microophthalma (G,I). Finally, in S. superciliaris, Figs H and J show correspondence between

45S rDNA (H; arrows) and CMA3
+ sites (J; empty arrowheads), while completely independent

locations of 5S rDNA (H; arrowheads) and CMA3
+ sites (J; empty arrowheads) is clearly

apparent. The site-numbers of particular markers on incomplete figures (C,F—L. guilinensis,
2n = 49; G,I–L.microphthalma, 2n = 49) can be verified on Fig 7D and 7E, respectively.

Bar = 10 μm.

(TIF)

S4 Fig. Dual-colour (5S/45S) rDNA FISH in the rest of examined botiid species. 28S rDNA

(red, arrows) and 5S rDNA (green, arrowheads) probes mapped on (A) L. elongata, (B) L.

microphthalma, (C) S. superciliaris, (D) S. zebra, (E) Y. lecontei. Chromosomes were counter-

stained with DAPI (blue). Note the significant spreading of 5S rDNA sites in Y. lecontei (E; 13

signals—arrowheads). On the same picture (Y. lecontei; E), two adjacent arrows point to tan-

demly arranged double-sided 45S rDNA site, scarcely detectable based on degree of chromo-

some condensation (compare with S2F Fig). Despite being incomplete (2n = 99), metaphase

spread of Y. lecontei (E) displays complete number of 45S rDNA signals observed in this spe-

cies (see S2F Fig) and the number of 5S rDNA signals fits the range observed in our dataset for

this specimen. Bar = 10 μm.

(TIF)

S5 Fig. FISH with 5S rDNA and U2 snDNA probes in the rest of examined botiid species.

U2 snDNA (red, arrows) and 5S rDNA (green, arrowheads) probes (B,F,H) or a single U2

snDNA (red, arrows) probe (A,C,D,E,G) mapped on (A) B. almorhae, (B) Ch.macracanthus,
(C) L. elongata, (D) L. guilinensis, (E) P. fasciatus, (F) S. pulchra, (G) S. superciliaris, (H) S.

zebra. The metaphase spread of S. zebra (H) is incomplete (2n = 99). Chromosomes were
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counterstained with DAPI (blue). Bar = 10 μm.

(TIF)

S6 Fig. PNA FISH with telomeric probe in the rest of examined botiid species. (A) B. udom-
ritthiruji, (B) S. pulchra, (C) S. superciliaris, (D) S. zebra, (E) Y. lecontei. For better contrast, pic-

tures were pseudocoloured in green (telomeric repeat probe) and red (DAPI). For better

distinction between individual chromosomes, we included also the separate image with DAPI

channel for S. superciliaris (C). Bar = 10 μm.

(TIF)
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61. Mayr B, Ráb P, Kalat M. Localisation of NORs and counterstain-enhanced fluorescence studies in

Perca fluviatilis (Pisces, Percidae). Genetica. 1985; 67: 51–56. https://doi.org/10.1007/BF02424460

62. Sola L, Rossi AR, Iaselli V, Rasch EM, Monaco PJ. Cytogenetics of bisexual/unisexual species of Poe-

cilia. II. Analysis of heterochromatin and nucleolar organizer regions in Poecilia mexicana mexicana

by C-banding and DAPI, quinacrine, chromomycin A3, and silver staining. Cytogenet Cell Genet.

1992; 60: 229–235. https://doi.org/10.1159/000133346 PMID: 1380417

63. Graham DE. The isolation of high molecular weight DNA from whole organisms or large tissue mas-

ses. Anal Biochem. 1978; 85: 609–613. https://doi.org/10.1016/0003-2697(78)90262-2 PMID: 565603

64. Bueno D, Palacios-Gimenez OM, Cabral-de-Mello DC. Chromosomal mapping of repetitive DNAs in

the grasshopper Abracris flavolineata reveal possible ancestry of the B chromosome and H3 histone

spreading. PLoS One. 2013; 8. https://doi.org/10.1371/journal.pone.0066532

65. Scacchetti PC, Utsunomia R, Pansonato-Alves JC, da Costa Silva GJ, Vicari MR, Artoni RF, et al.

Repetitive DNA sequences and evolution of ZZ/ZW sex chromosomes in Characidium (Teleostei:

Characiformes). PLoS One. 2015; 10: e0137231. https://doi.org/10.1371/journal.pone.0137231

PMID: 26372604

Repetitive DNA dynamics in genome of diploid and tetraploid botiid loaches

PLOS ONE | https://doi.org/10.1371/journal.pone.0195054 March 28, 2018 22 / 27

https://doi.org/10.1508/cytologia.79.299
https://doi.org/10.1371/journal.pone.0159311
http://www.ncbi.nlm.nih.gov/pubmed/27442252
https://doi.org/10.1007/s10709-005-5536-8
http://www.ncbi.nlm.nih.gov/pubmed/16541297
https://doi.org/10.1007/s10228-010-0168-0
https://doi.org/10.1007/s10228-010-0168-0
https://doi.org/10.2478/s11756-014-0339-y
https://doi.org/10.1186/s12862-015-0532-9
http://www.ncbi.nlm.nih.gov/pubmed/26573692
https://doi.org/10.1371/journal.pone.0146872
https://doi.org/10.1371/journal.pone.0146872
https://doi.org/10.3409/fb65_1.63
https://doi.org/10.3409/fb65_1.63
https://doi.org/10.1186/1471-2148-13-42
https://doi.org/10.1186/1471-2148-13-42
http://www.ncbi.nlm.nih.gov/pubmed/23410024
https://doi.org/10.1023/A:1013788626712
https://doi.org/10.1023/A:1013788626712
http://www.ncbi.nlm.nih.gov/pubmed/11841191
https://doi.org/10.1159/000354882
http://www.ncbi.nlm.nih.gov/pubmed/24051427
https://doi.org/10.1111/j.1601-5223.1964.tb01953.x
https://doi.org/10.1007/BF02424460
https://doi.org/10.1159/000133346
http://www.ncbi.nlm.nih.gov/pubmed/1380417
https://doi.org/10.1016/0003-2697(78)90262-2
http://www.ncbi.nlm.nih.gov/pubmed/565603
https://doi.org/10.1371/journal.pone.0066532
https://doi.org/10.1371/journal.pone.0137231
http://www.ncbi.nlm.nih.gov/pubmed/26372604
https://doi.org/10.1371/journal.pone.0195054


66. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Win-

dows 95/96/NT. Nucleic Acids Res. 1999; 41: 95–8. Available from: http://www.mbio.ncsu.edu/

BioEdit/bioedit.html.

67. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol.

1990; 215: 403–10. Available from: http://blast.ncbi.nlm.nih.gov/blast. https://doi.org/10.1016/S0022-

2836(05)80360-2 PMID: 2231712
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78. Ráb P, Slavı́k O. Diploid-triploid-tetraploid complex of the spined loach, genus Cobitis in Pšovka
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124. Ráb P, Yano CF, Lavoue S, Jegede OI, Bertollo LAC, Ezaz T, et al. Karyotype and mapping of repeti-

tive DNAs in the african butterfly fish Pantodon buchholzi, the sole species of the family Pantodonti-

dae. Cytogenet Genome Res. 2016; 149: 312–320. https://doi.org/10.1159/000450534 PMID:

27710958

125. Araya-Jaime C, Mateussi NTB, Utsunomia R, Costa-Silva GJ, Oliveira C, Foresti F. ZZ/Z0: the new

system of sex chromosomes in Eigenmannia aff. trilineata (Teleostei: Gymnotiformes: Sternopygidae)

characterized by molecular cytogenetics and DNA barcoding. Zebrafish. 2017; 14: 464–470. https://

doi.org/10.1089/zeb.2017.1422 PMID: 28654351

126. Eickbush TH, Eickbush DG. Finely orchestrated movements: evolution of the ribosomal RNA genes.

Genetics. 2007; 175: 477–485. https://doi.org/10.1534/genetics.107.071399 PMID: 17322354

127. Nieto Feliner G, Rossello JA. Concerted evolution of multigene families and homeologous recombina-
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