
a	 Corresponding author: Michalis Aristophanous, MD Anderson Cancer Center, Department of Radiation Physics, 
1400 Pressler St., Unit 1420, Houston, TX 77030, USA; phone: (713) 794 1274; fax: (713) 563 6949; email: 
maristophanous@mdanderson.org 

Initial clinical experience with ArcCHECK for IMRT/VMAT QA
Michalis Aristophanous,a Yelin Suh, Pai C. Chi, Luke J. Whittlesey,  
Scott LaNeave, and Mary K. Martel
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 
Houston, TX, USA
maristophanous@mdanderson.org

Received 7 October, 2015; accepted 22 March, 2016

Many devices designed for the purpose of performing patient-specific IMRT/VMAT 
QA are commercially available. In this work we report our experience and initial 
clinical results with the ArcCHECK. The ArcCHECK consists of a cylindrical 
array of diode detectors measuring entry and exit doses. The measured result is 
a cumulative dose displayed as a 2D matrix. The detector array requires both an 
absolute dose calibration, and a calibration of the detector response, relative to each 
other. In addition to the calibrations suggested by the manufacturer, various tests 
were performed in order to assess its stability and performance prior to clinical 
introduction. Tests of uniformity, linearity, and repetition rate dependence of the 
detector response were conducted and described in this work. Following initial test-
ing, the ArcCHECK device was introduced in the clinic for routine patient-specific 
IMRT QA. The clinical results from one year of use were collected and analyzed. 
The gamma pass rates at the 3%/3 mm criterion were reported for 3,116 cases that 
included both IMRT and VMAT treatment plans delivered on 18 linear accelera-
tors. The gamma pass rates were categorized based on the treatment site, treatment 
technique, type of MLCs, operator, ArcCHECK device, and LINAC model. We 
recorded the percent of failures at the clinically acceptable threshold of 90%. In 
addition, we calculated the threshold that encompasses two standard deviations 
(2 SD) (95%) of QAs (T95) for each category investigated. The commissioning 
measurements demonstrated that the device performed as expected. The uniformity 
of the detector response to a constant field arc delivery showed a 1% standard 
deviation from the mean. The variation in dose with changing repetition rate 
was within 1 cGy of the mean, while the measured dose showed a linear relation 
with delivered MUs. Our initial patient QA results showed that, at the clinically 
selected passing criterion, 4.5% of cases failed. On average T95 was 91%, rang-
ing from 73% for gynecological sites to 96.5% for central nervous system sites. 
There are statistically significant differences in passing rates between IMRT and 
VMAT, high-definition (HD) and non-HD MLCs, and different LINAC models  
(p-values << 0.001). An additional investigation into the failing QAs and a com-
parison with ion-chamber measurements reveals that the differences observed in 
the passing rates between the different studied factors can be largely explained by 
the field size dependence of the device. Based on our initial experience with the 
ArcCHECK, our passing rates are, on average, consistent with values reported in 
the AAPM TG-119. However, the significant variations between QAs that were 
observed based on the size of the treatment fields may need to be corrected to 
improve the specificity and sensitivity of the device.
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I.	 INTRODUCTION

Intensity-modulated radiation therapy (IMRT) at its introduction in the late 1990s generated 
tremendous excitement.(1-4) The anticipation was that the new technique would accurately target 
tumors,(5,6) while at the same time sparing adjacent normal tissues.(7) IMRT achieves high levels 
of conformality by utilizing multiple segments from each beam with the multileaf collimators 
(MLCs). This can create optimal fluence maps through a process known as inverse planning.(8)  
The fluence maps of each beam are optimized such that a set of dose constraints regarding 
target coverage and normal tissue sparing are satisfied. This optimization results in maximiz-
ing coverage of the target volume while minimizing dose to adjacent normal structures. Steep 
dose gradients between tissues are often created to achieve these goals. The nonintuitive nature 
of the optimization, coupled with the potential of large dosimetric errors caused by the steep 
dose falloff away from the target, necessitated the introduction of patient-specific plan quality 
assurance (QA).(9,10) The complexity of IMRT treatments has only increased over the years, 
primarily by the introduction of volumetric-arc therapy (VMAT),(11) where, in addition to the 
MLCs, the gantry and repetition rate change during delivery as well.

The use of IMRT and VMAT is standard of care for many treatment sites. Out of 81 patients 
currently under treatment for head and neck cancer at our institution, 63 or 78% are being 
treated with IMRT (n = 38 patients) or VMAT (n = 25 patients), with the rest receiving 3D 
conformal, electron, or proton treatment. One of the most reliable methods for obtaining 
an absolute dose measurement in the clinic is the use of a properly calibrated ionization  
chamber.(12) That was the first instrument used for patient-specific QA at our institution. However, 
an ion chamber only offers the possibility of making a single point measurement, and this can 
be an inadequate verification of a treatment plan, particularly in the case of large fields with 
complex dose distributions. Therefore a common approach to assess delivery accuracy that was 
adopted early on was the use of a phantom made up of solid water slabs. This allowed both an 
absolute dose measurement using an ion chamber and a relative dose measurement using one 
or multiple radiographic films placed in between the solid water slabs.(11) The disadvantage of 
this approach is that it involves the use of films, which not only have energy and directional 
dependence, but also need development and calibration to convert optical density to dose. The 
use of a film processor for development is complicated by the fact that it needs to be carefully 
maintained to achieve a reproducible development process.

Several newer devices have been made commercially available over the last decade, all of 
which attempt to simplify patient-specific IMRT/VMAT QA. Newer devices include 2D detector 
arrays, such as the MatriXX (IBA Dosimetry, Schwarzenbruck, Germany) and MapCHECK (Sun 
Nuclear Corporation, Melbourne, FL), and 3D detector arrays, such as the Delta4 (ScandiDos, 
Uppsala, Sweden) and ArcCHECK (Sun Nuclear Corporation). The MatriXX is a 2D ion 
chamber array that can be either placed inside a solid water phantom to measure the dose dis-
tribution of a whole treatment plan in one plane or mounted on the LINAC head to measure 
the fluence from each beam. A similar device is the MapCHECK, which utilizes a 2D diode 
detector array instead. The Delta4, on the other hand, employs a 3D array of diode detectors 
on two orthogonal planes. The other 3D detector array, the ArcCHECK, is used in this study 
and will be discussed in detail in the next sections.

In the past five years, several studies reported experience with the ArcCHECK.(13-16) Yan et 
al.(13) reported on developing a calibration procedure for the detector array to account for both 
the intrinsic differences between the detectors, as well as correcting for any angular dependence. 
Neilson et al.(14) reported on their experience with the ArcCHECK device in the clinical setting, 
presenting passing rates from various treatment sites. They compared isocentric deliveries with 
the target in the center of the device and after a shift so that the high dose target fell on the 
diode detectors. They found that isocentric delivery with the ArcCHECK is sufficient, leading 
to reduced QA times and comparable results with high dose delivery. Li et al.(15) presented their 
commissioning results where they made several measurements to investigate dose response to 
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changing repetition rates, MUs, and field size. They found acceptable response under the tested 
conditions and concluded on the suitability of the ArcCHECK for IMRT/VMAT QA. Finally, 
Chaswal et al.(16) presented a comprehensive set of commissioning measurements. They found 
the diode detectors to have an acceptable response to all tested conditions. They concluded 
that the 2%/2 mm criterion for evaluating QA exhibited higher sensitivity in evaluating VMAT 
plans than the 3%/3 mm criterion.

Commonly accepted IMRT QA criteria are based on the AAPM task group 119 (TG-119) 
reported measurements.(9) However, these measurements were taken under specific conditions 
and it is unclear whether they are transferrable to alternative approaches. In addition, recent 
studies questioned some of the findings of the report. Kruse(17) reported on the accuracy of 
performing field-by-field QA for IMRT plans with two different planar dosimeters. The study 
found that gamma analysis scores could not reliably identify plans with low dosimetric accuracy. 
Kruse concluded that an effective QA should include a composite dose measurement. Nelms 
et al.(18) developed a method to calculate 3D dose distributions in a patient geometry using the 
ArcCHECK measurements and the patient anatomy from the planning CT. They found that 
gamma passing rates in excess of 90% were possible with the more stringent 2%/2 mm criterion. 
Despite these reports and the fact that newer devices differ in construction, materials used, and 
measurement locations, the 3%/3 mm criterion as mentioned in TG-119 is typically acceptable 
in the clinical setting.(16) Following appropriate commissioning of our ArcCHECK devices, we 
introduced them clinically with the above-mentioned criteria for passing IMRT/VMAT QAs. In 
this report, we briefly describe the most important commissioning measurements, and present 
and analyze the results with the ArcCHECK following its first full year of clinical operation, 
with particularly emphasis on QA failure trends.

 
II.	 MATERIALS AND METHODS

A. 	 ArcCHECK device and its calibrations
The ArcCHECK is an acrylic (PMMA) cylindrical phantom with a density of 1.15 g/cm3. The 
device has a diameter of 26.6 cm and a length of 21 cm. The central cavity has a diameter of 
15 cm and can accommodate various inserts (e.g., solid homogeneous core, dosimetric core). 
The diode array consists of 1,386 diode detectors (0.8 × 0.8 mm2) arranged in a helix with a 
pitch of 1 cm. The diameter of the cylindrical diode detector array plane is 20.8 cm and the diode 
detectors are spaced 1 cm apart both along the cylindrical length and along the circumference.

The detector array and dose calibrations are necessary steps for making measurements using 
the ArcCHECK. We performed an in-house calibration following manufacturer procedures for 
each beam energy utilized clinically for IMRT or VMAT plans (6, 15, and 18 MV). The first 
step is the detector array calibration, which measures and corrects for the relative sensitivity 
of the detectors.(13,19) This calibration is intended to be applied to the raw measurements of 
each detector to eliminate relative response differences between individual detectors. The dose 
calibration consists of a single 200 MU delivery with a 10 × 10 cm2 field. The actual dose deliv-
ered to the diode detectors was entered in the software (SNC Patient, Sun Nuclear Corporation, 
Melbourne, FL) and a calibration factor was obtained. The known delivered dose to the detec-
tors was calculated using our clinical treatment planning system (TPS) (Pinnacle3, Philips 
Healthcare, Fitchburg, WI) and the virtual phantom provided by Sun Nuclear Corporation with 
a density override of 1.15 g/cm3. In the TPS, a point at a depth of 2.9 cm was identified (diode 
detector depth), and the dose for 200 MUs delivered with a 10 × 10 cm2 field was calculated 
and recorded. The Pinnacle dose calculation conditions for this diode dose measurement were 
the same as for clinical patient plans (i.e., the dose grid was set to a 0.3 cm cubic size) and 
the collapsed cone convolution (CCC) algorithm was used for dose calculations. This diode 
dose obtained in the TPS was compared with a manual calculation made by assuming a water-
equivalent, flat-phantom geometry.
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B. 	 Basic characteristics of detector array responses
In order to verify the uniformity of the detector responses following an array calibration, we 
delivered three arcs with a 6 MV beam and a field size large enough to cover the entire array 
(27 × 27 cm2): the gantry angle from 270° to 90° with the proper ArcCHECK setup (200 MUs), 
and 270° to 0° and 1° to 90° with the ArcCHECK device rotated by 180° to capture the bot-
tom part of the array without going through the couch (100 MUs each). These deliveries when 
combined give a uniform dose to all the detectors and the dose should agree with that for the 
same arcs calculated in the TPS. To match the actual delivery, the three arc plans, one from 
90° to 180°, one from 181° to 270°, and one from 270° to 90°, were calculated in the TPS. In 
addition, the relative difference between detectors was calculated from the measured data by 
normalizing to the average over all detectors.

Furthermore, tests for the linearity and repetition-rate dependence of the detector response and 
the response of the detector array to simple field irradiation were performed. The ArcCHECK 
was setup isocentrically for these measurements (i.e., with the isocenter at the center of the 
device).(20) For the linearity, we irradiated the ArcCHECK device with a 10 × 10 cm2 field 
and 1–600 MUs at a repetition rate of 600 MU/min. For each irradiation, the measured dose 
was obtained by taking a region of interest (ROI) in the central 5 × 5 cm2 region of the irradi-
ated field. All the deliveries were also calculated using a 10 × 10 cm2 field in the TPS. For the 
repetition rate dependence, 100 MU was delivered with a 10 × 10 cm2 field and the repetition 
rate varying from 100 to 600 MU/min in 100 MU increments. The dose was measured with 
a 3 × 3 cm2 ROI placed in the center of the irradiated field and all the deliveries were again 
calculated in the TPS. Finally, four simple static fields were delivered:(16) 5 × 5 cm2, 5 × 5 cm2 
with a 10 cm lateral shift, 10 × 10 cm2, and 25 × 27 cm2.(19) The measured dose was compared 
with the calculated in the TPS.

C. 	 Comparison with previous QA system
Prior to the introduction of the ArcCHECK in our clinic, the I’mRT solid water phantom (IBA 
Dosimetry, Schwarzenbruck, Germany) with a film and an ion chamber was the standard QA 
procedure for IMRT/VMAT at our institution. For 31 patients whose QAs were performed with 
the phantom, QAs were repeated with the ArcCHECK device. The QA procedure followed for the 
ArcCHECK was the same as the one for the film and ion chamber. The patient plan was mapped 
on a CT scan of the ArcCHECK device, imaged with the uniform plug, and the DICOM dose 
and plan data were obtained. The QA results from the ArcCHECK were compared with those 
with the film and ion chamber. The ion chamber was used for an absolute dose comparison (3% 
criterion) and the film for a relative comparison (90% threshold at 5%/3 mm). The plans that 
were selected for this comparison included 26 IMRT and 5 VMAT patients for different treatment 
sites: five in thoracic, seven in head and neck, two gynecological, three gastrointestinal, two 
hematology, four genitourinary, five central nervous system, one sarcoma, and two pediatric.

D. 	 ArcCHECK patient-specific QA protocol
Based on the calibration, test results, and the AAPM TG-119 report, we developed a protocol for 
our clinical patient-specific IMRT/VMAT QA. Based on this protocol, the dose of every IMRT 
or VMAT patient plan is recalculated on the ArcCHECK virtual phantom as recommended by 
the manufacturer. Typically, the plan isocenter is placed at the center of the cylindrical phantom; 
however, in certain cases a shift might be needed (typically, in the superior or inferior direc-
tion only) to avoid irradiating the electronics or to fit the irradiated field onto the device. The 
dose calibration is performed before any QA session with the nominal dose used for calibra-
tion, as was the practice for our previous film and ion chamber system. The array calibration 
is performed every six months at our institution, to account for unequal changes in the diode 
response caused by radiation damage. Following delivery, the measured dose is compared 
using the SNC Patient software to the planned dose exported from the TPS. The results are 
evaluated using gamma analysis with a threshold of 10%. A QA passes if greater than 90% of 
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points meet the 3%/3 mm criterion. For evaluation, the measurement uncertainty and the Van 
Dyk percent difference(21) are enabled. The measurement uncertainty is a correction applied 
within the software after it makes an estimate of the daily uncertainty. The Van Dyk method 
calculates the percent difference normalized to the global maximum dose difference in the plan 
as opposed to a local maximum.

E. 	 Patient-specific QA
Three thousand one hundred and sixteen treated cases were QAed on two ArcCHECK devices 
at our institution between October 2013 and September 2014. Treatment planning for all 
patients was performed using Pinnacle3 v.9 (Philips Healthcare, Fitchburg, WI). The dose grid 
is typically set so that it covers at least the 20% isodose line and the grid resolution is 0.3 cm 
in all directions. Treatment planning guidelines vary by clinical service group; however, there 
are certain parameters that are common across different treatment sites. For IMRT, a step-and-
shoot technique is used with five to nine beam angles, most commonly chosen along with the 
Direct Machine Parameter Optimization (DMPO) algorithm for optimization. The beams are 
split if the width of the field (X direction for Varian LINACs) is greater than 20 cm. The total 
number of control points (CPs) is usually set to 15 per beam. The minimum segment area is set 
to 4 cm and the minimum number of MUs to 2 per segment. For VMAT, SmartArc optimiza-
tion is utilized, and typical guidelines include using 2 to 3 arcs with the leaf speed limit set to 
0.46 cm per degree and the gantry spacing set to 3° or 4°. For both IMRT and VMAT, the jaws 
are fixed during beam delivery. For all patients, the standard clinical QA protocol as described 
previously was followed. All QA results are for individual patients, not individual fields. An 
example of the main page of a QA report at our institution is shown in Fig. 1.

Fig. 1.  An example QA report at our institution.



25    Aristophanous et al.: ArcCHECK for IMRT/VMAT QA	 25

Journal of Applied Clinical Medical Physics, Vol. 17, No. 5, 2016

The report also includes the patient identifying information, treatment site, clinical service 
group, beam energy, treatment technique, LINAC model, LINAC, serial number of the device, 
and person who performed QA. The results were compared using the gamma passing rate 
(“%Passed” in the report) by grouping them into different categories. The categories used to 
sort the data were clinical service group, treatment technique, type of MLCs, LINAC model, 
device, and operator. To evaluate differences between categories, we tested the different groups 
using a two-tailed t-test evaluated at a 0.05 level of significance. Assuming that a good threshold 
for QA, defined as one that flags potentially problematic plans, is one that flags one in twenty 
QAs, we recorded the gamma passing rate threshold that would result in 95% of QAs to pass 
(T95) for each category.

We performed additional analysis for the failed QA cases in order to further investigate 
the reason for the failures. We performed two separate comparisons with the ion chamber 
data for a subset of the QAs. As part of an initial investigation into the failing cases, over the 
course of one month, all the QAs performed in a single QA session every night were delivered 
with the ion chamber placed in the central insert. This resulted in 81 QAs evaluated with the 
ArcCHECK also having a point ion chamber measurement at the center of the device. This 
investigation included both passing and failing cases. For further analysis, 31 QAs that failed 
with the ArcCHECK were repeated with our previous film and ion chamber system. Finally, 
certain plan characteristics of all the failed cases with the ArcCHECK were recorded. We 
looked at the field size (X and Y jaws), total number of MUs, and MUs/CP. In order to better 
understand the nature of these failures, we selected the equivalent number of the best passing 
QAs and recorded their plan characteristics for comparison.

 
III.	 RESULTS 

A. 	 Calibrations and initial tests
Assuming a water-equivalent flat phantom geometry, the depth of the diode detectors is 
equivalent to a depth of 3.3 cm in water, and the ArcCHECK is set up isocentrically with a 
source-to-surface distance (SSD) of 86.3 cm. Our LINACs are calibrated at the reference depth 
of the maximum dose (dmax) with the reference SSD (SSD0) of 100 cm to deliver 1 cGy per 
MU. Therefore the source-to-calibration distance (SCD) is SSD0 + dmax. Table 1 compares the 
manually calculated detector dose (Dman) in the water-equivalent geometry and the dose to the 
point at the detector depth inside the cylindrical virtual phantom calculated in the TPS (DTPS) 
for 6 MV, 15 MV, and 18 MV, respectively. The difference between Dman and DTPS was within 
0.5% for all energies.

For the detector response uniformity verification, the average detector difference between 
the composite measurement and the plan calculated in the TPS was found to be 1.3% with a 
standard deviation of 1%. For the point by point detector comparison from the mean dose over 
all detectors, we found a variation of 1% (1 SD) with all the points with greater than 2% varia-
tion at the edge of the device (away from the electronics) as shown in Fig. 2(a). Figure 2(b) 
shows a plot of the dose measured with the ArcCHECK normalized to the 100 MU reading 
against the delivered MUs, illustrating the linearity of the detector response. In addition, when 
comparing the measured dose with the TPS calculated dose, the difference is within 1% for all 

Table 1.  Manual (Dman) and TPS (DTPS) calculation of the dose to the detectors to be used for the dose calibration.

	Energy	 Dman	 DTPS	 Difference
	 (MV)	 (cGy)	 (cGy)	 (%)

	 6	 247.0	 246.7	 0.1
	 15	 263.8	 263.9	 -0.04
	 18	 265.8	 265.1	 0.3
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MU deliveries. Figure 2(c) shows a plot of the dose measured with the ArcCHECK normalized 
to the 600 MU/min reading against the repetition rate, illustrating the repetition rate dependence 
of the detector response. Again, the difference between the dose measured with the ArcCHECK 
and the dose calculated in the TPS was less than 1% for all repetition rates. The average dose 
over all repetition rates was 123.1 cGy with a standard deviation of 0.2 cGy.

Simple static field deliveries to verify the dose calibration for the entire detector array showed 
greater than 95% gamma passing rate for all fields, when compared with the TPS calculated 
dose, at the 2%/2 mm criterion. The results of the comparison of our previous QA system with 
the ArcCHECK system for both the ion chamber and gamma passing rate are summarized in 
Table 2. The gamma for this comparison was evaluated at 5%/3 mm since it was the criterion 
used for film with our previous clinical patient specific QA procedure.

Fig. 2.  Uniformity (a), linearity (b), and repetition rate dependence (c) of the detector response. Uniformity map: differ-
ence > 2% (white), 1% < difference < 2% (gray), and difference < 1% (black).

(a)

(b)

(c)
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B. 	 Patient-specific QA
A summary of the results from one year of clinical operation of the ArcCHECK are shown in 
Table 3 arranged by clinical service group. Overall, we observed a failure rate of 4.5% (140/3116) 
at the 90% gamma analysis threshold. A plot of the failure rate by month is shown in Fig. 3. 
The highest number of failures was seen in the gynecological (GYN) group with 22% of the 
cases failing, while the lowest failure rate was seen in the central nervous system (CNS) group 
with less than 1% of the cases failing. On average the threshold necessary for 95% of QAs to 
pass (T95) was 91%, ranging from 73% for the GYN group to 96.5% for the CNS. Figure 4 
shows a histogram plot of the percentage of QAs against the gamma passing rate to illustrate 
the differences between the service groups.

Table 2.  The average (± SD) ion chamber measurement difference and gamma passing rate, Γ, for the ArcCHECK 
and I’mRT phantom.

	ArcCHECK	 I’mRT Phantom
Average Ion Chamber (%)

	 -0.1±1.7	 -0.45±1.3

Average Γ (3%/3 mm) (%)
	 98.95±1.1	 98.9±1.4

Table 3.  The patient QA breakdown by clinical service group, showing the number of failed QAs. 

		  THOR	 HN	 GU	 GYN	 CNS	 OMAs	 GI	 PEDI	 BRST	 Total

	 # of QAs	 780	 687	 366	 363	 316	 243	 231	 96	 34	 3116
	 # of QAs
	for Γ < 90%	 16	 7	 11	 80	 3	 10	 8	 3	 2	 140

	 % failures	 2.1%	 1.0%	 3.0%	 22.0%	 0.9%	 4.1%	 3.5%	 3.1%	 5.9%	 4.5%
	 T95	 92.5%	 92.5%	 91.5%	 73.0%	 96.5%	 91.5%	 91.0%	 91.5%	 90.8%	 91.0%

THOR = thoracic; HN = head and neck; GU = genitourinary; GYN = gynecological; CNS = central nervous system; 
OMAs = lymphoma, melanoma, sarcoma; GI = gastrointestinal; PEDI = pediatric; BRST = breast; Γ =gamma passing 
rate (3%/3 mm); T95 = threshold for 95% of QAs to pass.

Fig. 3.  A plot of the percentage of failures per month, along with a fitted moving average trend line.
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Table 4 shows the number of QAs by treatment technique (IMRT vs. VMAT), type of MLCs 
in TrueBeam LINACs (Varian Medical Systems, Palo Alto, CA) (high-definition [HD] vs. 
non-HD), LINAC model (TrueBeam LINACs vs. Varian 2100 LINACs [Varian Clinac 2100, 
Varian Medical Systems]), device (#1 vs. #2), and operator (#1 vs. #2). While the number of 
QAs for IMRT and VMAT were similar, twice as many failures were observed with IMRT. 
For the TrueBeam LINACs, the failure rate of both HD and non-HD was less than 1%. The 
TrueBeam LINAC model had a failure rate less than 1%, while the Varian 2100 LINAC model 
had a failure rate close to 6%. There was a statistically significant difference between techniques, 
MLC types, and LINAC models, but no statistically significant difference between devices or 
operators. T95 for the technique and MLC type are illustrated in Fig. 5, using a histogram plot 
of percentage of QAs against the gamma passing rate. For IMRT, T95 was 88.5% compared 
to 92.4% for VMAT, while T95 for HD MLCs against non-HD MLCs was much higher, with 
the non-HD being 94.5% and the HD 97.1%.

As part of our initial investigation into the failures, for 81 QAs the ion chamber was inserted 
in the provided ArcCHECK central cavity. Out of the 81 cases 10 QAs failed with the ion 
chamber and 13 with the ArcCHECK. Taking the ion chamber measurement as ground truth, we 
calculated the sensitivity of the ArcCHECK in detecting QA failures as 50%, with a specificity 
of 89%. One problem with these measurements, however, was that the QA was optimized for 
an ArcCHECK measurement and the ion chamber was placed in the ArcCHECK at the central 

Fig. 4.  The cumulative percentage of the distributions of the gamma passing rate, Γ, (3%/3 mm) for each clinical service 
group individually and all together. THOR = thoracic; HN = head and neck; GU = genitourinary; GYN = gynecologi-
cal; CNS = central nervous system; OMAs = lymphoma, melanoma, sarcoma; GI = gastrointestinal; PEDI = pediatric; 
BRST = breast.

Table 4.  The patient QA breakdown by technique, MLC type, LINAC model, device, and operator. Note that MLC 
type comparison is for the QAs delivered in the TrueBeam LINACs only (1,136 in total), LINAC model comparison 
excludes the plans calculated in the TPS with the Elekta Versa LINAC model (3,082 in total), and operator comparison 
excludes the operators who performed the lower number of QAs (2,796 in total). 

	 Technique	 MLC-type	 LINAC Model	 Device	 Operator
					     Non-
		  IMRT	 VMAT	 HD	 HD	 TrueBeam	 2100	 #1	 #2	 #1	 #2

	 # of QAs	 1601	 1515	 492	 644	 809	 2273	 1552	 1564	 1382	 1414
	 # of QAs
	for Γ < 90%	 99	 41	 3	 6	 6	 134	 65	 75	 54	 61

	 % failures	 6.2%	 2.7%	 0.6%	 0.9%	 0.7%	 5.9%	 4.2%	 4.8%	 3.9%	 4.3%
	 p-value	 << 0.001	 << 0.001	 << 0.001	 0.39	 0.64

HD = high-definition; 2100 = Varian Clinac 2100; Γ = gamma passing rate (3%/3 mm).



29    Aristophanous et al.: ArcCHECK for IMRT/VMAT QA	 29

Journal of Applied Clinical Medical Physics, Vol. 17, No. 5, 2016

location without consideration of the location of the chamber. In order to better understand 
the performance of the device, 31 failed QAs with the ArcCHECK were repeated with our old 
system. Out of the 31 cases, 10 QAs had a failed ion chamber measurement. We did not include 
passing QAs in this analysis, therefore we could not calculate sensitivity and specificity.

In the next step of the failure investigation, we took the 140 failed cases and matched them 
by clinical service group to the same number of cases with the best passing rates. For both the 
passing and the failing QAs we recorded the average X jaw size, maximum Y jaw size, total 
number of MUs, and total number of CPs from which we calculated MUs/CP. The Pearson 
correlation coefficient between the passing rate and each one of these parameters studied is 
shown in Table 5. While there were differences between the failed and passing cases for all 
of the parameters studied, the gamma passing rate is most strongly correlated with the size of 
the Y jaw (indicative of a larger field size). Figure 6 shows a plot of the X and Y jaw size for 
all the failed cases (left) and all the selected best cases (right) against the gamma passing rate. 
The mean Y jaw size for the failed cases is 26.2 cm, while the mean Y jaw size for the passing 
cases is approximately half, 13.5 cm. The difference between the mean jaw size of the two 
groups is statistically significant (two-tailed t-test, p-value << 0.001).

 

Fig. 5.  The cumulative percentage of the distributions of the gamma passing rate, Γ, (3%/3 mm) for (left) different treat-
ment technique and (right) MLC types. HD = high-definition.

Table 5.  Correlation coefficients between the passing rates for the failed and matched passing QAs with the X and Y 
jaw sizes, the total number of MUs, and the MUs per control points (CPs). All correlations are statistically significant 
(p-value < 0.05). 

		  Γ	 X Jaw Size	 Y Jaw Size	 Total MU	 MUs/CP

	 Γ	 1.00	 -0.28	 -0.62	 -0.18	 0.12
	X jaw size	 -0.28	 1.00	 0.72	 0.12	 -0.40
	Y jaw size	 -0.62	 0.72	 1.00	 0.20	 -0.30

	Total MU	 -0.18	 0.12	 0.20	 1.00	 0.01
	 MUs/CP	 0.12	 -0.40	 -0.30	 0.01	 1.00

Γ = gamma passing rate (3%/3 mm).
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IV.	 DISCUSSION

Both ArcCHECK devices currently in clinical operation at our institution were tested and 
characterized before being introduced into the clinic for patient-specific IMRT/VMAT QA. 
In this work we presented the most representative set of tests that were performed as part of 
the commissioning process, the collection and analysis of the results from the first full year 
of operation of both devices in our clinic, as well as our initial investigation into the failures. 
Our results show the observed trends in the passing rates and appropriateness of the clinically 
selected passing threshold.

The dose calibration is one of two tasks that need to be performed before making any 
QA-related measurements. Performing the dose calibration with the ArcCHECK is complicated 
by the fact that it is difficult to take equivalent ion chamber dose measurements due to the 
cylindrical geometry. However, it is possible to make an ion chamber measurement using the 
flat-water phantom approximation. In this work we chose to perform two independent calcula-
tions of the detector dose: a TPS dose calculation was confirmed with a manual calculation for 
the water-equivalent flat phantom geometry. The agreement in the dose calibration was less 
than 0.5% for all energies. Using the dose calibration factor calculated in the TPS seems the 
most appropriate since, due to the cylindrical geometry of the ArcCHECK, both the manual 
calculation and an actual ion chamber measurement would be made in an approximate geometry.

By making the arc irradiation measurements (different angles) we can verify the array cali-
bration, since the entire array “sees” both entry and exit doses. For the posterior gantry angles, 
we rotated the ArcCHECK by 180° to make sure that the beam did not pass through the couch, 
which we found to have a significant adverse effect on the passing rate and to introduce additional 
uncertainty in the measurement. The detector array uniformity was largely within 2%, except 
at the superior edge where the measured dose was lower than average by as much as 3.4%, 
as shown in Fig. 2(a). This difference may be attributed to those detectors being closer to the 
device edge and therefore having reduced scatter contribution. In addition, we demonstrated the 
linearity of the detector response, as shown in Fig. 2(b) where the differences between different 
delivered MUs are less than 0.5%. The results also indicate that the detector response is practi-
cally independent of the repetition rate, with the measured dose differences less than 0.6%, as in 
Fig. 2(c). This is within the repetition rate dependence reported by the manufacturer, which is 
± 1% for SSDs ranging from 75 to 250 cm. Finally, by monitoring the failure rate on a monthly 
basis we determined that there was a slight increase in the percent of failures closer to the end 
of the one year (greater than 5% failure rate for two months in a row), as shown in Fig. 3. To 

Fig. 6.  The X and Y jaw size plotted against the gamma passing rate, Γ, (3%/3 mm) separately for the failed QAs (left) 
and the passing QAs (right).
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avoid any bias introduced in the results by radiation damage to the detectors, we determined 
that we need to recalibrate the device every six months (or approximately 1,600 QAs).

A comparison with the gold standard is an important verification step when transitioning 
from one QA procedure to another to ensure the consistency in the results. Therefore, several 
patient QAs were performed with both the ArcCHECK and our previous I’mRT phantom with 
the film and ion chamber. The results of the patient-specific QA evaluation (i.e., passing rates) 
showed no difference between the two systems (Table 2). However, this initial investigation 
included only passing QAs. In the efforts to troubleshoot failing QAs we performed additional 
comparisons with ion chamber measurements, where we included cases that failed with the 
ArcCHECK. First, we compared the results of 81 QAs with the ArcCHECK and the ion chamber 
embedded in the device. These results showed good specificity; however, somewhat reduced 
sensitivity. Given the fact that these QAs were optimized for ArcCHECK delivery (i.e., shifted 
only in the superior–inferior direction without making an effort to put the ion chamber in a flat 
dose region), large uncertainty in the ion chamber readings could be expected. Therefore, we 
performed a second analysis where for 31 QAs that failed with the ArcCHECK we repeated 
the QA with our previous QA system where the location of the ion chamber was optimized. 
Those measurements showed that only 10 (or 32%) QAs failed the ion chamber measurement 
and therefore agreed with the ArcCHECK. However, we did not include passing cases in that 
analysis, and therefore we could not reliably calculate sensitivity and specificity. While both 
approaches have limitations, they do offer important information about the ArcCHECK per-
formance when compared to a gold-standard detector. Specifically, the ArcCHECK seems to 
be able to identify cases that fail with our gold standard (high sensitivity), however, tends to 
flag as failed many passing cases (low specificity).

The initial clinical results with the ArcCHECK also reveal some interesting trends. The 
average gamma passing rate over all patients in order for 95% of QAs to pass is 91%, which is 
close to our clinically chosen threshold of 90%. These values also agree well with the reported 
threshold of 88%–90% for composite plans from the AAPM TG-119. It is interesting to note 
the two thresholds agreeing, given that they result from different QA device designs (2D vs. 
3D). However, despite the on-average agreement, significant variations between clinical service 
groups, treatment techniques, MLC types, and LINAC models were observed. From clinical 
experience, one reason that some QAs fail more than others with the ArcCHECK seems to be 
the size of the treated region. Specifically, larger field sizes, particularly in the longitudinal 
direction, were observed to fail more often than the rest.

In order to investigate this further, we matched the number of failed QAs to passing cases 
(picking the same number of cases proportionally from each clinical service group), by select-
ing the QAs with the highest passing rates from each service group. We found that the passing 
rate has the largest correlation with the Y jaw size (Table 5), indicating that a larger Y jaw size 
results in lower gamma passing rates. In order to look at this more closely, we plotted in Fig. 6 
the size of the X and Y jaws against the gamma passing rate for the failed and passing QAs 
separately. A clear difference is seen between the size of the Y jaw in the two instances. For 
the failed cases the mean is around 26 cm, while for the passing it is around 14 cm and closer 
to a square field (more similar to X jaw size). This result is also supported by the fact that the 
clinical service group with the higher number of failures, GYN, frequently treats the pelvis 
and paraaortic nodes, which result in long fields (> 30 cm) in the longitudinal direction. In 
addition, IMRT treatments with higher failures see larger field sizes than VMAT, HD MLCs 
with higher passing rates are limited to a field size of 22 cm, and LINAC model shows lower 
average passing rate for Varian 2100 LINAC, which is where all the GYN cases are treated. 
In fact, if the GYN cases are all left out of the failures, this leaves 48 failed cases for all other 
service groups and they are almost exactly divided to 50% IMRT and 50% VMAT, not support-
ing that the ArcCHECK favors one intensity-modulation technique over the other, but rather 
reinforcing the field size dependence of the device.
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Feygelman et al.(22) first observed a field size dependence with the ArcCHECK after deliv-
ering single static fields with and without the homogeneous core seeing a change from -1.1% 
to 1.3% and -0.7% to 1.7%, respectively, when going from a 5 × 5 cm2 to a 25 × 25 cm2 field 
size. This field size dependence was confirmed by Li et al.,(15) who reported a 1.7% increase 
in sensitivity of the detectors for a 20 × 20 cm2 field size. Our results show that the field size, 
particularly as defined in the longitudinal direction, where it can be as large as 40 cm, has a 
measurable effect on passing rates of clinical QAs as well. Possible strategies to mitigate the 
effects of this field size dependence on clinical QAs could include: 1) the application of correc-
tion factors for this field size dependence as done by Feygelman and colleagues, 2) performing 
a dose calibration with a field size that more closely matches the delivered QA, or 3) including 
the field size dependence in the gamma analysis, for example at 4%/3 mm instead of 3%/3 mm 
if this dependence is measured as 1%.

 
V.	 CONCLUSIONS

This work describes some of the procedures followed in commissioning the ArcCHECK device 
for patient-specific IMRT/VMAT QA and the results of its initial implementation in our clinic. 
Commissioning resulted in characterizing the output and response of the device and revealed 
that it performs as expected. Initial clinical results are mixed. They indicate that, on average, 
the passing threshold used clinically is comparable to the AAPM TG-119 report (i.e., 90% at 
3%/3 mm). However, our clinical results show a field size dependence in the passing rates. This 
means that, if our goal is to investigate the lowest-performing 5% of QAs, variations based on 
field size may result in too many unwarranted QA failures (e.g., larger field sizes) or nearly all 
the QAs passing (e.g., CNS cases). This field size dependence should be taken into account 
when evaluating QAs with the ArcCHECK in order to improve its specificity for large field size 
plans; however, care has to be taken to not decrease its sensitivity in detecting failures while 
correcting for this dependence.
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