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Summary

Retrospectively measuring markers on stored baseline samples from participants in a randomized 

controlled trial (RCT) may provide high quality evidence as to the value of the markers for 

treatment selection. Originally developed for approximating gene-environment interactions in the 

odds ratio scale, the case-only method has recently been advocated for assessing gene-treatment 

interactions on rare disease endpoints in randomized clinical trials. In this paper, the case-only 

approach is shown to provide a consistent and efficient estimator of marker by treatment 

interactions and marker-specific treatment effects on the relative risk scale. The prohibitive rare-

disease assumption is no longer needed, broadening the utility of the case-only approach. The 

case-only method is resource-efficient as markers only need to be measured in cases only. It 

eliminates the need to model the marker’s main effect, and can be used with any parametric or 

nonparametric learning method. The utility of this approach is illustrated by an application to 

genetic data in the Women’s Health Initiative (WHI) hormone therapy trial.
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1. Introduction

A high priority in many clinical contexts today is the discovery of biomarkers that predict 

the efficacy of a treatment. Such biomarkers, called predictive, prescriptive, or treatment 
selection biomarkers, may be used to guide treatment selection for individual patients, with 

potential to reduce treatment-associated toxicities, spare the cost of ineffective treatments, 

and allow individuals unlikely to benefit from a treatment to pursue alternatives. Examples 

of established treatment selection biomarkers include the Oncotype DX recurrence score, 

used to guide the use of adjuvant chemotherapy for the treatment of estrogen-receptor-

positive breast cancer (Paik et al., 2004, 2006), and RAS mutations which are used to guide 

the choice of antiepidermal growth factor receptor (EGFR) monoclonal antibodies for the 

treatment of colorectal cancer (Karapetis et al., 2008; Allegra et al., 2009; Douillard et al., 

2013).
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Retrospectively measuring markers on stored baseline samples from participants in a 

randomized controlled trial (RCT) and determining their associations with treatment efficacy 

is generally accepted as a means of providing high quality evidence as to the value of the 

markers for treatment selection (see, e.g. Sargent et al. (2005); Lynnn Henry and Hayes 

(2006); Mandrekar and Sargent (2009); Simon et al. (2009)). Outcome-dependent sampling, 

such as case-control sampling, may be used to increase resource-efficiency when biomarkers 

are expensive to measure, or specimens are difficult to obtain. There is a growing literature 

on statistical analysis methods for analyzing data from such retrospective marker studies 

(Song and Pepe, 2004; Bonetti and Gelber, 2004; Gunter et al., 2011; Foster et al., 2011; 

Zhao et al., 2012; Zhang et al., 2012; Huang et al., 2012; Royston and Sauerbrei, 2004; 

Matsouaka et al., 2014; Kang et al., 2014; Janes et al., 2014). The necessary, but not 

sufficient, condition for a marker to have value for treatment selection is that it should 

modify the treatment effect, i.e. have an interaction with the treatment.

Interaction is a fundamental concept in statistics. A statistical interaction is defined as a 

departure from additivity, when considering the association between two or more predictors 

and an outcome on some scale(Cox, 1984; De Gonzalez and Cox, 2007; Satagopan and 

Elston, 2013). Two potential issues arise in the pursuit of markers that have statistical 

interactions with treatment. First, a statistical interaction is scale-dependent: an interaction 

on the multiplicative odds ratio or risk ratio (or relative risk) scale may not exist, or may 

differ in magnitude, if examined on the risk difference scale. Second, estimating a statistical 

interaction on any scale depends on adequate modeling of the respective main effects. It is 

well established that there is hierarchy between main effects and an interaction: an 

interaction enters the model only if relevant main effects are also included in the model(Cox, 

1984; Bien et al., 2013), and mis-specification of main effects or omission of confounding 

variables may introduce bias in the estimated interaction (VanderWeele et al., 2012). 

Consequently, interaction modeling is particularly challenging when markers are high-

dimensional, and when some markers are continuous.

In observational studies, gene-environment interactions have been of substantial interest in 

recent years(Hutter et al., 2013). The case-only method is widely known to provide an 

efficient approximation of a gene-environment interaction on the odds ratio scale, under the 

assumption of gene-environment independence and when the disease outcome is 

rare(Piegorsch et al., 1994; Umbach and Weinberg, 1997). The latter condition is necessary 

for the case-only estimator to approximate the interaction on the odds ratio scale, while 

gene-environment independence can be controversial in observational studies(Albert et al., 

2001). In the RCT setting where markers are measured at baseline, marker-treatment 

independence is ensured by randomization, if markers are measured from baseline archived 

specimens. Exploiting this independence, the case-only estimator of the marker by treatment 

interaction on the odds ratio scale has been found to be as efficient as the full-cohort 

approach in trials with a rare outcome(Vittinghoff and Bauer, 2006; Dai et al., 2012). 

Recently, the case-only method has been used to estimate the interaction odds ratio in 

prevention trials such as the Women’s Health Initiative (Prentice et al., 2010) and the RV144 

HIV vaccine trial (Dai et al., 2014; Li et al., 2014).
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This paper considers, in an RCT, marker-specific treatment effects and marker-by-treatment 

interactions on the relative risk scale. Estimation of such multiplicative interactions using 

case-only data has been considered in observational studies(Tchetgen Tchetgen and Robins, 

2010; Moerkerke et al., 2010; Vansteelandt et al., 2008). The contributions of this paper lie 

in elucidating the benefits of the case-only method in retrospective biomarker studies in 

RCT, extending such method to marker selection from a high-dimensional set and prediction 

of marker-specific treatment effects, and connecting case-only methodologies to the growing 

literature in predictive markers for treatment selection. Specifically, by focusing on the 

marker-specific treatment effect on the relative risk scale, the prohibitive assumption that the 

disease is rare, not only for the overall prevalence but also in each stratum defined by 

baseline markers, is eliminated. Furthermore, the case-only approach does not require 

modeling of marker main effects, which renders it immune to main effect mis-specification 

and removes the difficulty to maintain the hierarchical structure of main effects and 

interactions when searching among high-dimensional markers for those that modify the 

treatment effect. Thus case-only methods can be applied to existing machine learning 

methods such as Lasso or regression trees. Finally, the proportion of subjects with treatment 

effects opposite in sign from the overall treatment effect, a key parameter in evaluating a 

marker’s utility for treatment selection, can be estimated by case-only methods and tested 

using a simple permutation test. How to perform such a test in the context of a full model 

with marker main effects and interactions is an open problem.

The structure of this paper is as follows. In Section 2 we describe the rationale and 

methodology for the case-only approach. Section 3 demonstrates in low- and high-

dimensional marker settings the performance of the approach in simulations. Section 4 

implements the case-only Lasso approach to discover SNPs that predict the effect of 

estrogen plus progestin on breast cancer risk in post-menopausal women from the Women’s 

Health Initiative clinical trial. We conclude with a discussion of our findings and of future 

research topics.

2. Methods

Consider an RCT where participants are randomized with probability π to an experimental 

intervention generically called “treatment” (Z = 1), or to the standard of care (Z = 0), which 

might be a standard treatment or no intervention at all. We assume that the clinical outcome 

of interest is binary; D = 1 indicates that an event occurred over a specified time frame, for 

example cancer recurrence within 1 year of treatment, and D = 0 indicates the absence of the 

event. Participants with the event are called cases and those without the event are called 

controls. Suppose baseline specimens (e.g. serum or tumor tissue) have been stored for all 

participants for a retrospective marker study. Let M be a vector of J markers measured on the 

stored specimens. M may be univariate, for example an existing marker signature, or high-

dimensional as in the case of tumor gene expression profiling.

Let P(D = 1|Z,M) denote the risk of the event given Z and M. Define the additive marker-

specific treatment effect to be Δ(M) ≡ P(D = 1|Z = 0,M) − P(D = 1|Z = 1,M). If the goal is to 

select between the two treatments for every individual, the event rate in the population is 

minimized by a rule that recommends treatment if Δ(M) > 0, and standard of care otherwise 
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(see e.g. Song and Pepe (2004); Gunter et al. (2011); Zhang et al. (2012); Zhao et al. (2012); 

Janes et al. (2014)); this is called the optimal treatment rule. If, and only if, markers interact 

with the treatment qualitatively so that they predict positive treatment effects for some 

subgroups and negative for others, such rule yields a lower event rate than that achieved 

under the same treatment for everyone.

For low or high–dimensional M, a common approach to identifying useful markers is to use 

a generalized linear regression model to examine the marker-by-treatment interaction and 

marker-specific treatment effect,

g{P(D = 1 ∣ Z, M)} = β0 + β1𝒲0(M) + β2Z + β3𝒲1(M) ∗ Z . (1)

Here g is a link function, commonly the logistic function, 0(·) is the functional form of M 
that corresponds to the vector of marker main effects, and 1(·) is the functional form of M 
that corresponds to the vector of interactions with Z. The hierarchical constraint of main 

effects and interactions requires that 1 is a subset of 0. A test of H0 : β3 = 0 is used to 

detect a marker-by-treatment interaction.

Measuring the marker on all RCT participants can be expensive, particularly if the RCT is 

large in size and/or the dimension of M is large. We describe an approach that requires 

measuring the marker in the cases only, and yet enables estimation of the marker-specific 

treatment effect on the relative risk scale. Let R(M) ≡ P(D = 1|Z = 1,M)/P(D = 1|Z = 0,M) 

denote the treatment effect relative risk given marker M. Crucially, in an RCT R(M) has the 

advantage of being estimable using the case data only, based on the following derivation:

R(M) ≡ P(D = 1 ∣ Z = 1, M)
P(D = 1 ∣ Z = 0, M)

= P(Z = 1 ∣ M, D = 1)
P(Z = 0 ∣ M, D = 1) · P(Z = 0 ∣ M)

P(Z = 1 ∣ M)
= P(Z = 1 ∣ M, D = 1)

P(Z = 0 ∣ M, D = 1) · 1 − π
π .

(2)

This follows from Bayes rule and the independence between Z and M dictated by 

randomization. Therefore, an estimate of P(Z = 1 ∣ M, D = 1)
P(Z = 0 ∣ M, D = 1)  that uses marker data from the 

cases only, together with the design constant π, provides an estimate of R(M). Note that I 
(Δ(M) > 0) = I (R(M) < 1). Thus, evaluating the treatment effect on the relative risk scale 

will not cause us to overlook the existence of markers that have qualitative interactions with 

the treatment, and treatment rules developed on the relative risk scale are identical to those 

on the absolute risk scale.

Writing (2) as the logarithm of the odds of treatment among cases, we have

log P(Z = 1 ∣ M, D = 1)
P(Z = 0 ∣ M, D = 1) = log π

1 − π + log P(D = 1 ∣ Z = 1, M)
P(D = 1 ∣ Z = 0, M) .
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If we postulate an exponential marker-specific treatment effect model,

R(M) ≡ P(D = 1 ∣ Z = 1, M)
P(D = 1 ∣ Z = 0, M) = exp {β2 + β3𝒲1(M)},

we can estimate β2 and β3, the main treatment effect and the marker-by-treatment interaction 

on the relative risk scale, by a logistic regression model for the probability of being assigned 

to the active treatment among cases

log P(Z = 1 ∣ M, D = 1)
P(Z = 0 ∣ M, D = 1) = log π

1 − π + β2 + β3𝒲1(M) . (3)

More generally, the case-only approach provides a valid estimate of the marker-specific 

treatment effect on the relative risk scale, R(M). Importantly, the data-generating mechanism 

need not be exponential for the parameter R(M) to be of interest, and therefore for the case-

only design to apply.

Along these lines, any regression or machine learning method that produces probability 

estimates, such as the Lasso or adaptive Lasso, classification trees, random forests, or 

support vector machines, can be applied to estimate R(M). In the genetics and genomics era, 

one of main challenges is to select a subset of relevant markers from a high-throughput 

genomic profiling experiment. The primary goal is marker selection, which will lead to 

subsequent validation studies for estimation and characterization of treatment effects. In 

simulations and a data application, we will select markers using the case-only Lasso logistic 

regression, a representative machine learning approach, where there are J markers in M 
modeled additively using linear terms:

log P(Z = 1 ∣ M, D = 1)
P(Z = 0 ∣ M, D = 1) = log π

1 − π + β2 + ∑
j = 1

J
β3 jM j,

subject to Σj |β3j| ≤ λ. After the shrinkage estimation, non-zero β̂3j suggests a marker-by-

treatment interaction; the estimated marker-specific treatment effect is 

R(M) = exp (β2 + ∑ j = 1
J β3 jM j).

Having a marker-by-treatment interaction is necessary but not sufficient for a marker to be 

useful for treatment selection. Given an interaction, a key question is the size of the marker-

defined subgroup with a treatment effect of the opposite sign as the overall treatment 

effect(Gunter et al., 2011; Huang et al., 2012; Janes et al., 2014). The larger the subgroup, 

the more impact the marker may have. Suppose the intent-to-treat effect of the treatment 

reduces the disease risk. We are interested in determining whether there are marker 

configurations in the study population such that R(M) > 1. Put into statistical language, the 

null and alternative hypotheses are
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H0: R(M) < 1, ∀M vs. H1: R(M) > 1 for some M .

Testing H0 against H1 is not trivial when markers are selected by adaptive procedures such 

as Lasso. Indeed, we are not aware of any testing procedure for estimation and selection 

methods derived from the risk model (1). However, the case-only procedure provides a 

straightforward permutation test: the treatment labels among cases can be permuted to 

generate a null distribution of P(R̂(M) > 1) after adaptive marker selection. We will assess 

the performance of this permutation test in our simulation study.

3. Simulations

3.1 Cost and efficiency for a single marker: proof-of-concept

We simulated 1000 datasets, each with 1000 participants having a binary treatment 

assignment (Z) with frequency 0.5, a binary marker M with frequency 0.3, and a binary 

disease outcome (D) generated using a log-linear model P(D = 1|Z,M) = exp(β0+0.3 * M
+β1*M*Z). We varied β0 to obtain different overall event rates in the trial population (~0.05, 

~0.15, ~0.40), and we varied β1 to examine different interaction effect sizes (0, log(1.5), 
log(2)). The case-only approach is compared to the case-control approach that samples all 

cases and an equal number of controls in estimating the relative risk interaction β1 using the 

correctly-specified log-linear model. Figure 1 shows the percentage estimation efficiency of 

β1 and the percentage samples used relative to the full-cohort approach, under the three 

event rates and the three interaction sizes. When the event rate is approximately 5%, the 

case-only approach yields remarkable estimation efficiency (90 ~ 95%), while requiring that 

only 5% of samples have markers measured. The standard 1:1 case-control approach uses 

twice the number of samples, yet only achieves 50 ~ 70% efficiency. As the event rate 

increases, the cost-efficiency advantage of the case-only approach diminishes, since the 

controls are more and more informative about the relative risk interaction.

3.2 The benefit of avoiding main effect modeling

To unbiasedly estimate interactions, main effects need to be correctly specified; otherwise, 

the interaction may absorb the inadequately specified main effects, leading to a biased 

interaction estimate. The case-only estimator eliminates the need for modeling marker main 

effects, and therefore is immune to main effect mis-specification. In the simulation 

experiments below, we generate data from two models to illustrate this advantage of the 

case-only approach over the standard approach. One model contains an unknown 

confounding factor M2, and the other has a quadratic main effect:

log P(D = 1 ∣ Z, M1, M2) = − 1.5 + β1M1 − log (2)M2 + β2M1 ∗ Z (4)

log P(D = 1 ∣ Z, M) = − 2 + β1(M − 1)2 + β2M ∗ Z (5)
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In (4), the markers M1 and M2 are both binary with frequency 0.5, and they are correlated 

with odds ratio 2.25. In (5), M is distributed as (1, 1), winsorized at 0 and 2. The 

treatment assignment is binomial with frequency 0.5 and independent of the marker(s). 1000 

simulated datasets were created, each with 1000 participants. The comparator is the standard 

full log-linear interaction model, fit to the 1:1 case-control sample with inverse probability 

weighting.

Figure 2 shows the comparison of the absolute bias for estimating the marker-by-treatment 

interaction β2, under the two models (4–5), where the size of the marker’s main effect is 

moderate (log(1.5)) or strong (log(2.5)). In any of the four scenarios, the case-only estimator 

appears to be unbiased or have little bias due to finite-sample performance, while the 

standard method applied to the case-control data yields considerable bias once the true 

interaction is not zero. Under the null hypothesis that there is no marker-by-treatment 

interaction, incorrect modeling of the marker’s main effect does not affect the interaction, 

and therefore the test of H0 : β2 = 0 is valid. However the bias appears as the interaction 

effect size increases. The bigger the main effect, the greater the bias that results from 

incorrect modeling of the main effect. These examples showcase the robustness of the case-

only approach which does not require main effect modeling.

3.3 Case-only approach to marker selection

The case-only approach can be directly applied to select markers that interact with treatment 

on the relative risk scale, without having to model the potentially high-dimensional main 

effects for the markers. We now investigate in simulations whether its simplicity in modeling 

translates to better performance for marker selection. For 2000 participants, one hundred 

independent binary markers were generated with frequency distributed in a uniform 

distribution between 0.05 and 0.45. Ten of the 100 markers predict risk and/or treatment 

effect, as characterized by the following log-linear model

P(D = 1 ∣ Z, M) = exp ( − 2.5 + ∑
j = 1

10
β1 jM j + β2 ∗ Z + ∑

j = 1

10
β3 jM j ∗ Z) . (6)

The case-only Lasso logistic regression is used to select markers and estimate the treatment 

effect on the relative risk. The comparator is the standard Lasso log-linear regression, 

applied to 1:1 case-control samples with 100 marker main effects, 1 treatment main effect, 

and 100 marker-by-treatment interactions. The case-control sampling is accounted for by 

inverse probability weighting. The standard Lasso approach ignores the hierarchical 

structure of main effects and interactions, but is as easy to implement. Ten-fold cross-

validation is used to specify the Lasso penalty parameter for both approaches.

Two scenarios are presented to help explain the differential performance between the 

standard Lasso approach and the case-only Lasso. In the first scenario, marker effects on the 

risk in the control arm and marker by treatment interactions are in opposite signs, so that 

marginally the marker effect is small. Specifically, β2 = 0; β1j = log(1.5) if j ≤ 7, β1j = 

−log(1.5) if 7 < j ≤ 10; and β3j = −log(2) if j ≤ 7, β3j = log(2) if 7 < j ≤ 10. We show that this 
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model set-up makes it difficult for markers to enter the model as main effects first in the 

standard Lasso approach. In the second scenario, marker effects on risk are present only in 

the treatment arm, but not in the control arm. In this scenario, markers have non-negligible 

marginal effects, making them easier to enter the model first in the standard Lasso approach. 

Specifically, β2 = 0, β1j = 0 for all j; β3j = −log(2) if j ≤ 7, β3j = log(2) if 7 < j ≤ 10. The 

overall event rate is ~10% for both scenarios, respectively.

In the left two panels in Figure 3, we compare the performance of the two approaches in the 

number of falsely selected interacting markers (among 90) and the number of correctly 

selected interacting markers (among 10) across 100 simulated datasets. When the marker 

effect in the control arm and the marker-specific treatment effect are in the opposite sign, the 

case-only approach markedly outperforms the standard approach, as the former yields a 

larger number of true positive markers selected given the same number of false positive 

markers. This is because the standard Lasso algorithm may miss the main marker effects in 

this case, which will adversely affect the selection of the interaction effect. Because the 

case-only approach directly models the interactions, it does not suffer this problem. In the 

second scenario, the marker effects are only in the treatment arm, and so the absence of a 

main marker effect does not influence selection of interaction. In this case the standard 

Lasso approach performs slightly worse than the case-only approach, mainly because of 

dimension reduction in the case-only approach.

The two panels on the right in Figure 3 show the distribution of the spearman correlation 

between the estimated marker-specific treatment effects (individual treatment effects) and 

the true marker-specific treatment effects, both on the relative risk scale, across the 100 

simulations. If no markers are selected using the Lasso regression, the correlation will be 

zero. Corresponding to the marker selection performance, the correlations for the case-only 

approach are remarkably higher than the standard Lasso approach in the first scenario, and 

slightly higher in the second scenario. The superiority of the case-only approach comes from 

the fact that, by removing the influence of main-effect modeling, interactions are modeled 

directly and the dimension of the feature space for model selection is reduced by half.

3.4 Case-only approach to assessing treatment selection by selected markers

For markers selected by an adaptive procedure such as Lasso, it is of interest to assess 

whether these markers, collectively, define a subgroup that has a treatment effect opposite in 

sign compared to the overall intent-to-treat treatment effect. We use a permutation test to 

accomplish this: treatment labels are permuted among cases. The case-only estimate of the 

overall treatment effect will not be changed in permutated datasets, however all gene-

treatment interactions are removed by permutation. We generated four scenarios for 

treatment main effect, marker main effects, and marker-treatment interactions, each will be 

additionally varied in sample size and overall disease probability by changing the intercept 

parameter. We let β2 = −0.5 so that there is a negative treatment effect when no marker has 

an interaction. Similar to the scenarios considered in Section 3.3, in the first scenario and for 

the main genetic effects we let β1j = log(1.5) if j ≤ 7, β1j = −log(1.5) if 7 < j ≤ 10. For gene-

treatment interactions, we let β3j = −log(1.5) if j ≤ 7, β3j = log(1.5) if 7 < j ≤ 10. In the 

second scenario we let all main genetic effects be zero, and set β2j = −log(1.5) if j ≤ 7, β2j = 
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log(1.5) if 7 < j ≤ 10. In the third scenario, we generated main marker effects by β1j = 

log(1.5) if j ≤ 7, β1j = −log(1.5) if 7 < j ≤ 10. We generated interactions by β3j = −log(1.5) if 

j ≤ 7, β3j = log(1.5) if 7 < j ≤ 10. In these three scenarios, approximately 2.5% participants 

have treatment effect opposite in sign compared to the overall treatment effect. The overall 

treatment effect in the scale of relative risk is 0.35, 0.47, and 0.54 respectively. We also 

generated a null model without interactions and β1j = log(1.5) if j ≤ 7, β1j = −log(1.5) if 7 < j 
≤ 10, β3j = 0 for j = 1, .., 100. In all simulation models we performed the permutation test 

using 500 permutations. The test statistic is the proportion of participants with a positive 

estimated treatment effect. One thousand simulated datasets were generated for each setting, 

each time using 500 permutations to compute the permutation-based p-value. We varied the 

sample size of the RCT from 2000 to 4000.

Table 1 shows the type I error and the power of the proposed permutation test. For either of 

two sample sizes and two disease probabilities being examined, the empirical type I error 

when no marker modifies the treatment effect is very close the nominal level (0.05). When 

10 out of 100 markers have interactions, the power for detecting a subgroup with a positive 

treatment effect increases with sample size and disease probability, but decrease from 

scenario 1 to scenario 3. This is because the overall treatment effect decrease from scenario 

1 to 3, rendering it harder to reject the null in the permutation test, even though the 

proportion of participants with a positive treatment effect remains similar. Note that in most 

of low power scenarios, the power to detect a subgroup with positive treatment effect is 

higher than the power to detect any of the 10 interacting markers with a family-wise error 

rate of 0.05. The power advantage of the former approach is less pronounced in the higher 

power settings.

4. Analysis of Women’s Health Initiative clinical trial data

The Women’s Health Initiative included a clinical trial that studied the health risks and 

benefits of daily oral estrogen plus progestin (E+P) therapy among postmenopausal women 

with no prior hysterectomy (The Women’s Health Initiative Study Group, 1998). The E+P 

trial was stopped early when the overall health risks including breast cancer were found to 

exceed the benefits (Rossouw et al., 2002; Chlebowski et al., 2003). In an intent-to-treat 

analysis, E+P was found to increase breast cancer risk as compared to placebo (HR=1.24, p 
< 0.001). However, evidence from the trial also suggested that E+P lowered the risk of some 

secondary outcomes such as hip fractures and diabetes (Rossouw et al., 2002; Margolis et 

al., 2004). There is a possibility that women may respond differently to E+P in terms of risks 

and benefits, depending on their inherited genetic susceptibility. It is therefore of interest to 

determine whether there exists a subgroup of women who do not experience increased breast 

cancer risk from E+P, who could be prescribed hormones for relief of post-menopausal 

symptoms without concern about this particular adverse effect. We examined 4988 SNPs 

previously studied for their associations with breast cancer incidence and intervention effects 

in clinical trials (Prentice et al., 2010; Huang et al., 2012). While the SNPs have been 

investigated using a joint model including main effects and interactions with all 

interventions evaluated in the WHI clinical trials, our goal in this analysis is to use the case-

only Lasso logistic regression approach to determine specifically whether there are a subset 
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of SNPs predicting heterogeneous E+P effects on breast cancer, and if so, to examine the 

associated marker-specific treatment effects.

There were 949 women selected for inclusion in the original case-control analysis of the 

SNPs. For our case-only analysis, we included data for 471 invasive breast cancer cases in 

this sample. The indicator of E+P or placebo was regressed on 4988 SNPs in a Lasso logistic 

regression model, with the offset log(π/1 − π) (π = 51%), which was fit using the R package 

glmnet. Missing SNP values are rare (~0.5%), and were imputed by the mean of the 

genotype scores (0,1, and 2) among observed values. Imputation using other methods, for 

example the most common genotype, did not change the markers selected. We chose the 

Lasso penalty parameter using 10-fold cross validation, repeated 100 times to reduce the 

impact of random splitting. A set of 71 SNPs was selected after we applied the selected 

penalty parameter to the entire dataset. Among 71 SNPs, 39 have positive estimated 

interactions with the treatment, and 32 have estimated negative interactions. Table 2 shows 

the results for the top 10 SNPs among the 71 selected, listed according to the effect size of 

the SNP-treatment interaction in the final model after shrinkage estimation. We listed these 

estimates merely to get impression of interaction effect sizes, acknowledging these 

shrinkage estimates can be biased toward zero. We did not provide uncertainty measures of 

these estimates because post-selection inference for the Lasso method using cross-validation 

to select the penalty parameter is currently an open problem (Taylor and Tibshirani, 2016). 

Notably, one of the top-ranked SNPs (rs7519783) was also reported by Huang et al. (2012).

The main interest in data analysis is to investigate whether there is a subgroup, defined 

collectively by these selected SNPs, who did not have increased risk of breast cancer by E

+P. As shown in the methods section, individual treatment effects on the relative risk scale 

can be predicted by the “odds of treatment” using the case-only Lasso logistic regression. 

We first computed these estimates for 471 cases in the case-control sample for this breast 

cancer analysis, using the 71 SNPs and their fitted coefficients from the Lasso regression. 

Notably, 29% of case women (p-value=0.003, based on 2000 case-only and treatment-label-

permutated datasets as shown in Methods and simulations) were estimated to have treatment 

effect relative risk of less than 1, meaning that breast cancer risk is estimated to be reduced 

under E+P in 29% of case women, despite the overall treatment effect is hazardous. In case-

control samples, cases are highly selective and do not represent the trial population. To 

obtain the distribution of individualized treatment effects in the entire E+P trial population, 

each estimated individual treatment effect in the case-control was weighted by the inverse of 

the sampling probabilities. A histogram of the distribution of the weighted estimated 

treatment effects is shown in Figure 4. About 33% of women in the E+P trial is estimated to 

have lower risk of breast cancer if they receive E+P. Although we did not have an 

independent validation dataset, these results provide preliminary evidence that there is a 

subgroup of women whose breast cancer risk may not be increased risk by E+P, and the 

selected SNPs can be used to identify this subgroup. This result should be interpreted as 

exploratory in nature, and the SNPs identified warrant validation in follow-up studies.

As a comparison, we have analyzed the WHI data using the case-control Lasso and the same 

10-fold CV procedure to choose the penalty parameter. No marker was selected by case-
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control Lasso as having a gene-treatment interaction. This result highlights the benefit of the 

case-only approach, which reduces the feature space by half.

5. Discussion

This paper describes a resource-efficient approach to identifying biomarkers that interact 

with treatment on the relative risk scale in RCT. Rather than measuring the marker on all 

study participants, or using retrospective case-control sampling to select subjects for marker 

measurement, the marker is measured only on the cases–which may yield considerable 

specimen and cost savings. We show that the case-only data can be used to estimate the 

“odds of treatment” among the cases, which is equivalent to the treatment effect on the 

relative risk scale in a randomized trial context. Any machine learning method that produces 

probability estimates, such as random forests, boosting, or support vector machines, can be 

employed. Our simulations demonstrate that the case-only approach can, in some settings, 

more reliably identify markers interacting with treatment than does the standard case-control 

approach. Furthermore, the case-only approach can be used to test for presence of a marker-

defined subgroup with a treatment effect opposite in sign from the overall treatment effect.

The proposed case-only approach is perhaps best used in early-stage, retrospective profiling 

experiments for selecting markers with preliminary evidence of interaction. The case-only 

approach also applies to other endpoints. For example long-term survivors and patients with 

certain adverse effects in a trial can be studied as “cases” and, if germline genetics are of 

interest for predicting the effect of treatment on survivorship, blood samples can be collected 

and assayed post-treatment since germline genetics rarely change with time. Estimating the 

marker-specific treatment effect on the absolute risk scale and evaluating markers for use in 

treatment selection would require samples from controls in addition to cases.

For most clinical applications, a qualitative marker-by-treatment interaction is desired: the 

marker is useful if it identifies subgroups with treatment effects opposite in sign from the 

overall treatment effect. However, there are clinical applications where a quantitative–but not 

qualitative–marker-by-treatment interaction may be sufficient for a marker to be useful for 

treatment selection. In particular, if the treatment has downsides such as toxicity or cost, it is 

compelling to consider treating only subjects with sufficiently large treatment effects 

(Vickers et al., 2007; Janes et al., 2013). A marker that has a quantitative interaction with 

treatment–so that different marker values predict treatment effects of different magnitude–

may be useful, even if no marker values are associated with negative treatment effects. In 

such settings, the magnitude of the marker-by-treatment interaction will depend on its scale.

A limitation of the case-only approach is its requirement that the endpoint of RCT has to be 

binary, for example tumor response or survival at a certain time after treatment. This 

precludes applying it to trials with failure time endpoints such as progression-free survival 

and overall survival. Approximation along the lines of the rare-disease assumption is needed 

for case-only estimators of treatment effect to be interpreted as hazard ratios(Vittinghoff and 

Bauer, 2006; Dai et al., 2012).
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Figure 1. 
Comparison of the efficiency achieved when estimating a single marker-by-treatment 

interaction and the fraction of samples used in a RCT between the case-only sampling 

approach and the 1:1 case-control sampling approach. The full cohort sampling serves the 

benchmark (100%) for the efficiency and the samples used in analysis. Three scenarios were 

considered: (a) The overall event rate is ~5%; (b) The overall event rate is ~15%; (c) The 

overall event rate is ~40%.
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Figure 2. 
Comparison of the absolute bias for estimating a single marker-by-treatment interaction on 

the log relative risk scale when the marker main effect is mis-specified between the case-

only approach and the 1:1 case-control approach. Four scenarios of mis-specifications were 

considered: (a) Omitting a confounding variable when the main effect of the marker is 

moderate, log(1.5); (b) Omitting a confounding variable when the main effect of the marker 

is strong, log(2.5);(c) Mis-specifying the quadratic main effect of the marker by using a 

linear main effect and the quadratic effect is moderate, log(1.5); (d) Mis-specifying the 
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quadratic main effect of the marker by using a linear main effect and the quadratic effect is 

strong, log(2.5)
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Figure 3. 
Comparison of marker selection performance and individual treatment effect estimation 

using selected markers between the case-only Lasso approach and the 1:1 case-control Lasso 

approach. One hundred markers were generated, ten of which modified treatment effect. 

Two scenarios were considered: (a) and (b) are for the scenario where the interactions are in 

the opposite sign relative to main marker effects. (c) and (d) are for the scenario where main 

marker effects are zero. (a) and (c) show the performance of marker selection when marker-

by-treatment interactions are qualitative or quantitative, respectively. Correspondingly, (b) 

and (d) show the ability to estimate marker-specific treatment effects on the relative risk 
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scale. The lines in (a) and (c) are loess fit regressing the number of true positives on the 

number of false positives.
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Figure 4. 
Distribution of estimated individual marker-specific treatment effects using selected 71 

SNPs by the case-only Lasso approach on the relative risk scale in the E+P trial. The vertical 

line indicates the relative risk 1. About 33% of women (those with estimated treatment 

effects to the left of the vertical line) are predicted to have lower breast cancer risk under E

+P.
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Table 2

List of the top 10 SNPs selected using case-only lasso logistic regression in the WHI data. Bolded SNPs were 

also reported by Huang et al. (2012).

Rank by effect size SNP rs ID Chromosome MAF* Marker-by-treatment interaction (relative risk scale)

1 1998646 10 0.02 1.33

2 12364102 11 0.10 1.30

3 2286036 12 0.13 1.29

4 7519783 1 0.27 1.27

5 1619521 14 0.40 1.24

6 12375908 9 0.05 0.83

7 17154583 7 0.08 1.20

8 3787757 21 0.04 0.86

9 10493234 1 0.11 0.87

10 483644 11 0.33 1.13

*
MAF = minor allele frequency
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