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Abstract

17β-estradiol can rapidly modulate neuron function via membrane estrogen receptors (ERs) in a 

sex-specific manner. For example, female rat hippocampal neurons express palmitoylated versions 

of ERα and ERβ that associate with the plasma membrane. These membrane-associated ERs are 

organized by caveolin proteins into functional signaling microdomains with metabotropic 

glutamate receptors (mGluRs). ER/mGluR signaling mediates several sex-specific estradiol 

actions on hippocampal neuron function. An important unanswered question regards the 

mechanism by which sex-specific membrane-associated ER signaling is generated, especially 

since it has been previously demonstrated that mGluR action is not sex-specific. One possibility is 

that the genes necessary for the ER membrane complex are differentially expressed between males 

and females, including genes that encode ERα and β, caveolin 1 and 3, and/or the 

palmitoylacyltransferases DHHC-7 and -21. Thus we used qPCR to test the hypothesis that these 

genes show sex differences in expression in neonatal and adult rat hippocampus. As an additional 

control we tested the expression of the 20 other DHHC palmitoylacyltransferases with no known 

connections to ER. In neonatal hippocampus, no sex differences were detected in gene expression. 

In adult hippocampus, the genes that encode caveolin 1 and DHHC-7 showed decreased 
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expression in females compared to males. Thus, select genes differ by sex at specific 

developmental stages, arguing for a more nuanced model than simple widespread perinatal 

emergence of sex differences in all genes enabling sex-specific estradiol action. These findings 

enable the generation of new hypotheses regarding the mechanisms by which sex differences in 

membrane-associated ER signaling are programmed.
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1. Introduction

17β-estradiol (estradiol) is a potent modulator of neuron function across a broad temporal 

and contextual spectrum. At one end of the temporal spectrum are relatively slow, nuclear-

initiated actions on gene expression. These typically occur via estrogen receptor (ER) 

dimerization, include concurrent interaction with nuclear transcription factors and co-

activators, and then the ER complex binds to DNA, usually but not exclusively at estrogen 

response elements (EREs) [1]. These changes can be permanent. At the other end of the 

spectrum is rapid modulation of neuron function via membrane-initiated actions. More than 

forty years ago it was demonstrated that acute estradiol application changed the 

electrophysiological properties of preoptic/septal neurons within seconds [2]. This finding 

built upon the pioneering work of Szego and colleagues, who demonstrated that 17β-

estradiol action outside of the nervous system can occur within seconds [3]. Since these 

seminal findings, work from many laboratories has shown that in a wide variety of 

organisms and neuron types that estradiol can rapidly modulate many aspects of neuron 

function, including but not limited to intrinsic and synaptic electrophysiological properties, 

intracellular signaling molecule initiation, non-ERE dependent changes in gene 

transcription, and anatomical properties [4–11].

The known receptors that enable rapid estradiol action include membrane-associated 

versions of ERα and ERβ, G-protein coupled receptors such as GPER-1, Gq-mER, and 

others [12–17]. Here we focus on membrane-associated ERα and ERβ, which are classical 

ERs that have received posttranscriptional palmitoylation by the palmitoylacyltransferase 

proteins DHHC-7 and DHHC-21 [18, 19]. Membrane-associated ERα and ERβ may exist in 

several splice variants [17, 20, 21], and in this study ERα and ERβ refer to all known 

variants due to primer design. Membrane-associated ERα and ERβ are typically coupled 

with metabotropic glutamate receptors (mGluRs) by caveolins throughout the nervous 

system, including the hippocampus [22–38]. This relationship is schematized in [12]. Given 

this widespread expression, it is not surprising that membrane-associated ER act through 

mGluRs to modulate multiple behaviors, ranging from cognitive tasks such as hippocampal-

dependent memory consolidation to sex-specific behaviors such as lordosis [26, 27, 32, 33, 

39–41].

Regarding the rat hippocampus, pyramidal neurons exhibit both membrane-associated ERα 
and ERβ. These ER can be coupled to either mGluR1a or mGluR2 via the organizing actions 
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of caveolins 1 or 3 [18, 22–25]. These pathways mediate several estradiol actions that differ 

in incidence or mechanism by sex, including estradiol modulation of cAMP response 

element-binding protein (CREB) phosphorylation in vitro [18, 22–24], suppression of 

inhibitory synaptic transmission in vivo [25, 42], and hippocampal-dependent memory 

consolidation [39]. The basic underlying signaling pathways have been elucidated. There are 

at least two known pathways. In the first pathway, caveolin 1 couples membrane-associated 

ERα to mGluR1a and resulting second messenger cascade. This pathway is linked to 

inhibitory synaptic regulation, hippocampal-dependent memory consolidation, and how 

estradiol exposure alone phosphorylates the transcription factor CREB in hippocampal 

neurons. In this second pathway, caveolin 3 couples membrane-associated ERα and ERβ to 

mGluR2 and associated molecules. In hippocampal neurons, the second signaling pathway 

mediates how pre-exposure to estradiol attenuates CREB phosphorylation induced by the 

depolarizing action of 20 mM K+.

Since the functionality of these pathways differs between female and male hippocampal 

neurons, this suggests the possibility that the mechanism responsible for programming these 

sex differences is the regulation of the expression of genes that encode the necessary 

signaling components. We systematically tested this hypothesis in neonatal (P8) and adult 

(P70) male and female rat hippocampus using qPCR. P8 was chosen given that this age 

occurs after the organizing influences of perinatal hormone action, a process sufficient to 

induce sex differences in estradiol-induced signaling to CREB [24]. P70 was chosen given 

that this date is past puberty and similar in age to the relevant investigations of sex-specific 

estradiol modulation of hippocampal neurons [25, 39, 42–46]. Previous experiments have 

already demonstrated that mGluR1a and mGluR2 action do not differ by sex or 

palmitolyation state [18, 22, 24], and that mGluR1 is not palmitoylated [47, 48]. Thus this 

study focused on genes associated with ER signaling. These genes include those that encode 

all known slice variants of membrane-associated ERα and ERβ, caveolin 1 and caveolin 3, 

and then DHHC-7 and DHHC-21. As a control, this study also examined the other 20 

different DHHC palmitoylacyltransferases with no known connection to ER signaling.

2. Experimental Methods

2.1 Animals

All protocols were approved by the Animal Care and Use Committee at the University of 

Minnesota. Sprague-Dawley rats were born in the Mermelstein laboratory colony from dams 

purchased from Harlan Laboratories. Animals were housed in a room maintained at 20°C to 

21°C, with a 12-hour light, 12-hour dark cycle and water available ad libitum. Animals were 

group housed with their dam until postnatal day 22 (P22). After P22 animals were group 

housed by sex. Multiple litters were used. Female estrous cycle was not monitored. Male 

and female animals were killed at P8 (5 males, 5 females were used in experiments 

regarding ERs and caveolins; 7 males, 7 females were used in experiments regarding 

DHHC-3; 4 males, 4 females were used in experiments regarding DHHC1-2, 4-23) and P70 

(5 males, 5 females were used in experiments regarding ERs, caveolins, and DHHC-7; 7 

males, 7 females were used in experiments regarding DHHC-21). Differing numbers of 

animals were used in experiments because an insufficient quantity of mRNA was extracted 
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from a single animal to robustly analyze all target genes. Animals were anesthetized using 

isoflurane and decapitated. The brain was rapidly removed, blocked, and the hippocampus 

dissected from the caudal portion of the brain, following previously published techniques 

[18]. All dissections were made in ice-cold modified Hank’s balanced salt solution (HBSS) 

containing (in mM) 4.2 NaHCO3 and 1 HEPES (pH 7.35, 300 mOsm). After removal from 

the brain, the hippocampus was gently unrolled, and the dentate gyrus was removed. The 

remaining portion of the hippocampus was sliced into small pieces (≤ 0.5 cm in all 

dimensions). Tissue was immediately submerged in RNAlater (ThermoFisher Scientific), 

following the manufacturer’s recommendation of approximately 10 μl of RNAlater per 1 mg 

tissue. Tissue was stored at 4°C overnight and then frozen at −20°C until mRNA extraction.

2.2 PCR

Quantitative PCR (qPCR) was performed using previously published protocols [49]. mRNA 

was extracted and reverse transcribed from tissue using standard kits and following the 

manufacturer’s instructions for purification of RNA from animal tissues (RNAeasy Mini or 

Midi Kit; QauntiTect Reverse Transcription Kit; Qiagen, Valencia, CA, USA). Tissue was 

disrupted and homoegenized using a rotor-stator homogenizer. Residual DNA was removed 

via a gDNA Eliminator spin column and further DNAse digestion after RNA purification. 

qPCR amplification was performed using LightCycler 480 SYBR Green I Master Mix 

(Roche) on a LightCycler 480 II PCR machine (Roche). Threshold values were calculated 

using the Second Derivative Maximum method and standardized to the ribosome-related 

genes rpl13a and rps18 (LightCycler 480 Software 1.5, Roche). PCR for individual cDNA 

samples was performed in triplicate, and overall experiments were repeated at least twice. 

The thermal cycling program used was: a pre-incubation step at 95°C for 5 min, followed by 

at least 45 cycles consisting of a 10 s denaturing step at 95°C, annealing step for 10 s at 

60°C, an extension step for 10 s at 72°C, and a measurement of fluorescent intensity. At the 

end of each cycling program, a melting curve was run. Upper and lower primer sequences 

were either developed for this study or previously published [18, 50] (Table 1). We note that 

the primers employed for ERα and ERβ were designed to detect all known splice variants.

2.3 Statistics

Statistical analysis followed previously published methods [51]. Briefly, data were analyzed 

with 2-tailed Mann-Whitney U tests (Prism 6.07; GraphPad Software). Probability values ≤ 

0.05 were considered a priori significant. Data are presented as mean ± SEM.

3. Results

3.1 Estrogen receptor expression does not vary by sex in rat hippocampus

In the first experiment, we tested if ERα and ERβ show differential expression by sex in the 

hippocampus. Membrane-associated ERα and ERβ are encoded by the genes esr1 and esr2, 

respectively. These are the same genes that also encode for nuclear-expressed ERα and ERβ. 

We found no evidence that the expression of esr1, the gene that encodes membrane-

associated ERα, differed by sex in either neonatal or adult hippocampus (Figure 1A; 

neonatal: U=7, P=0.31; adult: U=11, P=0.84). Similarly, esr2, the gene that encodes 

membrane-associated ERβ, did not differ by sex (Figure 1B; neonatal: U=7, P=0.56; adult: 
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U=8, P=0.73). These results support the conclusion that overall gene expression of ERα and 

ERβ do not differ by sex in rat hippocampus. This finding serves as an important control as 

it verifies the results of previous studies from other laboratories that analyzed ER mRNA, 

protein, and immunocytochemical expression [52–55], and helps interpret how 

measurements at the foundational level of gene expression relate to those made across 

transcription.

3.2 Caveolin 1 expression is decreased in adult female compared to male hippocampus

Caveolins are necessary for coupling membrane-associated ERα and ERβ to specific 

mGluRs [23]. The next experiments tested whether caveolin 1 and caveolin 3 expression 

differed by sex. Expression of cav1, which encodes caveolin 1, did not differ by sex in 

neonatal hippocampus (Figure 1C; U=11, P=0.84). In adult hippocampus, expression of 

cav1 was decreased in females compared to males (Figure 1C; U=0, P=0.0079). Expression 

of cav3, which encodes caveolin 3, did not differ by sex at either developmental time point 

(Figure 1D; neonatal: U=10, P>0.99; adult: U=12, P>0.99). These data indicate that 

expression of caveolin 1, but not caveolin 3, may be developmentally regulated in a sex-

specific manner.

3.3 DHHC-7 expression is decreased in adult female compared to male hippocampus

Membrane-associated ERα and ERβ must be palmitoylated in order to properly signal. The 

palmitoylacyltransferase proteins DHHC-7 and DHHC-21 are necessary for ER 

palmitoylation and membrane signaling in hippocampal neurons and cancer cells [18, 19]. In 

neonatal hippocampus, no sex differences were detected in the expression of any gene 

encoding a known DHHC palmitoylacyltransferase (Table 2), regardless of whether the 

DHHC is known to be linked to ER signaling. This finding includes the genes that encode 

DHHC-7 and DHHC-21, zdhhc7 and zdhhc21, respectfully (Figure 2). In adult 

hippocampus, we targeted the genes that encode DHHC-7 and DHHC-21. Expression of 

zdhhc7, which encodes DHHC-7, was decreased in adult females compared to males (Figure 

2A; U=2, P=0.0317). Expression of zdhhc21, which encodes DHHC-21, did not differ by 

sex (Figure 2B; U=23.5, P=0.92). As a control, we also measured expression of the gene that 

encodes DHHC-11, which has no known connection to ER palmitoylation in either neuronal 

or nonneuronal cells [18, 19]. Expression of zdhhc11, which encodes DHHC-11, did not 

differ by sex in adult hippocampus (Male: 1.10 ± 0.22, Female: 1.12 ± 0.24; U=11.5, 

P=0.89). This data indicate that the expression of DHHC-7, but not DHHC-21, may be 

developmentally regulated in a sex-specific manner, similar to caveolin 1 expression.

4. Discussion

Here we tested the hypothesis that the expression of genes necessary for membrane-

associated ER signaling complexes differ by sex in the rat hippocampus. There are three 

principle findings of this study. First, no sex differences were detected in the expression of 

any gene in neonatal hippocampus. Second, the genes that encode caveolin 1 and DHHC-7 

were decreased in adult hippocampus. Third, the other genes analyzed, including those that 

encode for all known DHHCs, did not show sex differences in expression in adult 

hippocampus. This study demonstrates that caveolin 1 and DHHC-7 represent a promising 
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route for future experiments targeting the mechanisms underlying sex specific membrane-

associated ER signaling.

A priori, there were three possible broad outcomes for this experiment. The first possible 

outcome was that all the genes necessary for membrane-associated ER signaling showed sex 

differences in expression. This result was unlikely given the pleotropic actions of membrane-

associated ER on hippocampal neurons, and the lack of detected sex differences in 

autoradiographic measurements of estradiol binding, ERα and ERβ mRNA, protein, and 

immunocytochemical expression in rat hippocampus [52–56]. This demonstrated 

consistency in ER expression across translation, along with both our and other laboratory’s 

previous studies showing strong relationships between ERα, caveolin 1 and 3, and 

DHHC-22 mRNA and protein expression [18, 19, 23], validates the approach of this study to 

assess sex differences at the foundational level of gene expression. Nevertheless, it is 

important to acknowledge an important limitation of this study: that change in mRNA 

expression does not necessarily directly translate to changes in protein expression, or once 

created, that a protein is trafficked to the plasma membrane versus other destinations within 

the neuron. Indeed, ERα and ERβ must be modified post-transcription in order to be 

trafficked to the membrane, so mRNA measurements of esr1 and esr2 assess both the 

nuclear and membrane versions of ERα and ERβ. We also did not measure the expression of 

gper1, which encodes G-Protein Coupled Estrogen Receptor 1, a membrane estrogen 

receptor distinct from ERα and ERβ [16, 57]. Future experiments should directly assess sex 

differences in ERα, ERβ, and GPER-1 availability at the plasma membrane, as it is possible 

that this may be part of the mechanism generating sex-specific estradiol signaling. Other 

limitations which should also be considered when interpreting these data include that the 

dissection employed does not distinguish between different cell types or the various 

hippocampal regions (other than the dentate gyrus, which was removed), and that the estrous 

cycle in females was not monitored.

The second possible broad outcome of this experiment was that none of the assessed genes 

showed sex differences in expression. A priori, we found this outcome unlikely, given the 

robust sex differences and estradiol-sensitivity displayed by the hippocampus and its 

component cells in many metrics, including gene expression in a number of different 

contexts [12, 43, 44, 58–63]. This sensitivity to gonadal sex is not limited to the 

hippocampus. Sex differences in gene expression are widespread across the brain, even in 

regions not directly involved with sex specific behaviors such as reproduction [64, 65].

This leads us to the third broad possible outcome, that select genes showed sex differences 

in expression. A priori, we considered this outcome to be the most likely and potentially 

insightful. For example, if only genes that encode caveolins showed a sex difference, then 

that would indicate that regulation of caveolin expression played a significant role in 

generate sex-specific ER signaling. Another possibility was that genes linked to a specific 

membrane-associated ER pathway showed sex differences in expression. Indeed, this is the 

principal finding of this study. Both caveolin 1 and DHHC-7 showed sex differences in 

expression in adult hippocampus. It is highly significant that both caveolin 1 and DHHC-7 

showed sex differences in expression. Caveolin 1 couples membrane-associated ERα to 

mGluR1a and the resulting second messenger signaling cascade, and DHHC-7 is necessary 

Meitzen et al. Page 6

Steroids. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for ERα to signal from the membrane in both cultured and adult hippocampal neurons [18, 

19].

An interesting point about the findings of this study is the direction of effect in adult 

animals. Namely, that caveolin 1 and DHHC-7 were decreased in expression in adult female 

hippocampus compared to male hippocampus. While we have only observed action of the 

ERα/mGluR/caveolin 1 pathway in female hippocampal neurons in the context of signaling 

to CREB [22, 24], similar interactions occur in adult male hippocampus neurons in other 

contexts. In particular, this study’s findings strongly resonate with the known actions of 

membrane- associated ERα on glutamatergic transmission in adult hippocampal neurons. 

Oberlander and colleagues showed that a specific estradiol-sensitive receptor in each sex 

exclusively mediates how estradiol rapidly potentiates glutamatergic neurotransmission in 

both male and female hippocampus [44]. Activation of ERα modulated glutamatergic 

transmission in males, not females. Given that caveolin 1 is necessary for organizing the 

ERα/mGluR pathway [23], it is possible that the increased expression of caveolin 1 and 

DHHC-7 in males is responsible for enabling estradiol-induce potentiation of glutamatergic 

signaling by enabling the trafficking of ERα. Consistent with this speculation, caveolin 1 

expression has been implicated with several forms of synaptic plasticity [66–68], and in 

males downregulation of caveolin 1 in the hippocampus is correlated with deficits in 

hippocampus-dependent learning tasks [69]. Much less is known about the role of DHHC-7 

and links to synaptic plasticity, however it has been implicated in the palmitoylation of other 

membrane receptors, the G protein alpha subunit, regulation of GABAergic synapse function 

and molecules such as NCAM and PDE10A that regulate synaptic plasticity [70–76].

In general, caveolins and DHHC palmitoylacyltransferases play crucial roles in both 

trafficking and organizing a wide range of plasma membrane-initiated signaling cascades. In 

the nervous system, caveolins are implicated in intracellular trafficking and with physically 

organizing receptors and other signaling molecules with lipid rafts on or near the plasma 

membrane, including mGluRs [67, 77–79]. In the hippocampus the expression of all three 

caveolin isoforms have been documented [23, 66]. Beyond mGluRs and membrane-

associated ERs [23, 80–82], caveolins are also involved with endocytosis, trafficking, and 

organizing a diverse multitude of relevant molecules such as dopamine receptors, NMDA 

and AMPA receptors, M1 muscarinic receptors, receptor tyrosine kinases and cAMP 

signaling pathway components both in and outside the nervous system [83–87]. Similar to 

caveolins, DHHC palmitoylacyltransferases play crucial roles in intracellular trafficking. 

DHHC palmitoylacyltransferases perform S-palmitoylation, which is a reversible post-

translational modification involving attaching a 16-carbon fatty acid palmitate to cysteine 

residues embedded within a specific peptide sequence on target proteins [88]. This palmitate 

group serves the dual function of being a trafficking signal and a lipophilic anchor. There are 

22 known DHHCs, which show differing levels of substrate specificity and individual 

function [89, 90]. mRNA for all of these DHHCs are present in hippocampal neurons, and 

the expression of all DHHC genes is examined in this study (Table 2). DHHC 

palmitoylacyltransferases regulate molecules necessary for synaptic function and are 

sensitive to synaptic plasticity, and their internal distribution can be dynamically regulated 

[91–94]. Given the diversity and sheer range of processes modulated by the members of the 

DHHC family, we do not find it unusual that a specific DHHC enzyme previously 
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implicated in membrane-associated ER function such as DHHC-7 shows differential 

expression by sex.

5. Summary

Here we have presented evidence that the expression of genes that encode caveolin 1 and 

DHHC-7 are decreased in adult female compared to male hippocampus. There were no sex 

differences detected in gene expression in neonatal animals. In adult animals, no sex 

differences in gene expression were detected for estrogen receptor α and β, Caveolin 3, 

DHHC-21. Overall, this body of data is useful for generating new hypotheses regarding the 

mechanisms by which sex differences in membrane-associated ER signaling are 

programmed.
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Highlights

1. Estrogen receptor α and β expression does not vary by sex in neonatal or 

adult rat hippocampus.

2. Caveolin 1 expression is decreased in adult female compared to male 

hippocampus, but not in neonatal rat hippocampus.

3. Caveolin 3 expression does not vary by sex in neonatal or adult rat 

hippocampus.

4. DHHC-7 expression is decreased in adult female compared to male 

hippocampus, but not in neonatal rat hippocampus.

5. DHHC-21 expression does not vary by sex in neonatal or adult rat 

hippocampus.
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Figure 1. 
Caveolin 1 expression is decreased in adult female compared to male hippocampus, with no 

sex differences detected in estrogen receptor α, β, or caveolin 3 expression. A, qPCR 

analysis of estrogen receptor α (ERα) expression in neonatal (P8) and adult (P60) male (M) 

and female (F) rat hippocampus. B, estrogen receptor β (ERβ). C, caveolin 1. D, caveolin 3. 

Bar color and letters indicate statistically significantly different groups.
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Figure 2. 
DHHC-7 expression is decreased in adult female compared to male hippocampus, with no 

sex differences detected in DHHC-21 expression. A, qPCR analysis of DHHC-7 expression 

in neonatal (P8) and adult (P60) male (M) and female (F) rat hippocampus. B, DHHC-21. 

Bar color and letters indicate statistically significantly different groups. Measurements of 

other DHHC genes are found in Table 2.
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Table 1

Primer sequences.

Gene Name GenBank Accession Number Upper and Lower Primer Sequences

cav1 (caveolin 1) NM_031556 5′-GCAGTTGTACCGTGCATCAAGAG-3′ and 5′-CGGATATTGCTGAATATCTTGCC-3′

cav3 (caveolin 3) NM_019155.2 5′-TGGAGGCACGGATCATCAAG -3′ and 5′-ACACGCCATCGAAGCTGTAA -3′;

esr1 (estrogen 
receptor α)

NM_012689.1 5′-TTTCTTTAAGAGAAGCATTCAAGGA-3′ and 5′-TTATCGATGGTGCATTGGTTT 
-3′

esr2 (estrogen 
receptor β)

NM_012754.1 5′-ATGTACCCCTTGGCTTCTGC -3′ and 5′-ACTGCTGCTGGGAGGAGATA-3′

rpl13a (ribosomal 
protein L13a)

NM_173340 5′-TGCTGCCGCACAAGACCAAA-3′ and 5′-AACTTTCTGGTAGGCTTCAGCCGC-3′

rps18 (ribosomal 
protein S18)

NM_213557.1 5′-AAAATCCGAGCCCATAGAGG-3′ and 5′-TCTTCTTGGACACACCCACA-3′

zhhdc1 (DHHC-1) NM_001039099.1 5′-GCAGCAAGCCTTAGGATGAT -3′ and 5′-TCAGGGCCAGGATGACAG -3′;

zhhdc2 (DHHC-2) NM_145096.2 5′-GCCACCTCCTTACGGATTCT-3′ and 5′-GCAGGGTTGCTCATACCG-3′

zhhdc3 (DHHC-3) AY886522.1 5′-TGCTTTGAAGAAGACTGGACAA-3′ and 5′-AAGAGCAGGGCCTCAAAAC-3′

zhhdc4 (DHHC-4) NM_001013123.1 5′-CATCAGCTCTTCCACACACG-3′ and 5′-TGTATTCCGCGTAAACTAGCC-3′

zhhdc5 (DHHC-5) NM_001039338.1 5′-TACACAGGGCTTCGAACACA-3′ and 5′-TGCCCAAGAGACTGCTATCC-3′

zhhdc6 (DHHC-6) NM_001037652.1 5′-GAACCATGCGTCCTTCACA-3′ and 5′-AAAGCAGCATGGGTGCAG-3′

zdhhc7 (DHHC-7) NM_133394.1 5′-CAATATGCAATGACGAAACTGAG-3′ and 5′-GAAGACAGCTTCATCCCTTCC-3′

zhhdc8 (DHHC-8) AY871204.1 5′-CCAGCACCCTCTTCTTCGTA-3′ and 5′-GAGGATGCCATTGTAGACAGG-3′

zhhdc9 (DHHC-9) NM_001039016.2 5′-ACACTCTTCTTTGCCTTCGAGT-3′ and 5′-AGCAGCAAACACAGGGATG-3′

zdhhc11 (DHHC-11) NM_001039342.2 5′-AACAACTTGACTTGGCCTACG -3′ and 5′-TGGCGAAAGAGTAGACAGCA -3′

zhhdc12 (DHHC-12) NM_001013239.1 5′-CTGACCTGGGGAATCACG-3′ and 5′-CTTGCTCTTCCCATTGACG-3′

zhhdc13 (DHHC-13) NM_001039037.1 5′-CTGGGCCATCCGACAAGGGC -3′ and 5′-CAGAGTGGGGTCTGCACCATGC -3′

zhhdc14 (DHHC-14) NM_001039343.1 5′-CCGGCAGACCGGCGTTTTCT -3′ and 5′-CAGGATGCCACCGACCACGG -3′

zhhdc15 (DHHC-15) NM_001039101.1 5′-CGCCGGGTACTGTCCTGGGT -3′ and 5′-GGTTGGGCTGCTGTGGGAGTG -3′

zhhdc16 (DHHC-16) NM_001039346.1 5′-CTACCGGCGTCGATGCCCAC -3′ and 5′-GAGCAGGGAGCGCAGGCAAA -3′

zhhdc17 (DHHC-17) NM_001039340.1 5′-ACCGAAACGGGCTGTGTGCC -3′ and 5′-TCCGCCCAAGAGGCTCACCAT -3′

zhhdc18 (DHHC-18) NM_001039339.1 5′-AGCCTGATCGACCGGAGGGG -3′ and 5′-CTGGCGTCTGGCTTGGCTCC -3′

zhhdc19 (DHHC-19) NM_001039259.1 5′-CCTAATTCACACGAGCCATCT -3′ and 5′-GGAAGAGTGGAATCAGGAAGC -3′

zhhdc20 (DHHC-20) NM_001039336.1 5′-GCGTAGTGGGCTGGGTTCCG -3′ and 5′-CACGCACAGCTCCACCACGTA -3′

zhhdc21 (DHHC-21) AY886536.1 5′-GATGGGAGCGCTTCGGCCTC -3′ and 5′-CCACATGCAGAGCGGGAGCTG-3′

zhhdc22 (DHHC-22) NM_001039325.1 5′-GATCAGGGTTGCGTCTGG -3′ and 5′-GCCAGCATCCTCGATTACAT -3′

zhhdc23 (DHHC-23) NM_213627.2 5′-TCGGCCGGAGACGTGTGAGA -3′ and 5′-AAGCCACGCGGAGCAGAACC -3′

There is no DHHC-10. Abbreviations: Domain-Containing Cysteine-Rich (DHHC)
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Table 2

DHHC expression in neonatal male and female rat hippocampus.

DHHC Name Expression Statistics (U, P)

DHHC-1 M: 1.01 ± 0.05; F: 0.79 ± 0.13 4, 0.34

DHHC-2 M: 1.02 ± 0.11; F: 0.93 ± 0.07 6, 0.60

DHHC-3 M: 1.02 ± 0.08; F: 1.12 ± 0.15 21, 0.71

DHHC-4 M: 1.01 ± 0.07; F: 0.90 ± 0.05 4, 0.34

DHHC-5 M: 1.01 ± 0.06; F: 1.22 ± 0.16 5, 0.49

DHHC-6 M: 1.04 ± 0.16; F: 1.06 ± 0.03 4, 0.34

DHHC-7 M: 1.02 ± 0.11; F: 0.93 ± 0.07 6, 0.60

DHHC-8 M: 1.01 ± 0.07; F: 1.01 ± 0.16 7, 0.89

DHHC-9 M: 1.01 ± 0.08; F: 0.97 ± 0.10 8, 0.99

DHHC-11 M: 1.01 ± 0.10; F: 1.32 ± 0.11 2, 0.11

DHHC-12 M: 1.03 ± 0.14; F: 1.27 ± 0.11 2, 0.11

DHHC-13 M: 1.01 ± 0.05; F: 0.83 ± 0.12 4, 0.34

DHHC-14 M: 1.01 ± 0.09; F: 1.11 ± 0.16 7, 0.89

DHHC-15 M: 1.00 ± 0.04; F: 1.13 ± 0.05 3, 0.14

DHHC-16 M: 1.00 ± 0.05; F: 0.71 ± 0.13 3, 0.20

DHHC-17 M: 1.02 ± 0.10; F: 1.25 ± 0.19 4, 0.34

DHHC-18 M: 1.01 ± 0.10; F: 1.15 ± 0.13 5, 0.49

DHHC-19 M: 1.09 ± 0.21; F: 0.89 ± 0.30 6, 0.69

DHHC-20 M: 1.01 ± 0.06; F: 1.21 ± 0.14 4, 0.34

DHHC-21 M: 1.05 ± 0.17; F: 0.87 ± 0.19 5, 0.49

DHHC-22 M: 1.03 ± 0.14; F: 0.78 ± 0.07 3, 0.20

DHHC-23 M: 1.10 ± 0.27; F: 0.68 ± 0.18 4, 0.34

No significant differences were detected between neonatal males and females. Values are mean ± SEM. Values are relative gene expression 
normalized to males, and are unitless. Abbreviations: M, male; F, female; DHHC, Domain-Containing Cysteine-Rich
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