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Summary

Combinations of multiple drugs are an important approach to maximize the chance for therapeutic 

success by inhibiting multiple pathways/targets. Analytic methods for studying drug combinations 

have received increasing attention because major advances in biomedical research have made 

available large number of potential agents for testing. The preclinical experiment on multi-drug 

combinations plays a key role in (especially cancer) drug development because of the complex 

nature of the disease, the need to reduce development time and costs. Despite recent progresses in 

statistical methods for assessing drug interaction, there is an acute lack of methods for designing 

experiments on multi-drug combinations. The number of combinations grows exponentially with 

the number of drugs and dose-levels and it quickly precludes laboratory testing. Utilizing 

experimental dose-response data of single drugs and a few combinations along with pathway/

network information to obtain an estimate of the functional structure of the dose-response 

relationship in silico, we propose an optimal design that allows exploration of the dose-effect 

surface with the smallest possible sample size in this paper. The simulation studies show our 

proposed methods perform well.
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1. Introduction

Multi-drug combination is an important therapeutic approach for diseases such as cancer, 

viral or microbial infections, hypertension and other diseases involving complex biological 

pathways. Synergistic drug combinations, which are more effective than expected from 

summing effects of individual drugs, offer the potential for improved therapeutic index. The 

past decade has seen significant progresses in developing proper design and analysis 

methods for two/three-drug combination studies, which have increased the chances of 

identifying optimized combinations for further therapeutic opportunities (Tan et al., 2003, 

2009; Kong and Lee 2006; Fang et al. 2008, 2015) as well as adaptive phase I clinical trial 
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designs that attempt to identify the best possible maximum tolerated doses through modeling 

of the joint dose-toxicity relationship (see, e.g., Yuan and Yin, 2008; Yin and Yuan, 2009a, 

2009b; Tan et al., 2016; Yang et al., 2016).

However, combination drug therapy targeting just a few gene products may be ineffective 

(Chen and Dancey, 2008; Jones, et al., 2008; Parson et al., 2008). Increasing the number of 

agents in a combination has been another strategy for increasing the level or type of 

interaction produced. In the past decade, the approach to cancer therapy has been 

revolutionized by the identification of a variety of novel signal transduction targets amenable 

to therapeutic intervention. These targets were identified based on improved understanding 

of the molecular mechanisms of action of second messengers, other components of signal 

transduction pathways, and systems biology. These advances have also made available large 

number of potential agents and call for new quantitative approaches for combination therapy 

(Fitzgerald et al., 2006; Hopkins, 2008; Xavier and Sander, 2010). Despite the changing 

paradigm to target multiple pathways, methodological advances in accurately identifying 

drug interactions have fallen behind, as shown by a paucity of literature on the design and 

analysis of multi-drug combinations.

The design of multi-drug combination experiment presents exceptional challenges and a 

high dimensional statistical problem. The number of combinations reaches 59049 for a study 

of 10 drug combinations with only 3 dose-levels for each drug. Since the number of 

combinations grows exponentially with dose-levels, it quickly precludes laboratory testing. 

In spite of the biological advances mentioned above and the significance of multi-agent 

combinations, current methods remain to be descriptive, thus, fail to address dimensionality 

and often violate statistical assumptions. As a result, many multi-drug combination studies 

are designed suboptimally by studying only pairwise combinations while fixing the dose of 

one or more drugs.

To determine the interaction among multi-drugs, the dose-response surface provides a 

comprehensive description on dose effects. For estimating the high dimensional dose-

response surface, experimental designs are required that provide selected concentrations or 

dose-levels of combinations, which allow exploration of the dose-effect surface with high 

accuracy at reasonable sample sizes. Recently, we developed a novel method to screen the 

large number of combinations and identify the functional structure of the dose-response 

relationship by using the dose-response data of single drugs and pathway/network 

knowledge (Fang et al., 2016). That is, data from experiments of single drugs and a few 

combinations as well as existing signaling network knowledge from sources such as KEGG 

are utilized to develop a statistical re-scaling model to describe the effects of drugs on 

network topology. The system comprises a series of statistical models with biological 

considerations, such as Hill equations, generic enzymatic rate equations and a regression 

model, to represent the cumulative effect of genes implicated in activation of the cell death 

machinery. In other words, a quantitative model can be established upon existing network 

topology along with meaningful signal propagation rules, and the significant drug 

interactions as well as the single drug effects are expected to “hide” in such a model. How to 

extract the significant drug interactions and single drug effects from the model will be 

described in Section 2. The method of Fang et al. (2016) is highly beneficial in bringing 
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forth a statistical framework for selecting drug interactions, and developing experimental 

designs and statistical analysis to estimate the high dimensional dose-response surface.

The purpose of this article is to derive designs of combinations of multi-drugs based on the 

functional structure of the dose-response relationship. The remainder of this paper is 

organized as follows. Section 2 briefly describes model formulation for the dose-response of 

multi-drug combinations. The experimental design of maximizing the posterior information 

on the dose-response is proposed in Section 3. Section 4 gives the design construction 

algorithm and sample size calculation. Simulation studies are conducted in Section 5. 

Concluding remarks and further discussions in Section 6 close this paper.

2. Model Formulation

Consider a combination study of s drugs A1, A2, …, As inhibiting some cell line or against 

some cancer tumor. Assume the dose-response surface to be

y(x) = g(x1, …, xs),   for  x = (x1, …, xs)
⊤ ∈ 𝔇, (1)

where xi is the dose-level of drug Ai, y is the dose-effect scaled to be a viability (proportion 

of cells surviving) or a tumor volume (with some transformation), and  is the dose region. 

Without loss of generality, we assume that  = Cs = [0, 1]s in this paper. Using the 

functional ANOVA decomposition (see, Sobol’, 2001), the dose-response y(x) has the 

following unique decomposition,

y(x1, …, xs) = g0 + ∑
i = 1

s
gi(xi) + ∑

1 ≤ i < j ≤ s
gij(xi, x j) + ⋯ + g1, 2, …, s(x1, …, xs), (2)

where g0 = ∫Cs y (x)dx is the overall mean of y(x), and

0

1
gi1, …, iu

(xi1
, …, xiu

)dxik
= 0,   for any  1 ≤ u ≤  and 1 ≤ k ≤ u, (3)

Csgi1, …, iu
(xi1

, …, xiu
)g j1, …, jυ

(x j1
, …, x jυ

)dx1⋯dxs = 0,   if  (i1, …, iu) ≠ ( j1, …, jυ) . (4)

Eq.(3) implies that the terms on the right-hand side of Eq.(2) are centered, whereas Eq.(4) 

implies that the terms on the right-hand side of Eq.(2) are mutually orthogonal. Furthermore, 

if we denote D = ∫
Cs[y(x)]2dx − g0

2 and DI = ∫Cs [gI(xI)]2dx for I ⊂ {1, …, s}, then due to 

Eqs.(3) and (4) it follows
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D = ∑
I ⊂ {1, …, s}

DI . (5)

Therefore, the influence of gI on y(x) can be measured by the ratio SI = DI / D, which is 

called the global sensitivity index and satisfies

∑
i = 1

s
Si + ∑

1 ≤ i < j ≤ s
Sij + ⋯ + S1, 2, …, s = 1 . (6)

The variances D and DI’s and, hence, the global sensitivity indices can be approximated by 

the quasi Monte Carlo method (Fang, Li and Sudijianto 2006).

The global sensitivity indices are often used to rank the importance of the gI(xI)’s appearing 

on the right-hand side of Eq.(2). The larger the index SI is, the more significant the effect of 

gI(xI) in the dose-response is. Thus, the functional structure of y(x) can be studied by 

calculating the indices. Since there are 2s terms on the right-hand side of Eq.(2), the 

estimation of the corresponding coefficients of those terms will not be possible, with limited 

sample size and/or wrong design settings. Recently, Fang et al. (2016) proposed a novel 

procedure to identify the most significant gI(xI)’s by utilizing data from experiments of 

single drugs (and a few combinations) and existing signaling network knowledge. The 

simulation studies showed that most contributions of single drugs and drug-interactions in 

the dose-response yielding a total of global sensitivity indices over 85%, are consistent with 

those from the true dose-response. Denote the vector of the dominating terms (e.g., those 

terms with their total global sensitivity indices more than 80%) by z(x) = [1, z1(x), …, 

zp(x)]⊤, where 1 corresponds to the overall mean and each of the functions zi corresponds to 

some gI, and the corresponding vector of regression coefficients is denoted by θ = (θ0, θ1, 

…, θp)⊤. Then the dose-response Eq.(1) becomes as

y(x) = z(x)⊤θ + f (x),   for  x = (x1, …, xs)
⊤ ∈ 𝔇, (7)

where f(x) is an unknown function and its global sensitivity index should be less than 20%. 

Since gI(xI) is determined by integrating y(x) with respect to some specific coordinates (see, 

Santner, Williams and Notz 2003, pages 193–194; Fang, Li and Sudjianto 2006, pages 193–

194), it typically has no closed form representation. As a result, a reduced form needs to be 

specified for the corresponding zi(x). Throughout this paper zi(x) is taken to be the product 

of the centered variables involved to represent the corresponding drug interaction. The 

purpose of variable centralization is to make Eqs.(3) and (4) being satisfied among zi(x)’s 

and it will not change the meanings of zi(x)’s. In this case, f(x) is interpreted as the effects 

that cannot be captured by the zi(x)’s. Below is a simple illustration.
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Example 1

Suppose that s = 3 and y(x) with x = (x1, x2, x3) is the in silico model describing the does-

effects on the response. Then by the functional ANOVA one can obtain that

y(x1, x2, x3) = g0 + g1(x1) + g2(x2) + g3(x3) + g12(x1, x2) + g13(x1, x3) + g23(x2, x3) + g123(x1, x2, x3),

where each gI(xI) is uniquely determined by integrating y(x) with respect to some specific 

coordinates (please see, Santner, Williams and Notz 2003, pages 193–194; Fang, Li and 

Sudjianto 2006, pages 193–194, for details). Furthermore, if the sensitivity indices of g1(x1), 

g12(x1, x2) and g123(x1, x2, x3) are the largest three and their total sensitivity indices is more 

that 80%, y(x) is then re-written as

y(x) = θ0 + θ1(x1 − 0.5) + θ12(x1 − 0.5)(x2 − 0.5) + θ123(x1 − 0.5)(x2 − 0.5)(x3 − 0.5) + f (x),

where f(x) is interpreted as the effects that cannot be captured by z1(x) = (x1 − 0.5), z2(x) = 

(x1 − 0.5)(x2 − 0.5) and z3(x) = (x1 − 0.5)(x2 − 0.5)(x3 − 0.5). It is easy to check that Eqs.(3) 

and (4) are satisfied among z1(x), z2(x) and z3(x).

As will be seen in the next section, Eq.(7) is served as the model basis for the combination 

experiments. Notice that according to the functional structure obtained from functional 

ANOVA, the function f(x) should satisfy

Cs f (x)dx = 0  and  
Csz(x) f (x)dx = 0 . (8)

The orthogonality requirement in (8) makes many conventional nonparametric methods such 

as spline technique and multivariate kernel smoothing not convenient to use. In fact, another 

way of thinking about the orthogonality is to use it to guarantee the identifiability of the 

regression parameter θ (Wiens 1991; Tan, Fang and Tian 2009). Finding a function that is 

orthogonal to each of the regression functions, however, may be too restricted. Our take is 

that a function that can address the identifiability problem is more general than the one that 

is exactly orthogonal to the regression functions.

3. Experimental Design

If the interest is the estimation of regression coefficients, the D-optimal design (Wu and 

Hamada, 2009) and Bayesian D-optimal design (Chaloner and Verdinelli, 1995) may be 

useful. Since the purpose of a drug combination study is to discover the promising dose-

level combinations among the agents (e.g., identify the synergistic dose region), a 

prediction-based design appears to be more desirable. In this section, a maximum entropy 

design is proposed for the combination experiments.

Let  = {x1, …, xk} be the candidate set of design points in the experimental domain, e.g., 

 is typically chosen to be a set of lattice points over the experimental domain. The aim is 
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to choose n points (n ≪ k) from  as the experimental points such that the prediction 

variability at un-experimental points, conditionally on the experimental points, is minimized. 

Based on Eq.(7), the dose-response can be formulated as

Y j(xi) = z(xi)
⊤θ + f (xi) + εij, i = 1, …, k, j = 1, …, ni, (9)

where Yj(xi) is the response value of the jth replication at the point xi, εij N(0, σε
2) is the 

measurement error and ni is the number of replications at xi. The unknown function f(x) is 

modeled as a Gaussian random function with zero-mean and global covariance matrix 

Cov[( f (x1), …, f (xk))⊤] = σ f
2V f

k . In other words, F  = [f(x1), …, f(xk)]⊤ is regarded as a 

realization of f(x). Similarly, a Gaussian prior is placed on the regression parameters, i.e., 

θ N p + 1(βθ, σθ
2Ip + 1). Generally, we need the following assumptions.

Assumption 1: θ N p + 1(βθ, σθ
2Ip + 1), F𝒳 Nk(0, σ f

2V f
k ) and εij N(0, σε

2) for i = 1, …, 

k, j = 1, …, ni.

Assumption 2: zi(x) is the product of the centered variables involved, i = 1, …, p.

Assumption 3: The distributions of θ, F  and εij’s are independent.

The above assumptions allow the experimenter to write down the model as follows

Y𝒳 = Z𝒳θ + F𝒳 + ε,  with

Y𝒳 = [Y(x1), …, Y(xk)]⊤ and

Z𝒳 = [z(x1), …, z(xk)]⊤ and

θ N p + 1(βθ, σθ
2Ip + 1) and

F𝒳 Nk(0, σ f
2V f

k ) and

ε Nk(0, σε
2W−1) (10)

where W = diag{n1, …, nk} is a diagonal matrix defining the replications on each of the 

candidate design points. In applications, the prior knowledge regarding which candidate 
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design point is more important is typically unavailable, setting the same number of 

replications for each candidate design point, say n1 = ⋯ nk = m, is a fair practice. The 

number m is called hereafter as the number of replications for simplicity and its value may 

be determined by knowledge about the run-to-run variation. For example, if the variation 

among the animals is known to be substantial, the number of replications may need to be a 

relatively large one. It is worthwhile to note that the model in (10) is defined at all candidate 

design points, i.e., no matter whether the point xi is actually selected as the design point or 

not, a number of replications is assigned to it before the experiment starts.

3.1 Design Criterion

In this section a design criterion is proposed under the special case that the model 

parameters σθ
2, σ f

2, σε
2 and V f

k  are known. This setting allows us to demonstrate why the 

proposed design criterion is desirable without cluttering the discussion with estimation 

issues, which are resolved in Section 3.2. Without loss of generality, let e be a n-run 

experiment selected from  = {x1, …, xk}, i.e., e has n distinct support points selected from 

. Denote Ye as the vector of response values at e, Yē as the vector of response values at ē = 

 − e. In other words, e is the set of experimental points whereas ē is the set of un-

experimental points such that e ∪ ē =  and e ∩ ē = ∅. Let pZ(·) be the probability density 

function of the random vector Z, the entropy of Z is then defined by

Ent(Z) = − ∫ pZ(z) log pZ(z)dz .

Entropy is a measure of unpredictability of a random vector, i.e., the larger the value of 

Ent(Z), the more uniform the distribution of the random vector Z—which in turns implies 

that the more unpredictable Z is likely to be (Shewry and Wynn 1987). The standard formula 

from information theory suggests that (cf., Lindley, 1956)

Ent(Y𝒳) = Ent(Ye) + EYe
{Ent(Ye |Ye)}, (11)

where Y  = (Ye, Yē) and the expectation is with respect to the marginal distribution of Ye. 

Obviously, it is desirable for a combination experiment to minimize the second term on the 

right-hand side of Eq.(11) because this term represents the average prediction variability of 

the unsampled vector given the experimental design. By the model in (10), Y  is a k-

dimensional Gaussian vector with mean and covariance matrix being

μY𝒳
= Z𝒳βθ and ∑Y𝒳

= σθ
2Z𝒳Z𝒳

⊤ + σ f
2V f

k + σε
2W,

respectively. Also, for a Gaussian random vector Γ ~ Nn(μΓ, ΣΓ) one can verify

Ent(Γ) = 1
2[log{det(∑Γ )} + n log(2π) + n], (12)
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which implies that Ent(Y ) is a constant. Therefore, minimizing the value of EYe{Ent(Yē|

Ye)} is equivalent to maximizing the value of Ent(Ye). The optimal design, denoted by e*, 

obtained by solving the following optimization problem

e∗ = arg  max
e ⊂ 𝒳

 Ent(Ye) (13)

is referred to as the maximum entropy design in the literature (Santner, Williams and Notz 

2003; Fang, Li and Sudijianto 2006). That is, by using the experimental design obtained 

from Eq.(13), the average prediction variability at un-experimental design points is 

minimized.

Further denoting e = {x1
e, …, xn

e} and Ye = [Y(x1
e), …, Y(xn

e)]⊤. Then, by the model in (10) Ye is 

a n-dimensional Gaussian vector with mean and covariance matrix being

μYe
= Zeβθ  and  ∑Ye

= σθ
2ZeZe

⊤ + σ f
2V f

e + σε
2We,

respectively, where Ze = [z(x1
e), …, z(xn

e)]⊤, V f
e  is a submatrix of V f

k , determined by the 

experiment e, and We is diagonal matrix also determined by e. According to Eqs. (12) and 

(13), the proposed design criterion is to find a design e* such that

e∗ = arg  max
e ⊂ 𝒳

 det (σθ
2ZeZe

⊤ + σ f
2V f

e + σε
2We) . = arg  max

e ⊂ 𝒳
 det {(σθ

2/σ f
2)ZeZe

⊤ + V f
e + (σε

2/σ f
2

)We} .

(14)

It is easy to see that the maximum entropy design criterion only depends on the experimental 

design points. This feature makes it convenient to use. In contrast, conventional prediction-

based criteria, such as c-optimality, E-optimality, G-optimality, Q-optimality, I-optimality 

and their Bayesian versions, not only depend on the experimental design points but also on 

the points to be predicted. Consequently, their closed form representations are usually not 

easy to obtain for high dimensional cases or only target some very special points to be 

predicted. It shall be pointed out that only exact designs are considered here because ni’s 

(they are set to be the same in this paper) are required to be integer-valued for drug 

combination experiments. Continuous designs, which relax the requirement for ni’s to be 

integer-valued and may regard any probability measure as a design, are beyond the scope of 

this paper and readers are referred to Kiefer (1959) and Fang, Liu and Zhou (2011) for 

detailed treatments of this topic.
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3.2 Parameter Estimation

The maximum entropy design criterion (14) is relative to the variance ratios σθ
2/σ f

2, σε
2/σ f

2 and 

the correlation matrix of the random function V f
e . As mentioned in Section 2, the total global 

sensitivity indices of the dominating terms is usually more than 80%, whereas the global 

sensitivity index of f(x) is less than 20%. This suggests that the variance ratio σθ
2/σ f

2 ≈ ( ≥ )4. 

As is shown at the end of this section, the value of the ratio σε
2/σ f

2 is also convenient to 

specify. Then, the primary matter is to estimate the correlation matrix V f
e .

The idea to estimate V f
e  is to use the single drug dose-effect curves which are estimated from 

the experimental data of single drugs. Let the covariance function between f(xi) and f(xj) be 

defined by cov[ f (xi), f (x j)] = σ f
2R(xi, x j), where xi and xj are two design points and R(xi, xj) is 

the correlation function. The most commonly-used correlation function is the power 

exponential correlation (Cressie, 1993; Santner, Williams and Notes, 2003),

R(xi, x j) = ∏
u = 1

s
exp  −

|xiu − x ju|
ϕu

pu
, (15)

where xiu is the uth element of xi, ϕu > 0 and 0 < pu ≤ 2, u = 1, …, s. In order to alleviate the 

computational complexity and make the design easier to interpret, the value of pu is here 

considered to be fixed and given as 2, and ϕ1 = ⋯ = ϕs = ϕ is specified. The correlation in 

Eq.(15) is hence defined by the parameter ϕ.

Denote the set of design points by se = {x1
se, …, xh

se}, where each xi
se has at least one 

component not equivalent to 0, and the vector of observed response values by 

Yse = [Y(x1
se), …, Y(xh

se)]⊤. Using the Gaussian assumption on f(x), the log-likelihood is 

proportional to

l(θ, σ f
2, ϕ) = − 1

2{h log σ f
2 + log[det(V f

se(ϕ))] + (Yse − Zseθ)⊤[V f
se(ϕ)]−1(Yse − Zseθ)/σ f

2},

(16)

where V f
se(ϕ) = [R(xi

se, x j
se)]

h × h
 and Zse = [z(x1

se), …, z(xh
se)]⊤. Given ϕ, the maximum 

likelihood estimator (MLE) for θ is given by

θ = θ(ϕ) = {Zse
⊤ [V f

se(ϕ)]−1Zse}
−1

Zse
⊤ [V f

se(ϕ)]−1Yse (17)
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and the MLE for σ f
2 is given by

σ f
2 = σ f

2(ϕ) = 1
h (Yse − Zseγ )⊤V fse

−1(ϕ)(Yse − Zseγ ) . (18)

Substituting Eqs.(17) and (18) into Eq.(16), one can obtain that the maximum of the 

likelihood over θ and σ f
2 is

l(θ , σ f
2, ϕ) = − 1

2{h log σ f
2(ϕ) + log[det(V f

se(ϕ))] + h},

which depends on ϕ alone. Thus the MLE of ϕ is given by

ϕ = arg min
ℛ+

s
{h log σ f

2(ϕ) + log[det(V f
se(ϕ))]}, (19)

where σ f
2(ϕ) is given by (18). Hence, the correlation V f

e  in the design criterion (14) can be 

estimated by the parameter ϕ̂ obtained from Eq.(19). At this point, the value of σε
2/σ f

2 can be 

readily specified: on one hand, the value of σ f
2 is already estimated by Eq.(18); on the other 

hand, the measurement error variance σε
2 can be estimated by the pooled variance from the 

single drug experimental data (Tan et al., 2003, 2009; Fang et al., 2008, 2015).

4. Computational Algorithms

According to the maximum entropy design criterion in (14), we propose a computational 

algorithm for design construction in this section. An algorithm for sample size determination 

is also given. As noted in Section 3, the number of replications m is often determined by 

knowledge about the run-to-run variation. Therefore, the determination of the sample size 

essentially relies upon the determination of the number of design points.

4.1 Computational Algorithm for Design Construction

Recall that  = {x1, …, xk} is the candidate set of the design points. In order to cover the 

dose region s thoroughly, the lattice method is often used to construct  (Fang, Li and 

Sudijianto 2006). That is, q equidistant dose-levels are first selected for each single drug, 

then all the level-combinations among the single drugs constitute . The n-run maximum 

entropy design e* is selected from  by solving the optimization problem (14). Typically, q 
is not a small number so n ≪ k = qs, which means that candidate-set dependent algorithms 

such as row exchange algorithm may be time-consuming. We use the candidate-set free 

coordinate exchange algorithm, as described by Meyer and Nachtsheim (1995), to address 

the optimization problem (14).
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At the beginning, a n × s starting design is randomly generated in the dose region Cs. That 

is, each entry of the starting design is randomly generated from the interval (0, 1). The 

starting design is improved by sequentially updating its entries. For each entry, the algorithm 

evaluates the effect of changing that entry to the q levels. If the objective function in (14) 

improves for at least one of these operations, then the current entry is updated with the level 

that results in the maximum entropy. After the first pass through each entry in the design 

matrix, the algorithm takes a second pass. If any entry of the design changes in the second 

pass, then the algorithm performs another pass. This process continues until there are no 

changes in any pass through the design or when a maximum iteration limit is reached. For 

practical purpose, a step-by-step algorithm for design construction is provided in Table 1.

The resulting design D from Table 1 may be local optimal with respect to the maximum 

entropy criterion, so multiple random starting designs may be used.

It is noteworthy that the number of replications, irrespective of whether it is the same or not 

for each candidate design point, needs to be preassigned for Algorithm 1. This is because if 

the number of replications changes, so dose the value of Ent(Y ) that appears on the left-

hand side of Eq.(11). As discussed in Section 3.1, Ent(Y ) needs to be kept as a constant to 

justify the proposed maximum entropy design. Preassigning a number of replications at each 

candidate design point is the limitation of the proposed design. Also, an approach to verify 

whether the resulting design is optimal with respect to the maximum entropy criterion may 

need further study. For instance, a tight upper bound may exist for the entropy value given 

the number of replications. If one can find a tight upper bound of the entropy over the design 

region, this upper bound can be served as a benchmark for construction of the maximum 

entropy design and may speed up the searching process.

4.2 Computational Algorithm for Sample Size Determination

For any n, the maximum entropy design can be constructed via Algorithm 1. However, an 

exact value of n shall be determined before the combination experiments. In this section, we 

first propose a criterion for sample size determination. Similar to the practice used in Section 

3.1, it is tentatively assumed that parameters θ, ϕ, σε
2 and σ f

2 are known. Such a practice 

would facilitate the derivation of the sample size criterion without cluttering the discussion 

with estimation issues. It turns out that only the parameters ϕ, σε
2 and σ f

2 need to be 

estimated, which is the same requirement for the design criterion in (14).

Consider the estimation of Y (x0) = z(x0)⊤θ + f(x0) at any x0 ∈ ē. By Assumptions 1–3 and 

the model in (10), [Y(x0), Ye
⊤]⊤ follows a Gaussian distribution with mean and covariance 

matrix being

μ∗ =
z(x0)⊤θ

Zeθ
  and ∑∗ =

σ f
2 σ f

2r(x0)⊤

σ f
2r(x0) σ f

2V f
e + σε

2We

,
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respectively, where e = {x1
e, …, xn

e} is the experiment and r(x0) = [R(x0, x1
e), …, R(x0, xn

e)]⊤. It is 

known that the MSE-optimal predictor of Y (x0), conditional on the experiment e, is given 

by E [Y (x0)|Ye] (see, for example, page 40 of Shao (2003)). Let Ŷe(x0) = E [Y (x0)|Ye], 

then according to the property of multivariate normal distribution (see, for example, page 

248 of Fang, Li and Sudijianto (2006)) the closed form expression of Ŷe(x0) is given by

Ye(x0) = z(x0)⊤θ + σ f
2r(x0)⊤[σ f

2V f
e (ϕ) + σε

2We]
−1(Ye − Zeθ), (20)

and the MSE of Ŷe(x0) is

MSE[Ye(x0); n] = E[Ye(x0) − Ye(x0)]2 = σ f
2 − σ f

2r(x0)⊤[V f
e (ϕ) + (σε

2/σ f
2)We]−1r(x0) .

The detailed derivation of the MSE is provided in Web Appendix A for interested readers. 

Define the relative MSE (RMSE) as to be

RMSE[Ye(x0); n] = MSE[Ye(x0); n]/σ f
2 = 1 − r(x0)⊤[V f

e (ϕ) + (σε
2/σ f

2)We]−1r(x0)

and the average RMSE (ARMSE) as

ARMSE(e; n) =
∑x0 ∈ eRMSE[Ye(x0); n]

k − n .

It is easy to see that 0 < ARMSE(e; n) < 1, thus our idea for sample size determination is to 

find the smallest number of design points, say n*, such that

n∗ = arg  min
n ∈ 𝒵+

 ARMSE(en; n) ≤ δ,

where 0 < δ < 1 is a user-specified targeted precision, en is the n-run maximum entropy 

design constructed by Algorithm 1. The ARMSE depends on the parameters ϕ, σε
2 and σ f

2. As 

discussed in Section 3.2, ϕ and σ f
2 can be respectively estimated through Eqs.(19) and (18), 

whereas the measurement error variance σε
2 can be estimated by the pooled variance from the 

single drug experimental data. Once ϕ, σε
2 and σ f

2 are estimated from the previous studies, the 

empirical MSE-optimal predictor can be obtained by plugging θ̂(ϕ) in Eq.(17) or, 

alternatively, the posterior mean E[θ|Ye] into Eq.(20). Such a predictor is more general than 

the regression predictor z(x0)⊤θ̂ (ϕ) (or z(x0)⊤E[θ|Ye]) when the random function f(x) is 

presented in the dose-response model, as it not only accounts for the regression predictor but 

also the “correction” caused by the random function f(x).
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The computational algorithm we use for sample size determination is a root-finding 

algorithm, which proceeds as follows. For given m, let nmin and nmax be respectively the 

minimum and maximum numbers of design points that can be afforded. First of all, calculate 

ARMSE(emin; nmin), where emin is an nmin-run maximum entropy design. If ARMSE(emin; 

nmin) ≤ δ, output n = nmin; otherwise increase nmin by Δ (e.g., Δ = 10) and calculate 

ARMSE(e1; nmin+Δ), where e1 is an (nmin + Δ)-run maximum entropy design. If 

ARMSE(e1; nmin + Δ) ≤ δ, output n = nmin + Δ; otherwise continue increasing the number of 

design points until the ARMSE no larger than δ or nmax is reached.

5. Numerical Illustration

In this section, we revisit one numerical experiment of Fang et al. (2016) to demonstrate 

how to construct the proposed maximum entropy design for a given multi-drug combination 

study and compare its efficiency with some other conventional designs. We use the example 

of Fang et al. (2016) as illustration because functional ANOVA, which is introduced in 

Section 2, had been applied to their in silico model. Based on our experience, the 

establishment of an in silico model upon a signaling network requires some carefully 

selected combination data and is computationally demanding. To save the efforts for data 

collection and computation time, the sensitivity indices calculated by Fang et al. (2016) are 

directly presented here.

In the numerical experiment of Fang et al. (2016), 10 single drugs, denoted by A1, …, A10, 

were considered and their single drug curves are provided in Web Appendix B. Using the 

single drug information plus some combination data, Fang et al. (2016) established an in 
silico model based on the apoptosis signaling network (hsa04210). Then, functional ANOVA 

was applied to this in silico model. Their results showed that A1, A1A2A3, A1A2A3A4A5 

and A1A2A3A4A5A6A7 are significant single drug effect and interaction effects whose total 

sensitivity indices is about 80%. As a result, z(x) = (x1 − 0.5, (x1 − 0.5)(x2 − 0.5)(x3 − 0.5), 

(x1 − 0.5)(x2 − 0.5)(x3 − 0.5)(x4 − 0.5)(x5 − 0.5), (x1 − 0.5)(x2 − 0.5)(x3 − 0.5)(x4 − 0.5)(x5 

− 0.5)(x6 − 0.5)(x7 − 0.5)) is taken for this example.

To estimate the correlation matrix V f
e , 8 equidistant dose-levels are selected from the interval 

[0.01, 0.99] for each single drug curve. The data generated from the single drug curves are 

provided in Web Table 1. Using the data in Web Table 1, the maximum likelihood estimates 

of the correlation parameter and the random function variance are ϕ̂ = 1.5515 and 

σ f
2 = 466.5115, respectively. In addition, the measurement error variance (pooled variance) is 

estimated to be σε
2 = 254.8211. Based on these estimates, one can use the design criterion 

(14) (with σθ
2/σ f

2 = 4) and the computational algorithms described in Section 4 to construct 

the maximum entropy designs and determine the corresponding sample sizes. In particular, 

three values of δ = 0.30, 0.20, 0.10 and four values of m = 2, 4, 6, 8 are examined. Under 

each tuple of (δ, m), the sample sizes are plotted in Figure 1 with mark “◦”. As expected, for 

given number of replications, the sample size increases as δ becomes small. In addition, for 

given δ the more replications are, the more is the sample size. We stress that for different 

drug combination studies, the sample sizes and the corresponding experimental designs may 
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vary significantly. However, one can always follow our approach to determine the sample 

sizes and the corresponding experimental designs and, then, an appropriate tuple of (δ, m) 

may be selected for the combination experiments. For instance, if the sample size could not 

be more than 300 in a study, the tuple (δ, m) = (0.20, 4) might be selected because this 

choice yields the highest precision with the largest sample size ≤ 300.

To assess the effectiveness of using the design criterion (14), consider another design 

criterion below

e∗ = arg  max
e ⊂ 𝒳

 det{V f
e + (σε

2/σ f
2)We} (21)

The above criterion represents the case where no regression terms are identified for the dose-

response. Based on criterion (21) and the estimates previously obtained, the sample sizes 

under various tuples of (δ, m) are plotted in Figure 1 with mark “×”. By comparing the 

sample sizes marked with “◦” and those marked with “×”, it is easy to see that for any given 

(δ, m) the sample size determined from criterion (21) is considerably larger than that 

determined from criterion (14). This indicates that by incorporating significant regression 

terms into the design criterion, the sample size for achieving a given model accuracy can be 

significantly reduced. Furthermore, the sample sizes of the D-optimal design (marked with 

“△”), which maximizes det [Ze
⊤(σ f

2V f
e + σε

2We)−1Ze], and the Bayesian D-optimal design 

(marked with “+”), which maximizes det  (σθ
2/σ f

2)Ze
⊤[V f

e + (σε
2/σ f

2)We]−1Ze + Ip , are also 

plotted in Figure 1 for comparison purpose. In summary, the Bayesian D-optimal design is a 

bit more efficient than the D-optimal design and both of them are clearly more efficient than 

the design under criterion (21). However, the proposed maximum entropy design performs 

the best across all tuples of (δ, m).

From the simulation study, we have

i. To give the experimenters an impression that how the design points distribute 

over the design region, bivariate projections of the compared designs with (n, m) 

= (50, 2) are presented in Figures 2 and 3. The bivariate projections of the design 

under criterion (21) (see Figure 2 (a)) look similar for any pair of variables. This 

is due to the isotropy (i,e., ϕ1 = ⋯ = ϕs = ϕ) specified for the correlation function 

(15). The bivariate projections of the Bayesian D-optimal design (see Figure 2 

(b)) show that more and more no-extreme levels tends to emerge as the variable 

subscript increases. This indicates that the less frequent a variable appears in the 

regression functions the more no-extreme levels it tends to take. The bivariate 

projections of the proposed maximum entropy design (see Figure 2 (c)) can be 

viewed as a compromise between Figures 2 (a) and (b) in the sense that the less 

frequent a variable appears in the regression functions the more no-extreme 

levels it tends to take, but the design still tries to keep the projections similar 

especially for the first a few variables. In fact, by using the standard formula 

det(A + BC) = det(A) det(I + CA−1B) one can obtain that
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det 
σθ

2

σ f
2 ZeZe

⊤ + V f
e +

σε
2

σ f
2 We = det 

σθ
2

σ f
2 Ze

⊤ V f
e +

σε
2

σ f
2 We

−1

Ze + Ip

× det  V f
e +

σε
2

σ f
2 We .

(22)

This means that the criterion value of the proposed maximum entropy design is 

the product of the criterion value in (21) and that of the Bayesian D-optimal 

design. As a result, Figure 2 (c) looks like a compromise between Figures 2 (a) 

and (b). Finally, the D-optimal design (see Figure 3 (a)) pushes the variables 

appearing in the regression functions towards their extreme levels while allows 

the remaining variables to take many non-extreme levels. The driver for the 

higher number of levels on drugs 8, 9 and 10 is that the regression functions 

currently do not include drugs 8, 9 and 10, such that all information on them may 

only be acquired via the correlation function of f(x). The bivariate projections 

under other values of (n, m) are similar so the details are omitted.

ii. A sensitivity analysis for the variance ratio σθ
2/σ f

2 may be needed if its value is 

suspicious not to be around 4. For large σθ
2/σ f

2 Eq.(22) indicates that the design 

criterion value behaves like det  Ze
⊤[V f

e + (σε
2/σ f

2)We]−1Ze  which is D-optimality, 

whereas a small σθ
2/σ f

2 means that the design criterion value behaves like that in 

Eq.(21). Figures 3 (b) and (c) present the bivariate projections of the maximum 

entropy design with (n, m, σθ
2/σ f

2) = (50, 2, 0.01) and (50, 2, 100), respectively. It is 

not difficult to see that Figure 3 (b) is similar to Figure 2 (a) while Figure 3 (c) 

looks similar to Figure 3 (a). Although only two values are examined here, such 

a sensitivity analysis demonstrates that how the distribution of design points 

varies as the value of σθ
2/σ f

2 changes.

iii. Increasing the number of replications may not significantly reduce the number of 

design points. For example, the sample size of m = 4 almost doubles that of m = 

2. As pointed out by one referee, the number of required drugs and doses to 

estimate the regression parameters is relatively small and they will provide no 

information from the model on drugs 8, 9 and 10. Doubling the number of 

replications adds information to the model. However, as the regression predictor 

will not forward much information to drugs 8, 9 and 10, the number of design 

points would not significantly decrease, as design points are still needed to cover 

much of the design region for the modeling via the correlation function of f(x).

6. Concluding Remarks and Discussions

The proposed novel combination of functional ANOVA with maximum entropy designs 

utilizes both the biological pathway and single drug data for the selection of optimal drug 
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combinations in multi-drug combination studies. The proposed study designs for drug-

combinations provide a basis for future developments on statistical methods and 

experimental designs for complex multi-drug dose-finding problems. The simulation studies 

showed that the proposed experimental design (dose-level selection and sample size 

determination) is efficient for combination studies and statistical procedures to fit the high 

dimensional dose-response surface.

7. Supplementary Materials

Web Appendices A, B and Web Table 1 referenced in Sections 4–5 are available with this 

paper at Biometrics website on Wiley Online Library.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sample sizes of the compared designs: “◦”–the proposed maximum entropy design; “+”–the 

Bayesian D-optimal design; “△”–the D-optimal design; “×”–the design under criterion (21). 

To facilitate the comparison, Δ = 5, nmin = 50 and nmax = 1500 are used in the computational 

algorithm for sample size determination.
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Figure 2. 
(a): Bivariate projections of the design under criterion (21) with (n, m) = (50, 2). (b): 

Bivariate projections of the Bayesian D-optimal design with (n, m) = (50, 2). (c): Bivariate 

projections of the maximum entropy design with (n, m) = (50, 2).
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Figure 3. 
(a): Bivariate projections of the D-optimal design with (n, m) = (50, 2). (b): Bivariate 

projections of the maximum entropy design with (n, m, σθ
2/σ f

2) = (50, 2, 0.01). (c): Bivariate 

projections of the maximum entropy design with (n, m, σθ
2/σ f

2) = (50, 2, 100).
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Table 1

Algorithm 1 [Design Construction]

Initialize an n × s matrix D with each entry generated from (0, 1), a large positive integer T (e.g., T = 1000), the number of dose-levels q and t = 
1.

Denote the entries of D by d(1), …, d(n × s) using a row-by-row order, and for simplicity, denote D = {d(1), …, d(n × s)}.

1: while t ≤ T do

2:   for (i in 1 : n × s)

3:
    for (j in 0 : 

1
q − 1  : 1)

4:       D* = {d(1), …, d(i − 1), j, d(i + 1), …, d(n × s)};

5:       if Ent(D*) > Ent(D)

6:         D = D*;

7:       end if

8:     end for

9:   end for

10:   t = t + 1;

11: end while

12: Output D as the optimal design.
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