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SUMMARY

In clinical practice, an informative and practically useful treatment rule should be simple and 

transparent. However, because simple rules are likely to be far from optimal, effective methods to 

construct such rules must guarantee performance, in terms of yielding the best clinical outcome 

(highest reward) among the class of simple rules under consideration. Furthermore, it is important 

to evaluate the benefit of the derived rules on the whole sample and in pre-specified subgroups 

(e.g., vulnerable patients). To achieve both goals, we propose a robust machine learning method to 

estimate a linear treatment rule that is guaranteed to achieve optimal reward among the class of all 

linear rules. We then develop a diagnostic measure and inference procedure to evaluate the benefit 

of the obtained rule and compare it with the rules estimated by other methods. We provide 

theoretical justification for the proposed method and its inference procedure, and we demonstrate 

via simulations its superior performance when compared to existing methods. Lastly, we apply the 

method to the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial on major 

depressive disorder and show that the estimated optimal linear rule provides a large benefit for 

mildly depressed and severely depressed patients but manifests a lack-of-fit for moderately 

depressed patients.
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1. Introduction

Heterogeneity in patient response to treatment is a long-recognized challenge in the clinical 

community. For example, in adults affected by major depression, only around 30% of 

patients achieve remission with a single acute phase of treatment (Trivedi et al., 2006; Rush 
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et al., 2004); the remaining 70% of patients require augmentation of the current treatment or 

a switch to a new treatment. Thus, a universal strategy that treats all patients by the same 

treatment is inadequate, and individualized treatment strategies are required to improve 

response in individual patients. In this regard, rapid advances in technologies for collecting 

patient-level data have made it possible to tailor treatments to individual patients based on 

specific characteristics, thereby enabling the new paradigm of personalized medicine.

Statistical methods have been proposed to estimate optimal individualized treatment rules 

(ITR) (Lavori and Dawson, 2004) using predictive and prescriptive clinical variables that 

manifest quantitative and qualitative treatment interactions, respectively (Carini et al., 2014; 

Gunter et al., 2011). Q-learning (Watkins, 1989; Qian and Murphy, 2011) and A-learning 

(Murphy, 2003; Blatt et al., 2004) are proposed to identify an optimal ITR. Q-learning 

estimates an ITR by directly modelling the Q-function. A-learning only requires posited 

models for contrast functions and uses a doubly robust estimating equation to estimate the 

contrast functions. This makes A-learning more robust to model misspecification than Q-

learning and provides a consistent estimation of an ITR (Schulte et al., 2014). Other 

proposed approaches include semiparametric methods and machine learning methods 

(Zhang et al., 2012; Foster et al., 2011; Zhao et al., 2012; Chakraborty and Moodie, 2013). 

For example, the virtual twins approach (Foster et al., 2011) uses tree-based estimators to 

identify subgroups of patients who show larger than expected treatment effects. Zhang et al. 

(2012, 2013) estimated the optimal ITR by directly maximizing the value function over a 

specified parametric class of treatment rules through augmented inverse probability 

weighting. In contrast, Zhao et al. (2012) proposed outcome weighted learning (O-learning), 

which utilizes weighted support vector machine to maximize the value function. More 

recently, Huang and Fong (2014) proposed a robust machine learning method to select the 

ITR that minimizes a total burden score. Interactive Q-learning (Laber et al., 2014) models 

two ordinary mean-variance functions instead of modeling the predicted future optimal 

outcomes. Fan et al. (2016) proposed a concordance function for prescribing treatment, 

where a patient is more likely to be assigned to a treatment than another patient if s/he has a 

greater benefit than the other patient.

In clinical practice, simple treatment rules such as linear rules, are preferred due to their 

transparency and convenience for interpretation. However, when only linear rules are in 

consideration, many existing methods including semiparametric models and some machine 

learning methods may not yield a rule with optimal performance, because they focus on 

optimization of a surrogate objective function of treatment benefit. Using surrogate objective 

functions may only guarantee the optimality when there is no restriction on the functional 

form of the treatment rules. For example, with O-learning, the objective function is a 

weighted hinge-loss, which yields the optimal rule among nonparametric rules, but may not 

be optimal when the candidate rules are restricted to the linear form. Therefore, learning 

algorithms are desired to derive a treatment rule with guaranteed performance when 

constraints are placed on the class of candidate rules.

An additional consideration is the need to evaluate, through diagnostics, any approach for 

rule estimation. However, less emphasis has been placed on the evaluation of the estimated 

ITR in the context of personalized medicine. Residual plots were used to evaluate model fit 
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for G-estimation (Rich et al., 2010) and Q-learning (Ertefaie et al., 2016). In the recent work 

by Wallace et al. (2016), a dynamic treatment regime (DTR) is estimated by G-estimation 

and double robustness is exploited for model diagnosis. How to evaluate the optimality of an 

ITR in general remains an open research question.

The purpose of this paper is two-fold: we first develop a general approach to identify a linear 

ITR with guaranteed performance; we then propose a diagnostic method to evaluate 

performance of any derived ITR including the proposed one. Our two-stage approach 

separates the estimation of the ITR from its evaluation and the sample used in each stage. 

Specifically, in the first stage, we propose ramp-loss-based (McAllester and Keshet, 2011; 

Huang and Fong, 2014) learning for the estimation and we show that this approach 

guarantees the derived linear ITR to be asymptotically optimal within the class of all linear 

rules. We refer our method as Asymptotically Best Linear O-learning, ABLO. For the 

second stage, in practice, it is infeasible to expect that an ITR that benefits each individual 

can be identified due to the unknown treatment mechanism and the likely omission of some 

prescriptive variables. Thus, we propose a practical solution to calibrate the average ITR 

effect in the population given the observed variables, or in pre-specified important subgroups 

(e.g., patients in most severe state). Specifically, to obtain an ITR evaluation criterion, we 

define the benefit of a candidate ITR as the average difference in the value function between 

those who follow the ITR and those who do not. We then use the ITR benefit as a diagnostic 

measure to evaluate its optimality. Our method exploits the fact that if an ITR is truly 

optimal for all individuals, then for any given patient subgroup, the average outcome for 

patients who are treated according to the ITR should be greater than for those who are not 

treated according to the ITR. On the contrary, if the average outcome of the ITR is worse for 

some patients who follow the ITR than for those who do not, then the ITR is not optimal on 

this subgroup.

Compared to the existing literature, two main contributions of this work are to propose a 

benefit function to calibrate an ITR, and a diagnostic procedure to evaluate optimality of a 

derived ITR, while most of the existing work focuses on the estimation of ITR/DTR. A third 

contribution is to prove asymptotic properties of ITR estimated under the ramp loss (Huang 

and Fong, 2014). Asymptotic results in the existing literature (e.g., Zhao et al., 2012) are 

obtained for the hinge loss. Due to these theoretical results, we can provide valid statistical 

inference procedure for testing optimality of an ITR using asymptotic normality.

In the remainder of this paper, we show that ABLO consistently estimates the ITR benefit 

for a class of candidate rules regardless of two potential pitfalls: 1) the consistency of benefit 

estimator is maintained even though the functional form of the rule is misspecified; 2) the 

rule does not include all prescriptive/tailoring variables and thus the true global optimal rule 

is not in the specified class. We further derive the asymptotic distribution for the proposed 

diagnostic measure. We conduct simulation studies to demonstrate finite sample 

performance and show advantages over existing machine learning methods. Lastly, we apply 

the method to the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial 

on major depressive disorder (MDD), where substantial treatment response heterogeneity 

has been documented (Trivedi et al., 2006; Huynh and McIntyre, 2008). Our analyses 
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estimate an optimal linear ITR, and we demonstrate a large benefit in mildly depressed and 

severely depressed patients but a lack-of-fit among moderately depressed patients.

2. Methodology

Let R denote a continuous variable measuring clinical response after treatment (e.g., 

reduction of depressive symptoms). Without loss of generality, assume a large value of R is 

desirable. Let X denote a vector of subject-specific baseline feature variables, and let A = 1 

or A = −1 denote two alternative treatments being compared. Assume that we observe (Ai, 

Xi, Ri) for the ith subject in a two-arm randomized trial with randomization probability P(Ai 

= a|Xi = x) = π(a|x), for i = 1, …, n.

An ITR, denoted as 𝒟(X), is a binary decision function that maps X into the treatment 

domain A = {−1, 1}. Let P𝒟 denote the distribution of (A, X, R) in which 𝒟 is used to 

assign treatments. The value function of 𝒟 satisfies

V(𝒟) = E𝒟(R) = ∫ R dP𝒟 = ∫ RdP𝒟

dP = E RI(A = 𝒟(X))
π(A | X) . (1)

In most applications, 𝒟(X) is determined by the sign of a function, f(X), which is referred to 

as the ITR decision function. That is, 𝒟(X) = sign( f (X)). In general settings, f ∈ ℱ can take 

any form, either a parametric function or a non-parametric function. To quantify the benefit 

of an ITR, a measure related to the value function is a natural choice. The mean difference is 

widely used to compare the average effect of two treatments. Analogously, we define the 

benefit function corresponding to an ITR as the difference in the value function between two 

complementary strategies: one that assigns treatments according to 𝒟(X) and the other 

assigns according to the complementary rule −𝒟(X) for any given feature variables X. That 

is, the benefit function for 𝒟(X) = sign( f (X)) is

δ( f (X)) = E R | A = sign( f (X)), X − E R | A = − sign( f (X)), X . (2)

2.1 Estimating Optimal Linear Treatment Rule

To obtain a practically useful and transparent ITR, we consider a class of linear ITR decision 

functions, denoted by ℒ, and estimate the optimal linear function f L
∗ ∈ ℒ, that maximizes 

the value function (1) among this class. To this end, following the original idea of Liu et al. 

(2014), we note that maximizing V(𝒟) is equivalent to minimizing a residual-weighted 

misclassification error given as

E |R − r(X)| I A sign(R − r(X)) ≠ 𝒟(X)
π(A | X) ,

where r(X) is any function of X, taken as an approximation to the conditional mean of R 
given X. Thus, we aim to minimize the empirical version of the above quantity, given as

Qiu et al. Page 4

Biometrics. Author manuscript; available in PMC 2018 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1
n ∑

i

|Wi|I(AiZi ≠ 𝒟(Xi))
π(Ai | Xi)

= 1
n ∑

i

|Wi|I(AiZi f (Xi) < 0)
π(Ai | Xi)

for f ∈ ℒ, where W i = Ri − r̂(Xi), Zi = sign(Wi), and r̂(X) is obtained from a working model 

by regressing Ri on Xi (Liu et al., 2014).

The above optimization with zero-one loss is a non-deterministic polynomial-time hard (NP-

hard) problem (Natarajan, 1995). To avoid this computational challenge, the zero-one loss 

was replaced by some convex surrogate loss in existing methods, for instance, the squared 

loss or hinge loss. Let f∗ denote the global optimal decision function corresponding to the 

optimal treatment rule among any decision functions. That is, f∗(X) = E(R|A = 1, X) − E(R|

A = −1, X). When ℒ consists of linear decision functions that are far from the global 

optimal rule such that f ∗ ∉ ℒ, estimating optimal linear rule by minimizing the surrogate 

loss (e.g., hinge loss or squared loss) no longer guarantees that the induced value or benefit 

is maximized among the linear class.

In order to obtain the best linear ITR with guaranteed performance, we propose to use an 

authentic approximation loss that will converge to zero-one loss, referred to as the ramp loss 

(McAllester and Keshet, 2011; Huang and Fong, 2014), for value maximization. The ramp 

loss, as plotted in Figure A.1 in the Supplementary Material, has been used in the machine 

learning literature to provide a tight bound on the misclassification rate (McAllester and 

Keshet, 2011; Collobert et al., 2006). Mathematically, this function can be expressed as

hs(u) = I(u ≤ − s
2) − u − s

2s I( − s
2 < u < s

2) (3)

where s is a tuning parameter to be chosen in a data-adaptive fashion. Clearly, when s 
converges to zero, the ramp loss function converges to the zero-one loss; thus, we expect that 

the estimated rule from this loss function should approximately maximize the value function 

among class ℒ.

Specifically, with the ramp loss (3), we propose to estimate the optimal linear ITR decision 

function, f L
∗(X), by minimizing the penalized weighted sum of ramp loss of a linear decision 

function f(X) = β0 + XT β,

L( f ) = C ∑
i = 1

n |W i|hs(ZiAi f (Xi))
π(Ai | Xi)

+ 1
2 β 2, (4)

where C is the cost parameter. Because the ramp loss is not convex, we solve the 

optimization by the difference of convex functions algorithm (DCA) (An et al., 1996). First, 

we express hs(u) as the difference of two convex functions, 
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hs(u) = h1, s(u) − h2, s(u) = (1
2 − u

s )
+

− ( − 1
2 − u

s )
+

, where function (x)+ denotes the positive 

part of x. Let ηi denote ZiAif(Xi). With the DCA, starting from an initial value for η, the 

minimization in (4) can be carried out iteratively, and denote the solution as

β̂ = agr min ∑
i = 1

n
C

|W i| h1, s(ηi) − ĥ2, s(ηi, ηi
0)

π(Ai | Xi)
+ 1

2 β 2, (5)

where ĥ2, s(ηi, ηi
0) = h2, s(ηi

0) + h2, s′ (ηi
0)ηi, and h2, s′ (u) = − I(u/s < − 1/2)/s. The iteration stops 

when the change in the objective function is less than a pre-specified threshold. Detailed 

steps in estimating β are provided in Section A1 of the Supplementary Materials.

We denote the optimal linear decision function obtained by the above procedure as 

f L
∗̂(X) = β̂0 + XT β̂ and denote the optimal ITR as sign( f L

∗̂(X)). In the Supplementary Materials 

(Section A2), we show that f L
∗̂ converges to the true best linear rule, f L

∗, asymptotically, at a 

slower rate than the usual root-n rate. We refer the proposed estimation procedure as 

Asymptotically Best Linear O-learning, ABLO. We also prove the asymptotic normality of β̂
and the estimated benefit function, which provides justification of the inference procedures 

proposed in the next two sections.

2.2 Performance Diagnostics for the Estimated ITR

ABLO guarantees that the optimal value among the class ℒ is achieved asymptotically. 

Nevertheless, the optimal linear rule f L
∗(X) may still be far from the global optimal, f∗, such 

that for some important subgroups, f L
∗(X) may be non-optimal or even worse than the 

complementary treatment rule. Therefore, an empirical measure must be constructed to 

evaluate the performance of an estimated ITR.

To develop a practically feasible diagnostic method for any estimated ITR, given by 

sign( f̂ (X)) we note that if f̂ (X) is truly optimal among any decision functions in ℱ, i.e., f̂ (X)
has the same sign as f∗(X), then for any subgroup defined by X ∈ 𝒞 for a given set 𝒞 in the 

domain of X, the value function for those subjects whose treatments are the same as 

sign( f̂ (X)). should always be larger than or equal to the value function for those subjects with 

the same X ∈ 𝒞, but whose treatments are opposite to sign( f̂ (X)). This is because

E
RI A = sign( f̂ (X))

π(A | X) |X

− E
RI A = − sign( f̂ (X))

π(A | X) |X = I( f ∗(X) > 0)E(R | A = 1, X) + I( f ∗(X) ≤ 0)E(R | A = − 1, X) − I( f ∗(X) > 0)E

(R | A = − 1, X) − I( f ∗(X) ≤ 0)E(R | A = 1, X) = | f ∗(X)| ⩾ 0.

It then follows that the group-average benefit for f̂ , defined as
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δ𝒞( f̂ ) ≡ E
RI A = sign( f̂ (X))

π(A | X) |X ∈ 𝒞 − E
RI A = − sign( f̂ (X))

π(A | X) |X ∈ 𝒞 ,

should be non-negative. On the other hand, if δ𝒞( f̂ ) ⩾ 0 holds for any subset 𝒞, then the 

above derivation also indicates that f̂ (X) must have the same sign as f∗(X), i.e., f̂ (X) is the 

optimal treatment rule for subjects in 𝒞.

These observations suggest a diagnostic measure δ𝒞( f̂ ) for any subgroup 𝒞. Specifically, we 

propose an empirical ITR diagnostic measure as

δ̂𝒞( f̂ ) =

∑i = 1
n I Xi ∈ 𝒞, Ai = sign( f̂ (Xi)) − I Xi ∈ 𝒞, Ai = − sign( f̂ (Xi)) Ri/π(Ai | Xi)

∑i = 1
n I(Xi ∈ 𝒞)

.

Because δ̂𝒞( f̂ ) approximates δ𝒞( f̂ ) the measure δ̂𝒞( f̂ ) is expected to be positive with a high 

probability if f̂ (X) is close to the global true optimal. Furthermore, the evidence that δ̂𝒞( f̂ ) is 

positive for a rich class of subsets 𝒞 will support the approximate optimality of f̂  in the 

class. However, because it is infeasible to exhaust all subgroups, we suggest a class of pre-

specified subgroups 𝒞1, …, 𝒞m and calculate the corresponding δ̂𝒞1
( f̂ ), …, δ̂𝒞m

( f̂ ). An 

aggregated diagnostic measure is Δ̂( f̂ ) = min δ̂𝒞1
( f̂ ), …, δ̂𝒞m

( f̂ ) . A positive value of Δ̂( f̂ )

implies approximate optimality of f̂  when m is large enough. In practice, we consider 𝒞k to 

be pre-specified groups or the sets determined by the tertiles of each component of X, for 

example, the jth component of X below its first tertile, between the first and the second 

tertiles, or above the second tertile. Moreover, using the proposed diagnostic measure, by 

examining the subsets 𝒞 (or tertiles defined by variables) with negative or close to zero 

values of δ̂𝒞( f̂ ), we can identify subgroups or components of X for which the estimated rule 

f̂  may not be sufficiently optimal. Thus, we can further improve the rule estimation in this 

subgroup to obtain an improved ITR.

If the same data are used for estimating the optimal ITR and performing diagnostics, the 

latter may not be an honest measure of performance (Athey and Imbens, 2016). Thus, we 

suggest the following sample-splitting scheme. Divide the data into K folds, and denote 

f̂ ( − k) as the optimal ITR obtained using data without the kth-fold. Next, each f̂ ( − k) is 

calibrated on the kth-fold data using the diagnostic measure and then averaged. Let nk 

denote the sample size of the kth-fold, and let Ik index subjects in this fold. The honest 

diagnostic measure for subgroup 𝒞 is estimated by δ̂𝒞( f̂ ) = 1
K ∑k = 1

K δ̂𝒞
(k), where
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δ̂𝒞
(k) = 1

nk
∑

i: i ∈ Ik

I Ai = sign( f̂ ( − k)(Xi)) − I Ai = − sign( f̂ ( − k)(Xi)) Ri/π(AiXi) .

We will implement this scheme in subsequent analysis.

2.3 Inference Using the Diagnostic Measure

The proposed diagnostic measure, δ̂𝒞( f̂ ), can be used to compare different ITRs and non-

personalized rules, make comparisons within certain subgroups, and assess heterogeneity of 

ITR benefit (HTB) across subgroups. Hypotheses of interest may include:

• Test significance of the optimal linear rule compared to the non-personalized rule 

in the overall sample, i.e., H0:δ( f L
∗) − δ0 = 0, v.s. H1:δ( f L

∗) − δ0 > 0, where δ0 is 

the average treatment effect of a non-personalized rule (difference in the mean 

response between treatment groups). For this purpose, we can construct the test 

statistic based on δ̂𝒞( f̂ ) − δ0, where f̂  is obtained from any method, and 𝒞 is the 

whole population. We reject the null hypothesis at a significance level of α if the 

(1−α)-confidence interval with ∞ as the upper bound for δ̂𝒞( f̂ ) − δ0 does not 

contain 0.

• Test significance of the optimal linear rule compared to the non-personalized rule 

in a subgroup k, i.e., H0:δ𝒞k
( f L

∗) − δ0k = 0 v.s., H1:δ𝒞k
( f L

∗) − δ0k > 0 where δ0k is 

the average treatment effect in the subgroup. The same test statistic as the 

previous one can be used but with 𝒞 = 𝒞k.

• Test the HTB across subgroups 𝒞1, ⋯, 𝒞K , i.e., 

H0:δ𝒞k
( f L

∗) − δ𝒞K
( f L

∗) = 0, k = 1, ⋯, K − 1. We propose the HTB test statistic 

T = Δ̂𝒞
T cov(Δ̂𝒞) −1Δ̂𝒞, where Δ̂𝒞

T = (δ̂𝒞1
( f̂ ) − δ̂𝒞K

( f̂ ), ⋯, δ̂𝒞K − 1
( f̂ ) − δ̂𝒞K

( f̂ )). 

It can be shown that T asymptotically follows χK − 1
2  under H0, so we reject H0 

when T is larger than the (1 − α)-quantile of χK − 1
2 .

• Test the non-optimality of the best linear rule f L
∗ in a subgroup 𝒞 by evaluating 

H0:δ𝒞( f L
∗) ⩾ 0 v.s. H1:δ𝒞( f L

∗) < 0. For this purpose, we can directly use δ̂𝒞( f̂ )

and reject the null hypothesis if the confidence interval with lower bound of −∞ 
does not contain zero.

The asymptotic properties of β̂ and δ̂𝒞( f̂ ) are required to perform inference above. Based on 

the theoretical properties (asymptotic normality) given in the Supplementary Materials 

(Section A2), we propose a bootstrap method to compute confidence interval for the 

diagnostic measure. We denote the bth bootstrap sample as (A
∼

i
(b), X∼i

(b), R∼i
(b)), where i = 1, 2, 
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⋯, n, and re-estimate residuals as W∼i
(b) in (5). Next, we re-fit treatment rule f

∼(b) and obtain 

δ
∼

𝒞
(b)( f

∼(b)). The 95% confidence interval for δ̂𝒞( f̂ ) is constructed from the empirical quantiles 

of δ
∼

𝒞
(b)( f

∼(b)), b = 1, 2, ⋯, B.

3. Simulation Studies

3.1 Simulation Design

For all simulation scenarios, we first generated four latent subgroups of subjects based on 10 

feature variables X = (X1, ⋯, X10) informative of optimal treatment choice from a pattern 

mixture model. Treatment A = 1 has a greater average effect for subjects in subgroups 1 and 

2, and the alternative treatment −1 has a greater average effect in subgroups 3 and 4. Within 

each subgroup, X were independently simulated from a normal distribution with different 

means and standard deviation of one. Two settings were considered. In Setting 1, the means 

of the feature variables for subjects in the four subgroups were (1, 0.5, −1, −0.5), 

respectively. In Setting 2, the means were (1, 0.3, −1, −0.3). Five noise variables U = (U1, ⋯, 

U5) not contributing to R were independently generated from the standard normal 

distribution and included in the analyses in order to assess the robustness of each method in 

the presence of noise features. The treatments for each subject were randomly assigned to 1 

or −1 with equal probability, and the number of subjects in each subgroup was equal.

Three additional feature variables W, V, and S were generated to be directly associated with 

the clinical outcome R. Here, W is an observed prescriptive variable informative of the 

optimal treatment, V is a prognostic variable predictive of the outcome but not the optimal 

treatment, and S is an unobserved prescriptive variable not available in the analysis. The 

clinical outcome for subjects in the kth subgroup was generated by

R = 1 + I(A = 1)(δ1k + α1k ∗ W + β1k ∗ S) + I(A = − 1)(δ2k + α2k ∗ W + β2k ∗ S) + V + e,

where e ∼ N(0, 0.25), V, W, and S are i.i.d. and follow the standard normal distribution, 

δ = [δlk]2 ∗ 4 = 1 0.3 0 0
0 0 1 0.3 , α = [αlk]2 ∗ 4 = 1 0.6 0.5 0.3

0.5 0.3 1 0.6 , and β =2α within each group k, 

there is a qualitative interaction between treatment and W. Additional visualization of the 

simulation setting is provided in the Supplementary Materials (Figure A.2).

The benefit function of the theoretical global optimal ITR decision function, denoted as f∗, 

was computed numerically by simulating the clinical outcome R under treatment 1 or −1, 

using all observed feature variables (i.e., X, W, and V), and taking the average difference of 

R under the true optimal and non-optimal treatments using a large independent test set of N 
= 100, 000. In practice, this global optimum may not be attained by a linear rule due to the 

unknown and potentially nonlinear true optimal treatment rule. The theoretical optimal 

linear rule f L
∗ was computed numerically using the observed variables and maximizing the 

value function in the class of all linear rules under each simulation model (details in the 
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Supplementary Materials; Section A3). The benefit of f L
∗ was then computed with a large 

independent test set of N = 50, 000.

For each simulated data set, predictive modeling (PM), Q-learning, O-learning, and ABLO 

were applied to estimate the optimal ITR. For PM, we considered a random forest-based 

prediction related to the virtual twins approach of Foster et al. (2011). PM first applies 

random forest on R, including all observed feature variables Z = (X, U, W, V) and treatment 

assignments. It next predicts the outcome for the ith subject given (Zi, Ai = 1) and (Zi, Ai = 

−1), denoted as R̂1i and R̂−1i, respectively. The optimal treatment for the subject is 

sign(R̂1i − R̂−1i). Q-learning was implemented by a linear regression including all the 

observed feature variables, treatment assignments, and their interactions. Benefit of the 

estimated optimal ITR under each method and was computed by δ̂𝒞( f̂ ) in Section 2.2.

In the simulations, observed feature variables Z were used in all methods, while the 

unobserved prescriptive variable S and latent subgroup membership were not included. 

Linear kernel was used for O-learning and ABLO. Five-fold cross validation was used to 

select the tuning parameters C and s. For each method, the optimal treatment selection 

accuracy and ITR benefit were estimated using two-fold cross validation with equal size of 

training and testing sets. The training set was used to estimate the ITR and the testing set 

was used to estimate the ITR benefit and accuracy. Bootstrap was used to estimate the 

confidence interval of the ITR benefit under the estimated rule. Coverage probabilities were 

reported to evaluate the performance of the inference procedure. To evaluate performance on 

subgroups, we partitioned W, V, X1, and U1 into three groups based on values in the 

intervals (−∞, −0.5), [−0.5, 0.5], or (0.5, ∞). We calculated the HTB test for the candidate 

variables and tested the difference between the estimated rules and the overall non-

personalized rules.

3.2 Simulation Results

Results from 500 replicates are summarized in Table 1, 2, 3, Figure 1 and 2. For both 

simulation settings, ABLO with linear kernel has the largest optimal treatment selection 

accuracy regardless of the sample size, and it is also close to the maximal accuracy rate 

based on the theoretical best linear rule. In addition, ABLO estimates the ITR benefit closest 

to the true global maximal value of 0.678 on the overall sample, and it is almost identical to 

the benefit estimated by the theoretical best linear rule when the sample size is large (= 800 

training, 800 testing). PM, Q-learning, and O-learning all underestimate the ITR benefit, 

especially when the sample size is smaller (N = 400 training, 400 testing), and thus they do 

not attain the maximal value of the theoretical optimal linear rule. Based on the empirical 

standard deviation, we also observe that ABLO is more robust than all other methods. For all 

methods, as the sample size increases, the treatment selection accuracy increases and the 

estimated mean benefit is closer to the true optimal value. Furthermore, the estimated ITR 

benefit increases as the accuracy rate increases. The coverage probability of the overall 

benefit of the best linear rule is close to the nominal level of 95% using ABLO, but less than 

95% using other methods. The coverages are not nominal for O-learning, Q-learning, and 

PM, since their benefit estimates are biased when the candidate rules are misspecified (e.g., 
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true optimal rule is not linear). This is because they use a surrogate loss function that does 

not guarantee convergence to the indicator function in the benefit function δ𝒞( f̂ ).

The performance of estimation of the subgroup ITR benefit shows similar results, whereby 

ABLO outperforms O-learning, Q-learning, and PM in both settings, especially when W ∈ 
[−0.5, 0.5], and W > 0.5. Table 2 reports the probability of rejecting 

H0:δ𝒞k
( f L

∗) − δ𝒞3
( f L

∗) = 0, k= 1 or 2, using the HTB test with a null distribution of χ2
2. The 

rejection rates of the HTB tests of V and U1 that do not have a difference in ITR benefit 

across subgroups correspond to the type I error rate. The type I error rates of ABLO are 

close to 5%, but conservative for the other three methods. To examine the power, we test the 

effect of W on the benefit across subgroups defined by discretizing W at −0.5 and 0.5. The 

power of ABLO is much greater than the other three methods especially when the sample 

size is small. The other three methods underestimate the benefit function, and thus the HTB 

test is conservative and less powerful.

Lastly, we test the difference in the benefit between the ITRs and the non-personalized rule 

in the overall sample and the subgroups. Table 3 shows that with a sample size of 800, 

ABLO is the only method that provides a significantly better benefit than the non-

personalized rule with a large power (> 80%). When the sample size is large (N = 1600), 

ABLO, Q-learning, and O-learning have a power of ⩾ 88%. As for the subgroups, the ITR 

estimated by ABLO is more likely to outperform the non-personalized rule on the subgroups 

showing a larger true benefit (i.e., when W > 0.5).

Additional simulation results varying the strength of the prescriptive feature variable W are 

described in the Supplementary Materials (Section A4).

4. Application to the STAR*D Study

STAR*D (Rush et al., 2004) was conducted as a multi-site, multi-level, randomized 

controlled trial designed to compare different treatment regimes for major depressive 

disorder when patients fail to respond to the initial treatment of Citalopram (CIT) within 8 

weeks. The primary outcome, Quick Inventory of Depressive Symptomatology (QIDS) score 

(ranging from 0 to 27), was measured to assess the severity of depression. A lower QIDS 

score indicates less symptoms and thus reflects a better outcome. Participants with a total 

QIDS score under 5 were considered to experience a clinically meaningful response to the 

assigned treatment and were therefore remitted from future treatments.

The trial had four levels of treatments (e.g., see Figure 2.3 in Chakraborty and Moodie 

(2013)); we focused on the first two levels. At the first level, all participants were treated 

with CIT for a minimum of 8 weeks. Participants who had clinically meaningful response 

were excluded from level-2 treatment. At level-2, participants without remission with level-1 

treatment were randomized to level-2 treatment based on their preference to switch or 

augment their level-1 treatment. Patients who preferred to switch treatment were randomized 

with equal probability to bupropion (BUP), cognitive therapy (CT), sertraline (SER), or 

venlafaxine (VEN). Those who preferred augmentation were randomly assigned to CIT
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+BUP, CIT+buspirone (BUS), or CIT+CT. If a patient had no preference, s/he was 

randomized to any of the above treatments.

The clinical outcome (reward) is the QIDS score at the end of level-2 treatment. There were 

788 participants with complete feature variable information included in our analysis. We 

compared two categories of treatments: 1) treatment with selective serotonin reputake 

inhibitors (SSRIs, alone or in combination): CIT+BUS, CIT+BUP, CIT+CT, and SER; and 

2) treatment with one or more non-SSRIs: CT, BUP, and VEN. Feature variables used to 

estimate the optimal ITR included the QIDS scores measured at the start of level-2 treatment 

(level 2 baseline), the change in the QIDS score over the level-1 treatment phase, patient 

preference regarding level-2 treatment, and demographic variables (gender, age, race), and 

family history of depression. As the randomization to treatment was based on patient 

preference, we estimated π(Ai|Xi) using empirical proportions based on preferring switching 

or no preference, because patients who preferred augmentation were all treated with an SSRI 

and were excluded from the analysis.

We applied four methods to estimate the optimal ITR for patients with MDD who did not 

achieve remission with 8 weeks of treatment with CIT. For all methods, we randomly split 

the sample into a training and testing set with a 1:1 ratio and repeated the procedure 500 

times. The value function and ITR benefits were evaluated on the testing set. PM, Q-

learning, O-learning, and ABLO are compared in Figure 3. The non-personalized rules yield 

a QIDS score of 10.16 for SSRI and 9.60 for non-SSRI, with a difference of 0.56. The ITR 

estimated by ABLO yields a QIDS score of 9.32 (sd = 0.23), which is smaller than PM 

(9.69, sd = 0.38), Q-learning (9.50, sd=0.35), and O-leaning (9.55, sd = 0.41). The overall 

ITR benefit estimated by ABLO (1.11, sd = 0.46) is much larger than PM (0.38, sd = 0.76), 

Q-learning (0.77, sd = 0.70), and O-leaning (0.66, sd = 0.82). The ITR benefit based on 

ABLO is also larger than the non-personalized rule (1.11 versus 0.56). The final ITR 

estimated by ABLO is reported in Supplementary Materials (Section A5).

Clinical literature suggests that the baseline MDD severity may be a moderator for treatment 

response (Bower et al., 2013). In addition, baseline MDD severity is highly associated with 

suicidality; thus, patients with severe baseline MDD (QIDS ⩾ 16) represent an important 

subgroup. We partitioned patients into mild (QIDS ≤ 10), moderate (QIDS ∈ [11, 15]), and 

severe (QIDS ⩾ 16) MDD subgroups. Using ABLO and the HTB test, baseline QIDS score 

was found to be significantly associated with ITR benefit: two subgroups show a large 

positive ITR benefit (2.22 for the mild group and 2.02 for the severe group), whereas the 

moderate subgroup shows no benefit (ITR benefit = −0.18). This result indicates that 

patients with mild or severe baseline depressive symptoms (high or low QIDS score) might 

benefit from following the estimated linear ITR. For patients who are moderately depressed 

(QIDS ∈ [11, 15]), the linear ITR estimated from the overall sample does not adequately fit 

the data and does not outperform a non-personalized rule. Thus, we re-fit a linear rule using 

ABLO for the moderate subgroup only. The re-estimated ITR yields a lower average QIDS 

score of 8.93 (sd = 0.35), with a much improved subgroup ITR benefit of 0.60 (sd = 0.70). 

This analysis demonstrates the advantage of the ITR benefit diagnostic measure, the HTB 

test, and the value of re-fitting the ITR on subgroups showing a lack-of-fit.
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5. Discussion

In this work, we propose a diagnostic measure (benefit function) to compare candidate ITRs, 

a machine learning method (ABLO) to estimate the optimal linear ITR, and several tests for 

goodness-of-fit. In practice, often not all predictive and prescriptive variables that influence 

heterogeneous responses to treatment are known and collected. Thus, it is unrealistic to 

expect that an ITR that benefits each and every individual can be identified. Our practical 

solution proposes to evaluate the average ITR effect over the entire population and on 

vulnerable or important subgroups. Although we focus on linear decision functions here, it is 

straightforward to extend ABLO to other simple decision functions such as polynomial rules 

by choosing other kernel functions (i.e., polynomial kernel). ABLO can also be applied to 

observational studies using propensity scores to replace π(A|X) under the assumption that 

the propensity score model is correctly specified. We prove the asymptotic properties of 

ABLO and identify a condition to avoid the non-regularity issue (in Supplementary Material 

Section A2). In practice, when such issue is of concern, adaptive inference (Laber and 

Murphy, 2011) can be used to construct confidence intervals.

ABLO can consistently estimate the ITR benefit function regardless of misspecification of 

the rule by drawing a connection with the robust machine learning approach for 

approximating the zero-one loss. We provide an objective diagnostic measure for assessing 

optimization. In our method, prescriptive variables mostly contribute to the estimation of the 

optimal treatment rule while predictive variables mostly contribute to the development of the 

diagnostic measure and assessment of the benefit of the optimal rule. Future work will 

consider methods to distinguish these two sets of variables, which potentially overlap.

ABLO is slower than O-learning because it involves iterations of quadratic programming 

when applying the DCA. In addition, certain simulations show that the algorithm can be 

slightly sensitive to the initial values in extreme cases (examples provided in Figure A.5 in 

the Supplementary Materials). However, our numeric results show that O-learning estimators 

serve as adequate initial values leading to fast convergence of the DCA. Another limitation 

is that the current methods only apply to single-stage trials. ABLO can be extended to 

multiple stage setting following a similar backward multi-stage O-learning in Zhao et al. 

(2015). The objective function in multi-stage O-learning will be replaced by the ramp loss 

and the benefit function will be extended with some attention to subjects whose observed 

treatment sequences are partially consistent with the predicted optimal treatment sequences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simulation results: Overall ITR benefit and optimal treatment accuracy rates for the four 

methods. Dotted-dashed lines represent the benefit (top panels) and accuracy (bottom 

panels) under the theoretical global optimal treatment rule f∗. Dashed lines represent the 

benefit and accuracy under the theoretical optimal linear rule f L
∗. The methods being 

compared are (from left to right): PM: predictive modeling by random forest; Q-learning: Q-

learning with linear regression; O-learning: improved single stage O-learning (Liu et al., 

2014); ABLO: asymptotically best linear O-learning. This figure appears in color in the 

electronic version of this article.
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Figure 2. 
Simulation results: Subgroup ITR benefit for the four methods. Dotted-dashed lines 

represent the benefit under the theoretical global optimal treatment f∗. Dashed lines 

represent the benefit under the theoretical optimal linear rule f L
∗. The methods being 

compared are (from left to right): PM: predictive modeling by random forest; Q-learning: Q-

learning with linear regression; O-learning: improved single stage O-learning (Liu et al., 

2014); ABLO: asymptotically best linear O-learning. This figure appears in color in the 

electronic version of this article.
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Figure 3. 
STAR*D analysis results: Distribution of the estimated ITR benefit (the higher the better) 

and QIDS score (the lower the better) at the end of level-2 treatment for the four methods 

(based on 500 cross-validation runs). The methods being compared are (from left to right): 

PM: predictive modeling by random forest; Q-learning: Q-learning with linear regression; 

O-learning: improved single stage O-learning (Liu et al., 2014); ABLO: asymptotically best 

linear O-learning. This figure appears in color in the electronic version of this article.
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Table 2

Simulation results: probability of rejecting the null hypothesis that the treatment benefit across subgroups is 

equivalent by the HTB test.

Setting 1. Four region means = (1, 0.5, −1, −0.5).

W X1 V U1

N = 800

PM 0.16 0.05 0.03 0.02

Q-learning 0.18 0.06 0.03 0.03

O-learning 0.21 0.05 0.03 0.03

ABLO 0.42 0.07 0.05 0.06

N = 1600

PM 0.52 0.05 0.05 0.02

Q-learning 0.61 0.05 0.04 0.02

O-learning 0.71 0.04 0.04 0.02

ABLO 0.84 0.05 0.05 0.03

Setting 2. Four region means = (1, 0.3, −1, −0.3).

N = 800

PM 0.12 0.03 0.02 0.02

Q-learning 0.17 0.04 0.03 0.04

O-learning 0.15 0.03 0.03 0.03

ABLO 0.34 0.06 0.04 0.05

N = 1600

PM 0.42 0.06 0.04 0.03

Q-learning 0.56 0.07 0.04 0.03

O-learning 0.57 0.07 0.03 0.03

ABLO 0.74 0.10 0.04 0.05

*
W has strong signal; X1 has weak signal; V and U1 have no signal.
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Table 3

Simulation results: Comparison of the ITR to the non-personalized universal rule. The proportion of rejecting 

the null that the ITR has the same benefit as the universal rule∗ are reported for the overall sample and by 

subgroups.

Setting 1. Four region means = (1, 0.5, −1, −0.5).

Overall W < −0.5 W ∈ [−0.5, 0.5] W > 0.5

N = 800

PM 0.22 0 0.09 0.33

Q-learning 0.37 0.02 0.20 0.40

O-learning 0.39 0.02 0.20 0.43

ABLO 0.86 0.07 0.47 0.78

N = 1600

PM 0.76 0.02 0.38 0.83

Q-learning 0.92 0.05 0.59 0.90

O-learning 0.95 0.06 0.67 0.94

ABLO 0.99 0.08 0.79 0.98

Setting 2. Four region means = (1, 0.3, −1, −0.3).

N = 800

PM 0.18 0.01 0.07 0.27

Q-learning 0.35 0.03 0.17 0.37

O-learning 0.31 0.03 0.17 0.35

ABLO 0.82 0.07 0.43 0.74

N = 1600

PM 0.72 0.03 0.38 0.75

Q-learning 0.88 0.05 0.57 0.86

O-learning 0.90 0.07 0.59 0.86

ABLO 0.99 0.12 0.77 0.97

*
For Setting 1, the mean difference (sd) of the universal rule is 0.09(0.08) for N = 800 and 0.07(0.05) for N = 1600.

For Setting 2, the mean difference (sd) of the universal rule is 0.11(0.08) for N = 800 and 0.08(0.05) for N = 1600.
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