Table 2.
Simulation results: probability of rejecting the null hypothesis that the treatment benefit across subgroups is equivalent by the HTB test.
Setting 1. Four region means = (1, 0.5, −1, −0.5). | ||||
---|---|---|---|---|
| ||||
W | X1 | V | U1 | |
N = 800 | ||||
PM | 0.16 | 0.05 | 0.03 | 0.02 |
Q-learning | 0.18 | 0.06 | 0.03 | 0.03 |
O-learning | 0.21 | 0.05 | 0.03 | 0.03 |
ABLO | 0.42 | 0.07 | 0.05 | 0.06 |
| ||||
N = 1600 | ||||
PM | 0.52 | 0.05 | 0.05 | 0.02 |
Q-learning | 0.61 | 0.05 | 0.04 | 0.02 |
O-learning | 0.71 | 0.04 | 0.04 | 0.02 |
ABLO | 0.84 | 0.05 | 0.05 | 0.03 |
| ||||
Setting 2. Four region means = (1, 0.3, −1, −0.3). | ||||
| ||||
N = 800 | ||||
PM | 0.12 | 0.03 | 0.02 | 0.02 |
Q-learning | 0.17 | 0.04 | 0.03 | 0.04 |
O-learning | 0.15 | 0.03 | 0.03 | 0.03 |
ABLO | 0.34 | 0.06 | 0.04 | 0.05 |
| ||||
N = 1600 | ||||
PM | 0.42 | 0.06 | 0.04 | 0.03 |
Q-learning | 0.56 | 0.07 | 0.04 | 0.03 |
O-learning | 0.57 | 0.07 | 0.03 | 0.03 |
ABLO | 0.74 | 0.10 | 0.04 | 0.05 |
W has strong signal; X1 has weak signal; V and U1 have no signal.