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ABSTRACT The conformation of the HIV-1 envelope glycoprotein (Env) substantially
impacts antibody recognition and antibody-dependent cellular cytotoxicity (ADCC)
responses. In the absence of the CD4 receptor at the cell surface, primary Envs sam-
ple a “closed” conformation that occludes CD4-induced (CD4i) epitopes. The virus
controls CD4 expression through the actions of Nef and Vpu accessory proteins, thus
protecting infected cells from ADCC responses. However, gp120 shed from infected
cells can bind to CD4 present on uninfected bystander cells, sensitizing them to
ADCC mediated by CD4i antibodies (Abs). Therefore, we hypothesized that these by-
stander cells could impact the interpretation of ADCC measurements. To investigate
this, we evaluated the ability of antibodies to CD4i epitopes and broadly neutraliz-
ing Abs (bNAbs) to mediate ADCC measured by five ADCC assays commonly used in
the field. Our results indicate that the uninfected bystander cells coated with gp120
are efficiently recognized by the CD4i ligands but not the bNabs. Consequently, the
uninfected bystander cells substantially affect in vitro measurements made with
ADCC assays that fail to identify responses against infected versus uninfected cells.
Moreover, using an mRNA flow technique that detects productively infected cells,
we found that the vast majority of HIV-1-infected cells in in vitro cultures or ex vivo
samples from HIV-1-infected individuals are CD4 negative and therefore do not ex-
pose significant levels of CD4i epitopes. Altogether, our results indicate that ADCC
assays unable to differentiate responses against infected versus uninfected cells
overestimate responses mediated by CD4i ligands.

IMPORTANCE Emerging evidence supports a role for antibody-dependent cellular cyto-
toxicity (ADCC) in protection against HIV-1 transmission and disease progression.
However, there are conflicting reports regarding the ability of nonneutralizing anti-
bodies targeting CD4-inducible (CD4i) Env epitopes to mediate ADCC. Here, we per-
formed a side-by-side comparison of different methods currently being used in the
field to measure ADCC responses to HIV-1. We found that assays which are unable
to differentiate virus-infected from uninfected cells greatly overestimate ADCC re-
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sponses mediated by antibodies to CD4i epitopes and underestimate responses me-
diated by broadly neutralizing antibodies (bNAbs). Our results strongly argue for the
use of assays that measure ADCC against HIV-1-infected cells expressing physiologi-
cally relevant conformations of Env to evaluate correlates of protection in vaccine
trials.

KEYWORDS A32, ADCC, ADCC assay, CD4i Abs, Env, granzyme B assay, HIV-1,
luciferase assay, RFADCC, uninfected bystander, bNAbs

ntibody-dependent cellular cytotoxicity (ADCC) represents a major effector mech-

anism used by the immune system to target and eliminate virally infected cells.
Besides being incorporated into viral particles, the HIV-1 envelope glycoprotein (Env)
trimer represents the only virus-specific target exposed on the surface of infected cells
and thus represents a major target for ADCC (1). Emerging evidence suggests that Env
conformation plays a critical role in the susceptibility of HIV-1-infected cells to ADCC (2,
3). HIV-1 Env is a metastable molecule, which is driven by CD4 receptor engagement
to transition from its unliganded “closed” high-energy conformation (state 1) into an
intermediate “partially open” conformation (state 2) and then into a more open
CD4-bound conformation (state 3) (4). Interaction of Env with the CD4 receptor was
reported to be critical for the exposure of epitopes for ADCC-mediating antibodies
(Abs) (5-7). Accordingly, ADCC-mediating Abs naturally present in sera from HIV-1-
infected individuals (HIV* sera) preferentially target HIV-1-infected cells that present
Env in states 2 and 3 (5, 8). In line with this observation, ADCC activity present in sera
from HIV-1-infected individuals (HIV* sera) is predominantly mediated by the anti-
cluster A Abs (5, 9-11, 14). These nonneutralizing antibodies (nnAbs) target a highly
conserved region in the gp120 inner domain that is buried inside the closed unligan-
ded Env and becomes exposed only upon CD4 engagement (6, 7, 10-14). Thus, cells
infected with primary viruses that expose Env in its closed unliganded conformation are
largely resistant to ADCC induced by these nnAbs (7, 10, 15-19).

To protect HIV-1-infected cells from ADCC by naturally occurring CD4-induced
(CD4i) Abs, the virus has evolved several strategies to limit the adoption of the
CD4-bound conformation and thus prevent exposure of vulnerable CD4i epitopes.
HIV-1 limits Env-CD4 interaction by both downregulating CD4 and preventing Env
accumulation at the surface of infected cells (5, 7, 20-22). Two accessory proteins, Nef
and Vpu, reduce cell surface expression of CD4 (5, 7), while Env accumulation is tightly
controlled through efficient internalization (22) and Vpu-mediated BST-2 downregula-
tion (20, 21, 23). Therefore, Nef and Vpu play a central role in protecting HIV-infected
cells from ADCC by averting the premature exposure of vulnerable epitopes.

While HIV-1-infected cells are generally protected from ADCC, we recently found
that uninfected bystander CD4* T cells are susceptible to ADCC mediated by CD4i
ligands (16). It has been well established that due to its noncovalent association with
gp41, gp120 sheds from the surface of productively infected cells (13, 24, 25). Binding
of shed gp120 to the CD4 receptor on the surface of uninfected bystander cells exposes
vulnerable CD4i ADCC epitopes and results in the sensitization of these cells to ADCC
(16). However, the extent to which exposure of these CD4i epitopes on uninfected
bystander cells impacts in vitro measurements of ADCC has not yet been determined.
Many ADCC assays measure killing of total cell population and thus are unable to
differentiate ADCC responses against HIV-infected cells from those against uninfected
bystander cells. Here, we compared different ADCC assays currently used in the field for
their ability to measure HIV-T1-infected cell-specific responses. We found that uninfected
bystander cells greatly impact in vitro measurements of ADCC by introducing a signif-
icant bias toward CD4i Abs.

RESULTS

Differential recognition of uninfected bystander cells and infected cells by
ADCC-mediating Abs. We first explored the capacity of different ADCC-mediating Abs
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FIG 1 Differential recognition of infected and uninfected bystander cells by ADCC-mediating Abs. Primary CD4* T cells were mock infected or infected with

the NL4.3 ADA GFP virus, either wild type (HIV WT) or defective for Nef and Vpu expression (HIV N— U~

). Forty-eight hours postinfection, cells were stained

with the anti-Env Ab (5 wg/ml) A32, PGT126, or 3BNC117 or sera (1:1,000 dilution) from 10 HIV-1-infected (HIV* sera) or 5 uninfected (HIV~ sera) individuals,
followed by appropriate secondary Abs. (A) Dot plots depicting representative staining of WT-infected cells. (B) Mean fluorescence intensities (MFI) obtained
for at least 5 independent stainings with the different Abs and 10 HIV* or 5 HIV~ sera. (C) Graphs represent the MFI obtained for 5 independent staining
experiments with A32 and 10 HIV* or 5 HIV~ sera on cells infected with WT and N~ U~ virus. Error bars indicate means * standard errors of the means.
Statistical significance was tested using ordinary one-way analysis of variance (B) or unpaired t test or Mann-Whitney test (C) (*, P < 0.05; ****, P < 0.0001; ns,

nonsignificant).

to recognize uninfected bystander cells versus productively infected cells. To this end,
we infected primary CD4* T cells from HIV-1-uninfected individuals with a previously
reported wild-type (WT) HIV-1 strain that encodes all accessory proteins as well as a gfp
reporter gene and the R5-tropic (ADA) envelope (NL4.3 ADA green fluorescent protein
[GFP]) (7, 16). In this system, productively infected cells are GFP™, whereas GFP~ cells
represent the uninfected bystander cells. Forty-eight hours postinfection, the average
percentage of infected cells was 12.6%. At this step, cells were incubated with HIV*
sera, the nnAb A32, or a broadly neutralizing Ab (bNAb) (either PGT126 or 3BNC117).
The cluster A-specific monoclonal antibody (MAb) A32 recognizes a highly conserved
CD4i epitope located at the interface of the gp120 inner domain layers 1 and 2 (7,
11-13). As previously reported, productively infected (GFP™) cells were poorly recog-
nized by A32 as well as HIV* sera (16), while mock-infected cells were not recognized
(Fig. 1A to Q). This weak recognition of infected cells is likely due to the efficient
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downregulation of CD4 by Nef and Vpu (see Fig. S1 in the supplemental material),
which permits Env to retain its “closed” conformation. In contrast, uninfected bystander
(GFP™) cells from the same culture were readily recognized by A32 and HIV* sera
(Fig. 1A and B). As most cells present in the culture are gp120-coated uninfected
bystander cells (16), strong binding was detected for A32 and HIV* sera when Ab
binding was measured for the total cell population (i.e., both uninfected and infected
cells) (Fig. 1B). Of note, sera from HIV-1-uninfected individuals (HIV~ sera) did not react
with any cell population (Fig. 1C).

In contrast to nnAbs, bNAbs preferentially recognize Env in its closed conformation
(4). PGT126 binds a conserved region at the V3 loop stem near the N332 glycosylation
site (26-28), while 3BNC117 recognizes the CD4-binding site (29). Both bNAbs were
previously found to mediate ADCC against HIV-1-infected cells (18, 21, 30-32). Consis-
tent with these findings, PGT126 and 3BNC117 efficiently recognized productively
infected cells (GFP™) but not the uninfected GFP~ cells (Fig. 1A and B). As expected,
since the majority of the cells in the culture are not recognized by these Abs, the overall
(total) signal obtained with these Abs was lower than the signal obtained with A32 or
HIV* sera (Fig. 1B). In agreement with the role of Nef and Vpu in preventing the
formation of CD4i epitopes through CD4 downregulation (Fig. S1), deletion of these
accessory genes dramatically increased recognition of infected (GFP™) cells by A32 and
HIV™ sera (Fig. 1C). To rule out the possibility that these phenotypes were related to the
viral strain used, we also used primary CD4* T cells infected with the transmitted
founder (TF) virus CH77 and obtained similar recognition patterns (Fig. S2). Altogether,
these results indicate that CD4i ligands recognize uninfected bystander cells coated
with shed gp120 more efficiently than Abs preferentially recognizing the closed trimer.

Assays measuring ADCC against productively infected cells reveal greater
killing of infected cells by bNAbs than by CD4i Abs. To evaluate the potential impact
of the uninfected bystander cell population on ADCC, we compared different assays
currently used in the field to detect ADCC responses against WT-infected cells using the
A32, PGT126, or 3BNC117 MAb or human sera. We initially tested assays designed to
distinguish ADCC responses against infected cells from those against uninfected by-
stander cells. These included the fluorescence-activated cell sorting (FACS)-based
infected-cell elimination (ICE) assay, in which ADCC-mediated elimination of produc-
tively infected cells is determined by calculating the loss of infected cells using a
GFP-expressing virus (5, 7, 10, 16) or by measuring intracellular HIV-1 p24 antigen (10,
15, 17, 32). Using primary CD4+ T cells infected with the NL4.3 ADA GFP WT virus as
target cells and autologous peripheral blood mononuclear cells (PBMCs) as effector
cells, we found that WT-infected cells were significantly more susceptible to ADCC
mediated by PGT126 and 3BNC117 than to that mediated by A32 (Fig. 2A). Further-
more, WT-infected cells were largely resistant to ADCC responses mediated by A32
(Fig. 2B, gray bars) and responses mediated by HIV* sera were comparable to those
seen with HIV™ sera (Fig. 2C, gray circles). Again, deletion of nef and vpu genes
drastically increased ADCC responses mediated by A32 and HIV™ sera (Fig. 2B and C,
black bars and circles, respectively), confirming the dependence of this killing on
Env-CD4 interaction.

Measurement of ADCC-mediated elimination of infected cells was also conducted
using a luciferase assay (33). In this assay, infected CEM.NKr-CCR5-sLTR-Luc cells ex-
pressing a Tat-driven luciferase reporter gene serve as target cells, while human PBMCs
ora CD16™ NK cell line is used as effector cells (18, 21, 22, 33). As luciferase is expressed
only upon productive HIV-1 infection, elimination of infected cells can be calculated by
the loss of luciferase activity. Since this assay measures the elimination of productively
infected (Tat-expressing) cells, we observed ADCC responses very similar to those
obtained with the FACS-based ICE assay (compare Fig. 2A to C with D to F; Fig. S3).
ADCC responses mediated by PGT126 and 3BNC117 were significantly higher than
those obtained with A32. HIV* sera and A32 mediated robust ADCC responses only
against cells infected with the nef~ vpu~ virus (Fig. 2E and F). Similar results were
obtained using target cells infected with the transmitted founder CH77 virus (Fig. S4).
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FIG 2 ADCC responses detected with assays measuring the elimination of infected cells. Primary CD4* T cells (A to C) or CEM.NKr-CCR5-sLTR-Luc cells
(D to F) infected with the NL4.3 ADA GFP virus, either wild-type (HIV WT) (depicted in gray) or defective for Nef and Vpu expression (HIV N~ U~) (depicted
in black) were used as target cells with the FACS-based infected-cell elimination assay (A to C) or the luciferase assays (D to F). (A and D) ADCC responses
detected with the anti-Env Abs A32, PGT126, and 3BNC117 against cells infected with the WT virus. (B, C, E, and F) ADCC responses detected with A32
(B and E) or HIV* and HIV— sera (C and F) against cells infected with WT or N— U~ viruses. All graphs shown represent ADCC responses obtained from
at least 5 independent experiments. For the FACS-based assay, MAbs were used at 5 wg/ml and human sera were used at a 1:1,000 dilution. For the
luciferase assay, area under the curve (AUC) values were calculated using increased concentrations of MAbs (0.0024, 0.0098, 0.0390, 0.1563, 0.6250, 2.5,
and 10 pg/ml) and increased dilutions of human sera (1:100, 1:400, 1:1,600, 1:6,400, 1:25,600, and 1:102,400). Error bars indicate means * standard errors
of the means. Statistical significance was tested using unpaired t test or Mann-Whitney test (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001;

ns, nonsignificant).

These results confirm the increased ability of bNAbs to mediate ADCC responses
against infected cells compared to CD4i Abs.

Assays measuring ADCC activities on the total cell population overestimate the
responses mediated by CD4i Abs. The two assays described above are able to
distinguish between HIV-1-infected and uninfected bystander cells. Other ADCC meth-
ods, however, assess killing on the total cell population (i.e., uninfected and infected
cells). Given that the binding of shed gp120 on uninfected bystander cells enables
recognition of these cells by CD4i Abs but not bNAbs, we hypothesized that these
assays would primarily detect killing of bystander cells.

To investigate this, we performed a similar series of experiments as in Fig. 2 but
measured ADCC using assays that detect killing within the total cell population: the
granzyme B assay and the NK cell activation assay. The granzyme B assay (GranToxiLux
or Pantoxilux assay) detects granzyme B activity in target cells upon incubation with NK
cells and Abs or sera (34-36). Since this assay is not compatible with the permeabili-
zation step required to perform intracellular p24 staining, the user cannot differentiate
productively infected cells from uninfected bystander cells. Similarly, the NK cell
activation assay, which measures NK activation markers (CD107a and interferon gamma
[IFN-v]), is unable to determine which cell population (infected or uninfected) leads to
NK cell activation (20, 37-40). The ADCC responses detected with the granzyme B and
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FIG 3 ADCC responses detected with assays relying on the total cell population. Primary CD4* T cells infected with the NL4.3 ADA GFP virus,
either wild-type (HIV WT) (depicted in gray) or defective for Nef and Vpu expression (HIV N~ U~) (depicted in black), were used as target cells
in the granzyme B assay (A to C), the NK cell activation assay (D to F), or FACS-based assays (gating on the total cell population) (G to I). (A, D,
and G) ADCC responses detected with the anti-Env MAbs (5 wg/ml) A32, PGT126, and 3BNC117 against cells infected with WT virus. (B, C, E, F,
H, and 1) ADCC responses mediated by A32 (B, E, and H) or HIV* and HIV— sera (1:1,000 dilution) (C, F, and I) against cells infected with WT or
N— U~ virus. All graphs shown represent ADCC responses obtained for at least 5 independent experiments. Error bars indicate means * standard
errors of the means. Statistical significance was tested using unpaired t test or Mann-Whitney test (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****,

P < 0.0001; ns, nonsignificant).

NK cell activation assays were strikingly different from those measured with the
FACS-based ICE and luciferase assays (compare Fig. 2 to 3A to F). Strong responses were
detected against WT-infected targets using A32, while weak responses were observed
with PGT126 and 3BNC117 (Fig. 3A and D). Similarly, robust granzyme B activity and NK
cell activation were detected with HIV™ sera in the context of WT-infected target cells
but not with HIV~ sera (Fig. 3C and F), while both assays were unable to detect the
protective effect of Nef and Vpu accessory proteins on ADCC responses (Fig. 3B, C, E,
and F and S5). Results obtained with granzyme B and NK activation were similar to
those obtained with the FACS-based ICE assay when responses were calculated for the
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FIG 4 Recognition of infected cells correlates with ADCC responses when using assays measuring the elimination of the infected-cell population. Correlation
between the ability of A32 and HIV* sera to recognize cells infected with NL4.3 ADA GFP, either wild-type (WT) or defective for Nef and Vpu expression (N~
U-), and the ADCC responses detected against these cells using the luciferase assays (A), the FACS-based assay (on the GFP* cell population) (B), the granzyme
B assay (C), the NK cell activation assay (D), or the FACS-based assay (E) (on the total cell population) was calculated using a Pearson correlation test.

total population (GFP~ and GFP™) rather than by gating on productively infected
(GFP™) cells (Fig. 3G to I). Moreover, while assays measuring the elimination of pro-
ductively infected cells (FACS-based and luciferase assays) showed a positive correla-
tion between antibody binding and ADCC (Fig. 4A and B), no such correlation was
observed with assays that measured killing of total targets (granzyme B, NK activation,
or FACS-based ICE on total cell population) (Fig. 4C to E). Thus, assays relying on the
assessment of ADCC responses on the total cell population overestimate ADCC re-
sponses mediated by CD4i Abs and at the same time underestimate responses medi-
ated by bNAbs.

Most ADCC activity detected using total cell target population is directed
against uninfected bystander cells. Since A32 and HIV™ sera preferentially recognize
uninfected bystander cells (Fig. 1), we hypothesized that most of the ADCC responses
detected with the granzyme B and NK activation assays were directed against such
cells. To test this possibility, uninfected bystander cells (GFP~ CD4*) were removed
from the infected coculture using beads coated with an anti-CD4 antibody that does
not compete for gp120 binding (see Materials and Methods) (Fig. 5A). These uninfected
bystander cells were replaced by the same number of autologous mock-infected cells
(i.e., never exposed to HIV) prior to ADCC measurements. Importantly, this procedure
did not affect the percentage of productively infected cells (percent GFP+ CD47) in the
cell culture (Fig. 5A and B). As expected, the replacement of uninfected bystander cells
by mock-infected cells did not alter recognition of infected GFP* cells but decreased
the proportion of uninfected bystander cells recognized by A32 (Fig. 5C and D). This
replacement also dramatically reduced ADCC responses mediated by both A32 and
HIV* sera using both the granzyme B and NK cell activation assays (Fig. 6). Finally,
removal of bystander cells resulted in a positive correlation between the abilities of A32
and HIV™* sera to recognize infected cells and trigger ADCC responses (Fig. 6E). Thus,
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uninfected bystander cells greatly influence the measurement of ADCC responses by
assays that cannot distinguish infected from uninfected cells.

Measurement of ADCC responses using gp120-coated cells preferentially de-
tects CD4i-mediated ADCC responses. Cells coated with recombinant gp120 are
frequently used as target cells to assess the ADCC activity of monoclonal antibodies
(MAbs) or sera from HIV-1-infected or vaccinated individuals (9, 14, 34, 40-50). In these
assays, CD4™ target cells are incubated with recombinant gp120 monomers, which
adopt a CD4-bound conformation on the target cells and expose surfaces of the protein
that are normally occluded in native Env trimers (51). We thus evaluated Ab binding
and ADCC responses using gp120-coated target cells. The NK cell-resistant cell line
CEM.NKr was coated with recombinant gp120 and subsequently used as target cells to
measure ADCC (41). As predicted from results in Fig. 1, gp120-coated CEM.NKr cells
were efficiently recognized by A32 and HIV* sera but not by HIV— sera (Fig. 7A and B)
or PGT126 and 3BNC117 (Fig. 7A and B). This was also the case when the rapid
fluorometric ADCC assay (RFADCC assay) (41), which uses gp120-coated target cells to
detect ADCC responses, was used for analysis (12, 14, 40, 43, 44, 52). As presented in
Fig. 7C and D and S6, robust responses were detected with A32 and HIV™ sera but not
with PGT126, 3BNC117, or HIV~ sera (Fig. 7C and D). Thus, gp120-coated target cells
detected ADCC responses largely mediated by CD4i antibodies and not by bNAbs
capable of recognizing functional Env trimers, such as antibodies to the CD4-binding
site or to a proteoglycan epitope in the V3 region.
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FIG 6 Replacement of uninfected bystander cells by autologous mock-infected cells strongly reduces the ADCC
responses detected with granzyme B and NK cell activation assays. Primary CD4* T cells were mock infected (Mock) or
infected with the NL4.3 ADA GFP WT virus (HIV WT). Forty-eight hours postinfection, uninfected bystander CD4+ T cells
were removed and replaced by the same number of autologous mock-infected cells (HIV WT -Byst. cells +Mock cells) prior
to ADCC measurements with the granzyme B assay (A and B) and the NK cell activation assay (C and D). (A and C) ADCC
responses detected with A32 (5 ug/ml). (B and D) Responses mediated by HIV* and HIV— sera (1:1,000 dilution). (E) A
correlation between the ability of A32 and HIV* sera to recognize infected cells and the ADCC responses detected with
the granzyme B and NK cell activation assay was observed when the uninfected bystander CD4* T cells were replaced
by autologous mock-infected cells in the context of a WT infection. All graphs shown represent ADCC responses obtained
in at least 5 independent experiments. Error bars indicate means * standard errors of the means. Statistical significance
was tested using unpaired t test or Mann-Whitney test (A to D) and a Pearson correlation test (E) (**, P < 0.01; ****, P <
0.0001; ns, nonsignificant).
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FIG 7 Measurement of ADCC responses against gp120-coated target cells. (A and B) Recognition of
gp120-coated CEM.NKr cells by A32, PGT126, or 3BNC117 (A) and HIV* or HIV~ sera (B). (C and D) ADCC
responses detected using the RFADCC assay against gp120-coated cells with the anti-Env Ab A32, PGT126, or
3BNC117 (0.008, 0.04, 0.2, 1, and 5 ug/ml) (C) and HIV* or HIV- sera (1:100, 1:400, 1:1,600, 1:6,400, and
1:25,600 dilutions) (D). All graphs shown represent staining and ADCC responses obtained in at least 3
independent experiments. Error bars indicate means * standard errors of the means. Statistical significance

was tested using unpaired t test (****, P < 0.0001).

A32 preferentially recognizes CD4+ p24— cells not expressing HIV-1 gag-pol
mRNA. Our results suggest that A32 preferentially targets uninfected bystander cells
rather than productively infected cells (Fig. 2 and 5), although anti-cluster A Abs, such
as A32, were initially identified as potent ADCC-mediating Abs (9, 14). Therefore, we
could not exclude the possibility that the cells detected as bystander cells in our assays
were infected but below the limit of detection. To investigate this possibility, we used
a previously described RNA-flow fluorescence in situ hybridization (FISH) method (53,
54). This method identifies productively infected cells by visualizing cellular HIV-1
gag-pol mRNA by in situ RNA hybridization and intracellular Ab staining for the HIV-1
p24 protein. This approach is 1,000-fold more sensitive than p24 staining alone, with a
detection limit of 0.5 to 1 gag-pol MRNA™/p24 protein™ infected cell per million CD4"
T cells (53, 54). The sensitivity of the assay is high, since a cell is reliably identified as
gag-pol mRNAT if it contains more than 20 copies of HIV-1 mRNA. Thus, this technique
can distinguish infected cells from uninfected bystander cells with high specificity and
sensitivity.

For these experiments, primary CD4" T cells were infected with the NL3.4 ADA GFP
WT virus, and 48 h postinfection, the average percentage of infection was 8.0%.
Infected cells were stained first with A32 before staining for phenotypic markers, such
as CDA4. Cells were then fixed and permeabilized to allow detection of the HIV-1 p24
antigen and gag-pol mRNA. We first tested whether CD4" T cells recognized by A32
were positive for gag-pol mRNA (Fig. 8A and B) but found that less than 2% of these
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FIG 8 A32 preferentially binds to cells that are CD4+ p24~ gag-pol mRNA~. (A and B) Primary CD4* T cells infected with NL3.4 ADA GFP WT virus were
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of HIV-1 p24 and gag-pol mRNA by RNA-flow FISH. (A) Example of flow cytometry gating strategy based on A32 binding. (B) Quantification of the
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of p24+ CD4+ cells among the cells positive for gag-pol mRNA. (F) Quantification of the percentage of cells that are CD4* p24—, CD4* p24+, or CD4~
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cells contained p24 protein or gag-pol mMRNA. In contrast, the vast majority of A32-
negative cells were positive for p24 protein (73.03%) or gag-pol mRNA (78.04%). This
confirmed that the vast majority of CD4™ T cells recognized by A32 are uninfected
bystander cells.
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FIG 9 The CD4+ p24+ cell population represents a minimal fraction of the gag-pol mRNA™* cells in HIV-1-infected individuals. CD4*
T cells isolated from chronically HIV-infected, untreated individuals were rested overnight. Cells were then stained for phenotypic
markers (see Materials and Methods) prior to detection of HIV-1 p24 and gag-pol mRNA by RNA-flow FISH. (A) Example of flow
cytometry gating based on p24 and CD4 expression. (B) Quantification of the percentage of cells positive for gag-pol mRNA based on
CD4 and p24 levels. Error bars indicate means = standard errors of the means of data obtained with 10 HIV-1-infected individuals.

It remained possible, however, that the cells detected as p24— gag-pol mRNA~ were
in a very early stage of infection, before viral protein and mRNA could be detected.
Indeed, previous studies have suggested that A32-like epitopes become transiently
exposed during viral entry (55, 56). To investigate this possibility, uninfected bystander
(GFP~) cells were sorted by flow cytometry to determine how many could become
productively infected. After 5 additional days in cell culture, less than 3% of sorted
GFP~ cells became infected (Fig. S7). Thus, most cells recognized by A32 are neither
productively infected nor in a very early stage of infection.

Since Env-CD4 interaction is critical for exposure of the A32 epitope (5-7), we next
analyzed the RNA-flow FISH results based on p24 and CD4 expression. As shown in
Fig. 8C and D, CD4" p24~ cells were efficiently recognized by A32 (blue bars) but
remained almost exclusively negative for gag-pol mRNA (red bars). Inversely, the CD4~
p24* population was largely positive for gag-pol mRNA but was not recognized by A32.
More recent studies suggested that the A32 epitope could be exposed on a fraction of
p24+ cells because of residual CD4 expression (42, 57, 58). Therefore, we next quanti-
fied the recognition by A32 and infection of these p24* CD4™" cells by RNA-flow FISH
(dark gray box, Fig. 8C). Although this rare population was indeed recognized, only a
fraction of A32-positive cells were productively infected (~20%). Similar results were
obtained with primary CD4" T cells infected with an X4-tropic virus (Fig. S8). Finally, we
determined the proportion of gag-pol MRNA+ cells that were both p24+ and CD4* and
found less than 5% of such cells that could be recognized by A32 (Fig. 8E). We also
performed the reverse analysis by first identifying A32* CD4* T cells and then
determining how many of those cells were both p24 and CD4 positive. Since only ~1%
of such cells were CD4+ p24+ (Fig. 8F), it seems clear that A32" cells represent only a
minuscule fraction of productively HIV-1-infected CD4 T cells.

To determine whether gag-pol mRNA-containing CD4* p24+ cells were present in
the peripheral blood of HIV-1-infected individuals, we isolated CD4* T cells from the
blood of untreated chronically HIV-1-infected individuals, rested them overnight with-
out stimulation, and then performed the RNA-flow FISH assay (Fig. 9A and B). Again, the
CD4+ p24™ cell population represented only a minimal fraction of the gag-pol mRNA*
cells. Therefore, in vivo A32 is unlikely to recognize most HIV-1-infected cells.

DISCUSSION

The conformation adopted by Env at the cell surface has considerable influence on
Ab recognition and ADCC responses (2). In its unliganded form, Env from most primary
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virus samples adopts a “closed” trimeric conformation, preferentially recognized by
bNAbs but not by CD4i Abs, which are abundant in plasma from most HIV-1-infected
individuals (2, 4, 10, 15-18, 23, 59, 60, 86). One of the mechanisms that HIV-1 has
developed to avoid exposing Env CD4i epitopes is the downregulation of CD4 cell
surface expression. This is achieved in a two-step process. First, during the early phases
of the HIV-1 replication cycle, Nef downregulates CD4 from the plasma membrane.
Second, Vpu, expressed from a bicistronic mRNA also coding for Env, induces CD4
degradation through an endoplasmic reticulum (ER)-associated protein degradation
(ERAD) mechanism in the ER (61). The action of Vpu liberates Env from CD4-dependent
retention in the ER (62), allowing its trafficking to the plasma membrane in a “closed”
conformation in which CD4i epitopes are occluded by oligomerization. These epitopes,
however, are exposed in shed gp120 monomers that are released by the dissociation
of the noncovalent gp120-gp41 interactions. Interestingly, in vitro experiments have
shown that the binding of shed gp120 to uninfected bystander CD4* T cells enables
recognition of these cells by CD4i antibodies (16). Of note, this was seen using a variety
of HIV-1 variants, including primary or transmitted founder viruses (Fig. 1 and S2) (16,
17, 58, 63), as well as simian-human immunodeficiency virus (SHIV) infectious molecular
clones (16).

Here, we demonstrate that the uninfected bystander CD4* T cell population, which
is coated with shed gp120, represents a confounding factor when measuring ADCC
responses in vitro. Using assays that are unable to differentiate infected from uninfected
cell populations, we observed strong killing mediated by A32 and HIV* sera (Fig. 3).
This ADCC activity was not correlated with the inability of these antibodies to recognize
infected cells (Fig. 1 and 4). Replacement of gp120-coated uninfected bystander CD4+
T cells with autologous mock-infected cells confirmed that most of the detected
activities were directed against uninfected CD4+ T cells (Fig. 5 and 6). Using a sensitive
RNA-flow FISH method, we next showed that A32 preferentially recognizes CD4* cells
that are negative for HIV-1 p24 and gag-pol mRNA (Fig. 8), while fewer than 2% of
productively infected cells (p24™ gag-pol mMRNA™) were recognized by this antibody.
Although this population remains to be defined further, these cells likely represent
virus-coated cells on which the A32 epitope has been transiently exposed as a result of
the high density of Env-CD4 interactions, a possibility supported by the fact that they
do not form a distinct population in FACS analyses but form a shoulder of the
p24-negative population. The extent to which this cell population exists in vivo, and the
ability of Fcy receptor-bearing cells to gain access to CD4i epitopes, remains unknown.
In contrast, the vast majority of productively infected cells were CD4~, both in vitro and
in ex vivo samples from HIV-1-infected individuals. Consistent with poor recognition of
infected cells by A32 and HIV™ sera, in vitro assays able to determine ADCC responses
against infected cells failed to detect robust ADCC responses mediated by these ligands
(Fig. 2). This was not due to a lack of sensitivity, since these assays readily detected
ADCC responses mediated by the bNAbs PGT126 and 3BNC117 (Fig. 2). Thus, assays
measuring responses on the total population missed the ADCC activity mediated by
these bNAbs.

The results of our study highlight the difficulties in selecting an appropriate assay to
measure ADCC. If ADCC is measured on the total population (granzyme B and NK cell
activation), A32 and HIV* sera appear to mediate a stronger ADCC response than
PGT126 and 3BNC117. On the other hand, assays that can evaluate responses against
infected cells show the opposite: PGT126 and 3BNC117 mediate significantly higher
ADCC responses than A32 and HIV™ sera. It seems clear that ligand recognition of
gp120-coated uninfected bystander CD4™ T cells is, at least in part, responsible for
these differences. Indeed, removal of these cells significantly reduced the ADCC activity
detected for A32 and HIV* sera. Therefore, the differential recognition of the unin-
fected bystander cell population by any given ligand has a significant impact on in vitro
ADCC measurements. It is well established that HIV-1 accessory proteins Nef and Vpu
protect HIV-T-infected cells from ADCC responses (5, 7, 10, 15, 19-21, 64, 65). Assays
measuring the elimination of infected cells were able to confirm these observations
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(Fig. 2, S3, and S4), while those that measure the total population (granzyme B and NK
cell activation) failed to do so (Fig. 3). Thus, the presence of gp120-coated uninfected
bystander CD4* T cells confounds in vitro ADCC measurements.

Previous reports demonstrated that the majority of ADCC activity present in HIV*
sera is mediated by anti-cluster A antibodies (9-11, 14). These antibodies preferentially
target Env in its CD4-bound conformation (5, 8). Intriguingly, we observed variable
ADCC activity among the different HIV* sera tested (Fig. 2, 3, and 6). It is possible that
differences in their concentration in sera account for some of this variability. However,
we cannot rule out that the presence of additional ADCC-mediating Abs that do not
require the CD4-bound conformation of Env to recognize infected cells, or that target
the gp41, might also contribute to this variable ADCC activity.

While passive administration of ADCC-mediating nnAbs, including A32, has failed to
protect macaques against simian immunodeficiency virus (SIV) or SHIV challenges
(66-70), several studies have identified ADCC responses measured against total cell
population or gp120-coated target cells as correlates of protection in these same
animal models (45, 71-74). Moreover, CD4i vaccines have been reported to protect
macaques from viral challenge (45, 72). Since Env conformation greatly influences
ADCC responses (8), it is possible that the conformation of Env in the challenge viruses
impacted the reported protection efficacy. It is conceivable that the Env of these
challenge stocks sampled a slightly more “open” conformation, readily recognized by
CD4i Abs but not present in primary viruses (8). For example, nonneutralizing CD4i Abs
with ADCC activity, in the presence of low levels in plasma of IgA Env-specific Abs,
inversely correlated with HIV-1 acquisition in the RV144 trial (75). A recent study
suggested that the presence of a naturally occurring histidine at position 375 (H375) in
the Phe 43 cavity of the predominant strain (CRFO1_AE) replicating in Thailand might
have contributed to the efficacy of the trial by spontaneously exposing epitopes
recognized by ADCC-mediating antibodies elicited by the RV144 vaccine regimen (76).
Our results warrant further studies to assess the conformation of Envs of current SHIVs
used in vaccine efficacy studies.

Since Env conformation and the nature of target cells greatly influence ADCC results,
our study highlights the need for careful assay selection. Assays measuring ADCC
responses on the total cell population (Fig. 3 to 6) or using target cells coated with
recombinant gp120 (Fig. 7) or infected with viruses defective for Nef and Vpu expres-
sion (Fig. 2) favor the detection of ADCC responses mediated by CD4i Abs over those
induced by bNAbs. Assays measuring ADCC responses on the infected-cell population
are better suited to evaluate responses mediated by Abs recognizing the CD4-binding
site or trimeric Env. Thus, these parameters must be carefully considered before
selecting assays for characterizing HIV-1-specific ADCC responses when evaluating
responses mediated by monoclonal Abs, mechanisms of immune evasion, or correlates
of vaccine protection.

MATERIALS AND METHODS

Ethics statement. Written informed consent was obtained from all study participants (the Montreal
Primary HIV Infection Cohort [77, 78] and the Canadian Cohort of HIV Infected Slow Progressors [79-81]),
and research adhered to the ethical guidelines of the Centre de Recherche du CHUM (CRCHUM) and was
reviewed and approved by the CRCHUM institutional review board (ethics committee approval number
CE 16.164-CA). Research adhered to the standards indicated by the Declaration of Helsinki. All partici-
pants were adult and provided informed written consent prior to enroliment in accordance with
institutional review board approval.

Cell lines and isolation of primary cells. HEK293T human embryonic kidney cells (obtained from
ATCC) and CEM.NKr-CCR5-sLTR-Luc cells were grown as previously described (7, 15). Primary human
PBMCs, NK cells, and CD4+ T cells were isolated, activated, and cultured as previously described (7, 15)
and detailed in the supplemental material.

Viral production and infections. To achieve the same level of infection among the different IMCs
(infectious molecular clones) tested, vesicular stomatitis virus G (VSVG)-pseudotyped HIV-1 viruses were
produced and titrated as previously described (5). Viruses were then used to infect activated primary CD4
T cells from healthy HIV-1-negative donors or CEM.NKr-CCR5-sLTR-Luc cells by spin infection at 800 X g
for 1 h in 96-well plates at 25°C.

Antibodies and sera. A detailed list of the Abs used for cell surface staining, ADCC measurement,
and RNA flow analysis is presented in the supplemental material. Sera from HIV-infected and uninfected
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donors were collected, heat inactivated, and conserved as previously described (7, 15). A random number
generator (QuickCalcs; GraphPad, San Diego, CA) was used to randomly select a number of sera for each
experiment.

Plasmids and site-directed mutagenesis. pNL43-ADA(Env)-GFP.IRES.Nef proviral vectors containing
intact or defective nef and vpu genes, as well as the VSVG-encoding plasmid (pSVCMV-IN-VSV-G), were
previously described (5). The plasmid encoding the HIV-1 transmitted founder (TF) IMC CH77 containing
intact or defective nef and vpu genes was previously described (10, 15, 82-85).

Flow cytometry analysis of cell surface staining. Cell surface staining was performed as previously
described (5, 15). Binding of HIV-1-infected cells by sera (1:1,000 dilution), anti-Env MAbs (A32, PGT126,
or 3BNC117) (5 ng/ml), or anti-CD4 MAbs (1 ng/ml) was performed at 48 h postinfection. Cells infected
with HIV-1 primary isolates were stained intracellularly for HIV-1 p24, using the Cytofix/Cytoperm
fixation/permeabilization kit (BD Biosciences, Mississauga, ON, Canada) and the fluorescent anti-p24 MAb
(phycoerythrin [PE]-conjugated anti-p24, clone KC57; Beckman Coulter/Immunotech). The percentage of
infected cells (p24+ or GFP* cells) was determined by gating the living cell population on the basis of
the AquaVivid viability dye staining. Samples were analyzed on an LSR Il cytometer (BD Biosciences), and
data analysis was performed using FlowJo vX.0.7 (Tree Star, Ashland, OR, USA).

Replacement of uninfected bystander cells by autologous mock cells. Uninfected bystander cells
(GFP~ CDA4high T cells) were removed from the target cell population using the Dynabeads CD4-positive
selection kit (Invitrogen) at a ratio of 25 ul of beads per million cells. Enrichment of infected primary
GFP+ CD4'w T cells was assessed by cell surface staining with the anti-CD4 OKT4 Ab (Fig. 5A). Uninfected
bystander cells were then replaced by the same number of autologous mock cells prior to staining with
A32 or performing ADCC measurements.

ADCC measurements. ADCC responses were measured at 48 h postinfection, as described in detail
in the supplemental material. For the FACS-based, granzyme B, and NK cell activation assays, MAbs were
used at 5 ug/ml and human sera were used at a 1:1,000 dilution. For the luciferase assay, MAbs were used
at 0.0024, 0.0098, 0.0390, 0.1563, 0.6250, 2.5, 10, or 40 ug/ml and human sera were used at a dilution of
1:100, 1:400, 1:1,600, 1:6,400, 1:25,600, 1:102,400, 1:409,600, or 1:1,638,400. For the RFADCC assay, MAbs
were used at 0.008, 0.04, 0.2, 1, and 5 ug/ml and human sera were used at a dilution of 1:100, 1:400,
1:1,600, 1:6,400, or 1:25,600.

RNA-flow analysis. Samples were processed using the HIV RNA/Gag RNA flow assay as previously
described (53, 54). Briefly, for in vitro studies, primary CD4* T cells infected for 48 h were collected and
indirectly surface stained for HIV Env using A32 (as described above) before further staining for
phenotypic markers. For ex vivo studies, CD4* T cells were isolated from chronically HIV-infected,
untreated individuals and rested overnight in the presence of antiretrovirals (zidovudine [AZT] plus T20)
in order to block new cycles of infection. In all experiments, cells were labeled with a viability dye (eFluor
506 fixable viability dye; ThermoFisher Scientific) and surface stained for phenotypic markers (CD3, CD4,
and exclusion [CD8, CD14, and CD19]), before fixation, permeabilization, and intracellular staining for HIV
p24. HIV gag-pol mRNA was labeled using the ThermoFisher PrimeFlow kit using probes designed against
JR-CSF (53, 54). Samples were acquired on a BD LSR Il cytometer (BD Biosciences), and data analysis was
performed using FlowJo vX.0.7 (Tree Star).

Statistical analyses. Statistics were analyzed using GraphPad Prism version 6.01 (GraphPad, San
Diego, CA). Every data set was tested for statistical normality, and this information was used to apply the
appropriate (parametric or nonparametric) statistical test. P values of <0.05 were considered significant.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00358-18.
TEXT S1, PDF file, 0.1 MB.
FIG S1, PDF file, 0.7 MB.
FIG S2, PDF file, 0.7 MB.
FIG S3, PDF file, 0.7 MB.
FIG S4, PDF file, 0.7 MB.
FIG S5, PDF file, 1 MB.
FIG S6, PDF file, 0.8 MB.
FIG S7, PDF file, 0.7 MB.
FIG S8, PDF file, 0.7 MB.
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