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Abstract

Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate the vast 

majority of fast synaptic transmission in the nervous system. When the iGluR ion channel is in the 

open or conducting conformation, it is non-selective for monovalent cations, driving membrane 

excitation. Often the channel is also permeable to Ca2+. This process of Ca2+ permeation and its 

physiological and pathological consequences depend strongly on the specific iGluR subtype as 

well as the specific subunits in the oligomeric complex. Recent evidence has highlighted 

additional levels of diversity to this process including a dependence on specific auxiliary subunits 

in non-NMDARs and post-translational modifications in NMDARs. Various de novo missense 

mutations associated with neurological disease in NMDAR subunits have been identified in 

regions critical to Ca2+ influx. These features highlight the dynamics of Ca2+ influx mediated by 

iGluRs and its critical role in synaptic physiology and pathology.
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1. Introduction

We have learned in school, or should have learned, that a fundamental determinant of ion 

channel function is the ions it allows to pass when in the open or conducting state [1]. 

Consider ionotropic glutamate receptors (iGluRs), the ligand-gated ion channels that 

mediate fast excitatory synaptic transmission in the brain. Their ion channel is cation non-

selective, being about equally permeable to both K+ and Na+ ions [2]. At rest, activation or 

opening of iGluRs is excitatory because of the strong driving force for Na+ influx. The 

iGluR ion channel evolutionarily originated from a two transmembrane K+ channel [3]. If 

iGluRs retained their ancient permeability properties of being selectively permeable to K+ 
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rather than being cation non-selective, the contribution of iGluRs to membrane physiology 

would be the exact opposite: K+-selective iGluRs would be inhibitory rather than excitatory.

Being non-selective to monovalent cations mediates the role of iGluRs in brain excitation. 

iGluRs also often affect cell-to-cell signaling independent of direct membrane excitation. 

Some iGluR subtypes can function as metabotropic receptors, acting independent of ion flux 

[4]. In many instances, the iGluR ion channel is permeable not only to monovalent cations 

but also Ca2+. Although the charge associated with Ca2+ may contribute to excitation, Ca2+ 

predominantly acts as a biochemical signaling molecule. Indeed, this Ca2+ signaling often 

dominates how we think of iGluR function, contributing to their role in synaptic dynamics, 

neuronal development, and cellular pathology [5,6]. After reviewing some basic features of 

Ca2+ permeation, I will focus on recent efforts that have further highlighted the regulation 

and dynamic role of Ca2+ permeation in iGluRs.

2. The permeation pathway in iGluRs

There are three iGluR subtypes: AMPA (AMPAR), kainate (KAR), and NMDA (NMDARs) 

receptors, which are composed of various subunits (Figure 1). These receptors share a 

similar overall structure [7–9], including the topology of the pore-forming or ion permeation 

pathway.

In iGluRs, the permeation pathway is largely formed by the M3 transmembrane segment and 

the intracellular M2 pore loop (Figure 1A). This arrangement is like that of a K+-selective 

channel, but is inverted in the membrane with the pore loop on the intracellular rather than 

the extracellular side of the membrane. Within the M2 loop resides a key site for ion 

permeation, the Q/R/N site (Figures 1A & 1B)(the Q/R site for non-NMDAR subunits and 

the N site for NMDAR subunits)[10]. The Q/R/N site is located near the tip of the M2 loop 

and contributes to the narrow constriction in the pore where waters of hydration of permeant 

ions are stripped for recognition [1]. In non-NMDARs, the Q/R site is edited, at the mRNA 

level, to encode the positively charged arginine (R) in GluA2 and GluK1 and GluK2, which 

renders the channel Ca2+ impermeable (Figure 1B)[10]. Because of the dominance of the 

Q/R site in terms of pore properties (single channel current, channel block and Ca2+ 

permeation), AMPARs are distinguished into GluA2-containing (Ca2+-impermeable 

AMPARs) and GluA2-lacking (GluA1, GluA3, GluA4, or Ca2+-permeable AMPARs) 

AMPARs. Although KARs (GluK1-K2) are also edited, this editing is less complete [11]. 

For KARs, the role of Ca2+ influx, or the lack of it for edited subunits, in synaptic 

development and physiology remains poorly defined.

Di-heteromeric assemblies of NMDARs, containing GluN1 and some combination of GluN2 

subunits, have a higher selectivity for Ca2+ than non-NMDARs (Figure 1B). This difference 

is due only in part to the Q/R/N site [2]. One determinant of this higher selectivity is the 

DRPEER motif in the GluN1 M3 segment [9,12]. Although elements that contribute to ion 

permeation in NMDARs are largely known, the mechanism of this process remains unclear: 

it follows Goldman-Hodgkin-Katz (GHK) assumptions at physiological Ca2+ [13], but 

deviates at lower and higher concentrations [2]. Structures of iGluRs especially at higher 
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resolutions and in the open state and molecular dynamics simulations will provide new 

insights into the mechanistic basis of Ca2+ permeation in iGluRs.

One of the hallmarks of GluN2-containing NMDARs is a strong voltage-dependent block of 

the pore by extracellular Mg2+ [10]. One question that has perplexed biophysicists is how 

the pore of NMDARs can distinguish between Ca2+, which is permeable, and Mg2+, which 

is largely impermeable. Determinants of both processes, Ca2+ permeation and Mg2+ block, 

are shared in the M2 loop. Part of the distinction between Ca2+ and Mg2+ must involve 

differences in hydration energy [1]: Mg2+ because of its small size and condensed charge 

holds on to its water of hydration tightly, whereas the larger Ca2+ holds onto these waters 

much less tightly. Recent efforts involving molecular dynamic simulations have started to 

define how elements in the M2 loop mechanistically distinguish between Ca2+ and 

Mg2+ [14*]. In addition, high resolution structures of the M2 loop in the open state, which 

are now available for AMPARs [15**], will further allow additional mechanistic insights 

into how the narrow constriction in NMDAR distinguishes between these two critical 

physiological ions.

An additional element that remains uncertain is how extracellular permeant ions, Na+ and 

Ca2+ in particular, access the central permeation pathway defined by the M3 transmembrane 

segment (Figure 1A). iGluRs are highly modular proteins (upper panel, Figure 1B). The 

ligand-binding domain (LBD) is positioned on the extracellular end of the ion channel and is 

connected to the ion channel-forming transmembrane domain (TMD) by a set of short 

polypeptide linkers, the LBD-TMD linkers. These linkers are highly dynamic during pore 

opening and contain numerous charged side chains [16]. They presumably represent 

pathways or portals for permeant ions to access the central permeation pathway. 

Nevertheless, how permeant ions cross these portals and their impact on selectivity and 

single channel conductance levels are unknown. This question is of interest since these 

linkers are promising sites for modulation of receptor function in the clinic [17].

The NMDAR GluN3 subunits, GluN3A & GluN3B, reduce Ca2+ influx when part of a di-

heteromeric (GluN1 & GluN3) or triheteromeric (GluN1/GluN2/GluN3) complex [18,19]. 

This difference presumably reflects the composition of the residues occupying the N site 

(Figure 1B), though this needs to be directly tested. To do so will require approaches where 

the subunit composition of NMDARs is well-defined [20].

3. Subunit composition: New subunits in the mix

A major determinant of Ca2+ permeability in iGluRs is subunit composition (Figure 1B). 

The AMPAR subunits GluA1-A4 and KAR subunits GluK1–5 are pore-forming. Native 

AMPARs and KARs are most likely associated with an assortment of auxiliary subunits, 

non-pore forming subunits that modulate the cell biology and/or functional properties of the 

pore-forming subunits [21,22]. Stargazin (γ−2) was the first characterized auxiliary subunit, 

but these subunits are now expansive, encompassing transmembrane AMPA receptor 

regulatory proteins (TARPs)(γ-2, γ-3, γ-4, γ-5, γ-7, γ-8), cornichons (CNIH-1, -2, -3), 

GSG1L, CKAMP-44 (CKAMP-44, -39, -52, -59) and Neto (Neto1 & Neto2). These 

auxiliary subunits show cell-type and developmental specific patterns of expression and add 

Wollmuth Page 3

Curr Opin Physiol. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



many layers of diversity to non-NMDARs, altering receptor trafficking and localization, 

gating, and properties of the permeation pathway including polyamine block, single channel 

conductance, and, notable here, Ca2+ permeation.

Of the tested auxiliary subunits, stargazin (γ−2 and γ-4) and cornichon (CNIH-2) increase 

Ca2+ permeation in AMPARs by about two-fold [23,24]. In contrast, CNIH-1 has no effect 

and GSG1L decreases permeability by about 50% [24,25]. These properties parallel those 

for the general effect of these auxiliary subunits on receptor function: γ-2 and CNIH-2 tend 

to increase receptor function including decreasing the extent of desensitization and 

polyamine block and increasing single channel conductance, whereas GSG1L has the 

opposite effects. This raises two interesting points. The first is physiological: why does 

nature incorporate auxiliary subunits that either increase (γ-2, CNIH-2) or decrease 

(GSGL1) all receptor functions? Ca2+ influx through Ca2+-permeable AMPARs has a strong 

effect on synaptic physiology, but the parallel effects on receptor function will increase or 

decrease both the electrical as well as the biochemical function of Ca2+-permeable 

AMPARs.

The second question is a structure-function one: how do these various auxiliary subunits 

impact the permeation pathway? High-resolution cryo-EM structures of auxiliary subunits in 

complex with AMPARs highlight the close contact between membrane spanning domains 

[26–29] and give guidance but do not reveal mechanistic features. The effect of stargazin on 

receptor function depends on the residue occupying the Q/R site [30], suggesting that 

auxiliary subunits might alter the local structure of the narrow constriction, though they do 

not change pore size [31]. On the other hand, the intracellular C-terminus of CNIH-2 affects 

pore properties [24], possibly by directly interacting with intracellular determinants of the 

pore. Nevertheless, how auxiliary subunits mechanistically alter pore properties, especially 

Ca2+ permeation, remains unclear.

The most prominent auxiliary subunits in KARs are Netos (Neto1 & Neto2). Although 

Netos can alter pore block, they have no apparent effect on Ca2+ permeability [32]. 

Interestingly, Netos apparently reduce polyamine block by enhancing its permeation 

apparently by changing the structure of the pore loop [33]. What is needed to fully clarify 

this mechanism of action are high resolution structures of KAR-Neto complexes.

4. Dynamic regulation of Ca2+ permeation in NMDARs at synapses

Given the importance of Ca2+ influx to synaptic physiology and dynamics, nature finds way 

to increase functional diversity. Indeed, the magnitude of Ca2+ permeation in NMDARs can 

be regulated in a use-dependent manner at synapses [34,35]. This dynamic action is 

associated with the GluN2B subunit. At least one of the pathways for it occurs via protein 

kinase A modulation [34] of Ser1166 in the GluN2B C-terminal domain (CTD) [36*]. This 

dynamic action has clear biological effects impacting synaptic plasticity, learning and 

memory, and emotional responses to stress [34–36*].

How phosphorylation of the intracellular CTD modulates pore properties of the receptor is 

completely unknown. Functional studies of the CTD have been hindered by a lack of 
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structural information, as the CTD has been excluded from all available iGluR structures 

[37]. Further complicating a structural understanding is that the GluN2B CTD contains 

significant regions of intrinsic disorder [38,39**]. The CTD in NMDARs interacts with 

lipids [40*], which might in some way disrupt the overall structure of the transmembrane 

domain, where interactions among pore forming elements are important to permeation 

properties [41]. Alternatively, the CTD is directly connected to the M4 transmembrane 

segment, which has strong effects on receptor function [42]. Conformational changes in the 

CTD, induced by post-translation modifications, might alter the orientation of M4 in the 

membrane, which in turn alters pore properties. In any case, how the conformation of the 

CTD, driven by post-translational modifications, affects receptor function including pore 

properties and receptor gating is an area of intense investigation [43]. To define how the 

CTD impacts receptor function will require integration of various approaches including 

electrophysiological and optical approaches as well as single molecule techniques that allow 

details of the conformation of the CTD under various conditions to be ascertained.

5. De novo and inherited missense mutations in NMDAR in neurological 

disorders

The role of iGluRs in neurological diseases has a long history. Recently, an ever expanding 

list of de novo and inherited missense mutations in NMDAR and AMPAR subunits have 

been identified in patients with neurological disorders including epileptic encephalopathy, 

intellectual disability, autism, schizophrenia, and motor dysfunction [44–46]. Functionally, 

most of these mutations have not been characterized in detail, though when characterized, 

they often have clear effects on receptor function [47–49].

Missense mutations have been identified in the M2 pore loop (Figure 1C) and, when tested, 

affect Mg2+ block [50–54]. In the one instance where tested, which occurred for the 

positively charged lysine (K) at the N site in GluN2A (Figure 1C), Ca2+ permeation was 

strongly affected [50]. Given the central role of M2 in Ca2+ permeation, other M2 loop 

missense mutations presumably also alter Ca2+ though this remains untested. Understanding 

how these missense mutations might alter Ca2+ influx has strong implications for their 

clinical pathology as well as the mechanism of the permeation process itself. As such, it 

remains an area of intense interest.

6. Concluding remarks

While the Ca2+ permeability of iGluRs and its biological importance was discovered some 

time ago, it remains an important topic of study. Many mechanistic questions remain such as 

how the conformational status of the CTD impacts pore properties. Further, Ca2+ permeation 

is not a static property solely dictated by the subunit composition of traditional subunits but 

depends also on auxiliary subunits, and we do not understand how these changes in Ca2+ 

permeation induced by different auxiliary subunits impact synaptic dynamics including 

plasticity. Finally, how missense mutations in the M2 loop affect Ca2+ permeation and 

clinical pathologies has not been well established.
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Figure 1. Structure of the permeation pathway and relative Ca2+ permeability in iGluRs
(A) Open state structure of an AMPAR (GluA2) (PDB, 5WEO) [15]. The permeation 

pathway in iGluRs is mainly defined by the M3 transmembrane segment and the M2 pore 

loop. At the tip of M2, and contributing to the channel’s narrow constriction, resides the 

Q/R/N site (red)(Q/R site, non-NMDARs; N site, NMDARs), a key determinant of ion 

permeation in iGluRs. In NMDARs, an additional site in the GluN1 M3 segment, the 

DRPEER motif, also contributes to Ca2+ influx [12]. Homologous residues in the AMPAR 

structure are highlighted in green.

(B) Residues at and around the Q/R/N site in various iGluR subtypes and subunits and 

associated Ca2+ permeability. Top cartoon, domains in iGluR subunits: the extracellular 

amino-terminal (ATD) and ligand-binding (LBD) domains; the transmembrane domain 

(TMD), transmembrane segments M1, M3, and M4 and an M2 pore loop; and the 

intracellular C-terminal (CTD) domain. Single letter amino acid code is shown for the N site 

(in red) and four adjacent positions located to the C-terminal side.

Ca2+ permeabilities (PCa/Pmonovalent) are approximate and shown just for illustration but 

are primarily based on fractional Ca2+ currents (see Table 18 in Traynelis et al. (2010), 

where specific values and original references can be found. Additional data was taken from 

[41]). GluR0 is a prokaryotic iGluR that is K+ selective [3].

iGluRs are tetrameric complexes composed of the same (monoheteromeric) or two 

(diheteromeric) or 3 (triheteromeric) different subunits. AMPAR (GluA1-A4) and KAR 

(GluK1-GluK3) subunits can form monoheteromers but are typically diheteromeric 

assemblies in native tissue. KAR GluK4 and GluK5 form di- or tri-heteromeric complexes 
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with the other KAR subunits. NMDAR are obligate di- or tri-heteromers, being composed of 

GluN1 and some combination of GluN2 (GluN2A-2D) or GluN3 (GluN3A-3B).

(C) de novo missense mutations (residues in green) near the tip of the M2 loop. See original 

publications for clinical phenotype.
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