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Abstract

Alzheimer’s disease (AD) is a major neurodegenerative disease and the most common cause of 

dementia. Currently, no treatment exists to slow down or stop the progression of AD. There is 

converging belief that disease-modifying treatments should focus on early stages of the disease 

i.e., the mild cognitive impairment (MCI) and preclinical stages. Making a diagnosis of AD and 

offering a prognosis (likelihood of converting to AD) at these early stages are challenging tasks, 

but possible with the help of multi-modality imaging such as MRI, FDG-PET, amyloid-PET, and 

recently introduced tau-PET, which provide different but complementary information. This paper 

is a focused review of existing research in the recent decade that used statistical machine learning/

artificial intelligence methods to perform quantitative analysis of multi-modality image data for 

diagnosis and prognosis of AD at the MCI or preclinical stages. We review the existing work in 

three sub-areas: diagnosis, prognosis, and methods for handling modality-wise missing data – a 

commonly encountered problem when using multi-modality imaging for prediction or 

classification. Factors contributing to missing data include lack of imaging equipment, cost, 

difficulty of obtaining patient consent, and patient drop off (in longitudinal studies). Finally, we 

summarize our major findings and provide some recommendations for potential future research 

directions.

1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia and a main cause of death 

for people over 65 years old. Over 5.4 million Americans presently suffer from AD. By 

2050, a growing number of people, estimated up to 13.8 million, will have AD (1). AD has 

incurred significant health care costs. In 2016, care for AD patients over 65 years old was 

estimated to be about $236 million. The Medicare payment for service to AD and other 
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dementia patients was on average twice the payment for patients with other diseases. The 

impact of AD on patients and their families, the health care system, and society is enormous, 

and growing, which makes finding effective treatments to reduce the emotional, physical, 

and financial burdens of this disease an extremely important priority in the US and 

worldwide.

Although significant attention has been paid to the treatment of AD, there has been little 

success so far. Within the decade of 2002-2012, 244 drugs were tested in clinical trials 

registered with the National Institutes of Health, but only one trial completed and received 

FDA approval. Presently, there are only five FDA-approved AD-related drugs (2). However, 

these drugs only temporally relieve symptoms. No treatment is available thus far to slow 

down or stop the pathological damage of AD on the brain, so the disease is fatal (1).

According to recommendations from the working groups convened by National Institute of 

Aging (NIA) and the Alzheimer’s Association (AA) in 2011, the staging of AD includes AD 

dementia, the symptomatic predementia stage called mild cognitive impairment (MCI) due 

to AD, and the preclinical/presymptomatic stage of AD (3–6). The term “MCI due to AD” 

was used to denote a subgroup of MCI patients with a high likelihood of underlying AD 

pathology, because MCI, as a syndrome or clinical/research construct, can have other 

underlying causes than AD. Today, there is converging belief that effective treatment 

slowing down or stopping the progression of AD should focus on early stages of the disease, 

i.e., MCI or even the preclinical stage.

In both the recommendations by NIA-AA (known as the NIA-AA Criteria) and by the 

International Working Group (known as the IWG Criteria), the use of imaging for diagnosis 

and prognosis at all stages of AD has been significantly highlighted. It has been recognized 

that different modalities of imaging, including but not limited to structural MRI, FDG-PET, 

and amyloid-PET, play different but complementary roles.

While the use of multi-modality imaging for diagnosis and prognosis of AD in memory 

clinics is primarily based on dementia specialists’ trained eyes, researchers have developed 

and are developing various statistical models and machine learning (ML) algorithms for 

quantitative imaging data analysis to produce diagnostic and prognostic results. This 

research area is currently pacing at an unprecedented speed. We envision that in the 

foreseeable future, memory and aging centers will be empowered by artificial intelligence 

(AI), employing these automatic, computerized algorithms to assist clinicians’ decision 

making.

This paper focuses on reviewing existing works that perform quantitative analysis of multi-

modality image data using statistical/ML/AI methods for diagnosis and prognosis of AD at 

the MCI or preclinical stages. There are numerous papers using a single imaging modality, 

which do not fall within the scope of this review. There are also many papers focusing on 

classification between AD, MCI, and normal controls (NC), which are also not within our 

scope because they do not have an “early” stage focus. We focused on papers published in 

the recent 10 years, and used PubMed as the search engine.
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The rest of this article is organized as follows: Section 2 reviews the existing work focusing 

on diagnosis; Section 3 reviews the existing works focusing on prognosis; Section 4 

discusses approaches for handling multi-modality imaging data in which not all the study 

subjects have all the modalities available, which is a common problem encountered in this 

type of studies and referred to as the problem of “modality-wise missing data” in this paper. 

Section 5 provides an overall workflow from image processing to generation of a diagnostic/

prognostic result. Section 6 concludes the article and proposes some future research 

directions.

2. Use of multi-modality imaging for diagnosis of AD at early stages

AD pathology consists of brain amyloid deposition and neurofibrillary tangles, generally 

associated with significant loss of neurons and deficits in neurotransmitter systems. 

Diagnosis of AD at early stages requires pathological confirmation according to well-known 

criteria such as the NIA-AA criteria, which are briefly reviewed as follows with a focus on 

the role of multi-modality imaging.

In the NIA-AA terminology, “MCI due to AD” and “preclinical AD” are used to describe 

stages prior to development of AD dementia. MCI due to AD is the symptomatic 

predementia phase of AD. The NIA-AA Criteria for diagnosing MCI due to AD highlight 

the incorporation of biomarkers, as shown in Table 1. Preclinical AD describes a phase that 

individuals have evidence of early AD pathological changes but do not meet clinical criteria 

for MCI or dementia. NIA-AA proposed three-stage criteria to characterize preclinical AD, 

as shown in Table 2. These criteria are intended purely for research purposes and have no 

clinical utility at the present time.

Clearly, the NIA-AA Criteria for diagnosing MCI due to AD (Table 1) and for 

characterizing preclinical AD (Table 2) involve the use of multi-modality imaging such as 

amyloid-PET, FDG-PET, MRI, and possibly the recently introduced tau-PET. These imaging 

modalities can be generally classified into two types: imaging for identifying amyloid 

positivity and imaging for identifying neuronal injury. Existing research focuses on 

investigating the relationship between the two types of imaging. Some studies interrogated 

the relationship between amyloid deposition and glucose metabolism by FDG-PET in 

cognitively normal individuals. Several groups found hypometabolism in cognitively normal 

individuals with significant amyloid deposition (7,8). In the study by Yi et al. (9), 

hypermetabolism was demonstrated in frontal and anterior temporal regions in cognitive 

normal APOE ε4 carriers but hypometabolism in temporoparietal regions. After adjusting 

for amyloid deposition, most of the hypometabolic regions disappear while the 

hypermetabolic regions still exist. This implied that while hypometabolism may be amyloid 

dependent in this patient cohort, hypermetabolism was not. Knopman et al. showed that 

cognitively normal individuals with significant amyloid deposition at baseline demonstrate 

significant FDG hypometabolism at follow-up (7,10). Several studies also found that 

individuals with both markers of amyloid deposition and neurodegeneration were more 

likely to develop cognitive impairments at follow-up (10,11). On the other hand, several 

studies found that there were cognitively normal, elderly individuals who had at least one 

significant neurodegeneration marker including FDG hypometabolism but did not have 
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detectable amyloid deposition (11–13). This group of individuals were considered to be 

more likely to have other preclinical pathophysiologic processes than AD, such as 

cerebrovascular disease, tauopathies, or synucleinopathies (12), and therefore fall into a 

special category called Suspected Non-Alzheimer Pathology (SNAP).

While Aβ can be measured by both CSF and PET imaging, the latter allows for cerebral 

spatial patterns (i.e., topographies) of amyloid deposition to be examined. Brier et al. studied 

the relationship between Aβ topograghy and tau topography measured by amyloid and tau 

PET imaging, respectively, in a cohort of 36 cognitively normal elderly and 10 with mild 

AD (14). Singular Vector Decompositions (SVDs) were performed on the tau and Aβ 
burdens of originally extracted 42 ROIs, respectively. Each SVD produced two significant 

components representing two important topographies contained in the imaging data. For 

both tau and amyloid imaging, the first topography corresponded to the mean of the image. 

The second PET tau topography was most strongly localized in the temporal lobe including 

the hippocampus. In contrast, the second PET Aβ topography was most strongly localized in 

frontal and parietal regions. This analysis demonstrated that PET imaging data for tau and 

Aβ exhibited strong autocorrelation across ROIs but that each had distinct topographies. 

Furthermore, this study showed that tau Aβ deposition in the temporal lobe more closely 

tracked dementia status and was a better predictor of cognitive performance than Aβ 
deposition in any region of the brain.

3. Use of multi-modality imaging for prognosis of AD at early stages

Equally important to diagnosis is prognosis which concerns quantification of disease 

progression such as estimation of the time to dementia onset or prediction of conversion 

within an interested time frame. A significant amount of existing work focuses on predicting 

MCI conversion to AD. In what follows, we will provide a detailed review of the existing 

studies. A brief summary can be found in Table 3. Comparison of the pros and cons between 

the studies is provided in Table 4.

Some studies focused on understanding the roles that different imaging modalities play in 

predicting MCI conversion. For example, Jack et al. (15) studies the correlation of Aβ load 

and hippocampal volume with MCI time-to-conversion to AD. To measure Aβ load, they 

computed a global PiB-PET retention score formed by combining the cerebellum-adjusted 

standard uptake value ratios (SUVRs) of prefrontal, orbitofrontal, parietal, temporal, anterior 

cingulate and posterior cingulate/precuneus regions using a weighted average. For patients 

who did not have PiB-PET, the global scores were imputed using CSF Aβ42 and APOE ε4. 

Amyloid positivity was defined using a cutoff of 1.5. Then, cox proportional hazards models 

were fitted to estimate the effect of Aβ load and hippocampal volume on the relative hazard 

of progression. The major findings from this study include: (i) MCI patients with amyloid 

positivity were more likely to progress to AD than MCI with amyloid negativity (50% vs. 

19% by two years). (ii) Among amyloid positive MCI patients, hippocampal atrophy 

predicted shorter time-to-conversion while amyloid load did not. (iii) In contrast, in the 

combined amyloid positive and negative MCI cohort, hippocampal atrophy and brain Aβ 
load predicted time-to-conversion with comparable power; and (iv) however, the effects of 
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these two biomarkers differ. The risk profile is linear throughout the range of hippocampal 

atrophy values whereas the profile reaches a ceiling at higher values of brain Aβ load.

A typical approach adopted by relatively earlier studies for predicting MCI conversion was 

to concatenate features from multiple modalities into a combined feature set, which was then 

used to build a classifier. Because of the high dimensionality of the combined feature set, 

feature selection algorithms were commonly used before building a classifier. For example, 

Ritter et al. (16) composed a feature set that consisted of features from multiple imaging and 

non-imaging modalities, including MRI, FDG-PET, CSF, neuropsychological testing, 

medical history, medical symptoms at baseline, neurological and physical examinations, and 

demographic information. Feature selection was followed by a support vector machine 

(SVM) classifier to predict MCI converters and non-converters with three years from the 

ADNI datasets. Several algorithms were used to impute missing data, such as mean 

imputation and Expectation-Maximization (EM). Their approach achieved 73% accuracy in 

classifying 86 MCI converters and 151 non-converters based on 10-fold cross validation. 

Shaffer et al. (17) considered MRI, FDG-PET, CSF measurements, neuropsychological 

testing, APOE ε4, age, and education. Independent Component Analysis (ICA) was 

performed to extract four and nine components from MRI and FDG-PET voxel-based 

measurements, respectively. These components together with other non-imaging features 

were then used to build a logistic regression model, which achieved 71.6% accuracy in 

classifying 97 MCI converters and non-converters within four years from ADNI based on 

10-fold cross-validation.

Different from the above-reviewed research that concatenated features from multiple 

modalities into a combined feature set, another line of research chose to “encapsulate” the 

features of each modality by themselves to better preserve intra-modality integrity and reveal 

inter-modality difference. Multiple kernel learning (MKL) is a commonly used approach to 

achieve this, in which features from the same modality were encapsulated into a kernel. The 

modality-wise kernels were then combined to make a classifier. Zhang et al. (18) used MKL 

to build a classifier for MCI and NC, which was further used to classify MCI converters and 

non-converters within 18 months. Two imaging modalities, MRI and FDG-PET, were used 

together with one non-imaging modality, CSF measurements. MRI volumetric features were 

extracted from 93 manually labeled ROIs. Regional FDG of these ROIs were computed and 

used as PET features. Using 10-fold cross validation, the MKL classifier achieved a 

classification accuracy of 76.4% (with a sensitivity of 81.8% and a specificity of 66%) on 

the ADNI datasets, while the best single-modality classifier achieved 72% accuracy.

Liu et al. (19) acknowledged that existing studies had shown evidence that combining multi-

modality information improved the accuracy of AD-related classification. On the other hand, 

they pointed out that feature selection – an important step that warrants a good classifier – 

had typically been performed separately for each modality, which ignored the potential inter-

modality relationship. Therefore, they proposed a multitask learning method to jointly select 

features from different modalities. The basic idea was to pose an additional constraint to the 

LASSO-based feature selection algorithm, which demanded the predictions using the 

features in modality A and B, ŷA and ŷB, to be similar if the features, xA and xB, are 

similar. They applied the proposed feature selection method together with MKL to classify 
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43 MCI converters and 56 non-converters within 18 months from the ADNI datasets, using 

gray matter volume from MRI and regional FDG of 93 manually labeled ROIs. The 

proposed method achieved an accuracy of 0.6783 based on 10-fold cross validation, which is 

better than methods using single modalities alone.

A classic approach for predicting MCI conversion, such as the afore-reviewed papers, is to 

train a classification model using the data of MCI converters and non-converters and then 

use the trained classifier to classify new MCI patients. Alternatively, researchers have tried 

different ways to incorporate “auxiliary data” to improve MCI classification accuracy. Zhang 

and Shen (20) developed a multi-modal multi-task learning method (M3T) to jointly predict 

MCI conversion and 2-year changes of MMSE and ADAS-Cog scores, which were treated 

as three tasks. Here, 2-year changes of MMSE and ADAS-Cog scores are considered 

“auxiliary data”. They used baseline MRI, FDG-PET, and CSF data as three modalities. 

Gray matter volume and regional FDG of 93 manually labeled ROIs and three CSF 

measurements were extracted from each modality and used as features. M3T includes a 

multi-task feature selection as its first step to select common features relevant to all the 

tasks, followed by building multi-modal SVM classification/regression models using the 

selected features for each task. M3T was applied to 167 subjects including 40 AD, 80 MCI 

(38 and 42 converters and non-converters), and 47 NC from ADNI datasets. Using 10-fold 

cross validation, M3T achieved 0.739 accuracy (0.686 sensitivity and 0.736 specificity) in 

classifying MCI converters and non-converters, which outperformed individual modality 

based methods and a simple concatenation method (CONCAT) which concatenated all MRI, 

FDG, and CSF features into a single feature vector and applied lasso for feature selection 

and SVM regression/classification.

Cheng et al. (21) pointed out that most existing studies classifying MCI converters and non-

converters used data from MCI patients alone (called the target domain), but ignored data in 

other related domains such as classification of AD and NC (called the auxiliary domain). 

They believed that leveraging information from the auxiliary domain can improve MCI 

conversion prediction accuracy. Therefore, they proposed a domain transfer learning method 

that included three steps: First, a domain transfer feature selection algorithm was used to 

select features that are informative to both the target and auxiliary domains. This joint 

feature selection was achieved by imposing a group-lasso penalty on the weights of features 

in the two domains. Second, an instance transfer approach was used to select AD and NC 

subjects who are more separable than MCI converter vs non-converter separation to include 

in the target domain. Finally, a classifier was built using the features selected in the first step 

and the samples selected in the second step to predict MCI conversion. The proposed 

method was applied to 202 subjects from ADNI, including 51 AD patients, 99 MCI patients 

(43 converters and 56 non-converters with 24 months), and 52 NCs, using gray matter 

volume from MRI and regional FDG of 93 manually labeled ROIs as well as CSF 

measurements. Using 10-fold cross validation, the proposed method achieved 79.4% 

accuracy (83.5% sensitivity and 72.7% specificity), which was higher than methods not 

using information from the auxiliary domain.

Young et al. (22) proposed to build an AD vs. NC classifier using a Gaussian process (GP), 

which was then used to classify MCI converters and non-converters. Note that the difference 
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between the work of Young et al. and the previously reviewed work by Cheng et al. is that 

the former did not use any MCI data to build the classifier. The proposed method was used 

to classify 96 MCI non-converters and 47 converters within three years from the ADNI 

datasets, using gray matter volume from MRI and regional FDG of 27 pre-selected ROIs as 

well as CSF measurements and APOE. Using leave-one-out cross validation, their model 

achieved an accuracy of 74%.

Most existing work as reviewed previously focused on using baseline multi-modality 

imaging to predict MCI conversion. A few researchers explored the use of longitudinal 

multi-modality image data. Hinrichs et al. (23) used multi-kernel learning (MKL) to build an 

AD vs. NC classifier, which was then used to compute a Multi-Modality Disease Marker 

(MMDM) for each MCI patient. The MMDM was used to classify MCI patients as 

converters, stablers, and reverters within three years. They used MRI and FDG-PET at 

baseline and roughly 24 months as well as non-imaging data including CSF assays of 

AB1-42, total Tau, and P-tau 18, NeuroPshychological Status Exam scores (NPSEs), and 

APOE genotype. For MRI processing, voxel-based morphometry (VBM) was used to 

process the scans at baseline and 24 months, and voxel intensities were used as features. 

Also, longitudinal MRI processing was performed using the tensor-based morphometry 

(TBM) approach in SPM5 to obtain the amount of volume change by taking the determinant 

of gradient of deformation at a single-voxel level. For FDG-PET processing, voxels of the 

scan at each time point were scaled to each individual’s Pons average FDG uptake value. 

Also, longitudinal features were calculated as voxel-wise difference and ratio between scans 

at the two time points. MKL was applied to build a classifier of 46 AD and 66 NC subjects 

from ADNI using a number of modalities. The MRI modality includes VBM features at 

baseline and 24 months and TBM-based longitudinal features. The FDG modality includes 

normalized voxel-level measurements at baseline and 24 months as well as longitudinal 

features of voxel-wise difference and ratio. Three non-imaging modalities include CSF, 

NPSE2, and APOE. This AD vs. NC classifier was applied to 119 MCI patients, giving an 

MMDM for each patient, which was used to predict each patient as a converter, stabler, or 

reverter within three years. The proposed method was demonstrated using 10-fold cross 

validation. Results showed that using all the imaging and non-imaging modalities as 

mentioned above achieved 81.40% accuracy, 79.69% sensitivity and 83.08 specificity, which 

outperforms separately using imaging data at baseline, longitudinal image data, NIPEs at 

baseline, longitudinal NIPEs, and biological measures.

Zhang et al. (24) used MRI, PET, MMSE, and ADAS-Cog at multiple time points to predict 

MCI conversion. The proposed method included two major steps: First, longitudinal feature 

selection was performed to select common brain regions across the multiple time points for 

MRI and PET, respectively. This was achieved by imposing a group-lasso penalty on a 

regression that predicted cognitive test scores using imaging data. Then, an MKL classifier 

was built using imaging features at each time point, longitudinal imaging features that 

reflected the rates of change over time, together with cognitive test scores at each time point. 

The proposed method was applied to 88 MCI subjects (35 converters and 50 non-converters) 

who had MRI, PET, MMSE, and ADAS-Cog data at five different time points (baseline, 6, 

12, 18, and 24 months). MRI images were processed to produce gray matter, white matter, 

and CSF volumes of 93 ROIs, and PET images were processed to produce regional FDG of 
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the 93 ROIs. Using 10-fold cross validation, the proposed method achieved a classification 

accuracy of 78.4%, a sensitivity of 79.0%, a specificity of 78.0%, and an AUC of 0.768, 

which outperformed methods using baseline data alone and using single modality alone.

In terms of imaging modalities, a vast majority of existing research, including all reviewed 

previously, used MRI and FDG-PET. The accuracy of classifying MCI converters and non-

converters, even with combining CSF, cognitive scores, demographics, and longitudinal data, 

is below 80%. We were able to find only one paper that used florbetapir-PET together with 

MRI and FDG-PET, which achieved significantly improved classification accuracy. This 

paper is reviewed in more details as follows: Wang et al. (25) proposed two PLS-based 

approaches to classify MCI converters and non-converters using MRI, FDG-PET, and 

florbetapir-PET. The first approach, called informed PLS, worked by concatenating features 

from three modalities into a combined feature set and then using the combined set to train a 

PLS classifier. The second approach, called agnostic PLS, used PLS as a feature extractor 

not a classifier. Specifically, it used PLS to extract latent variables between two sets of 

imaging modalities. PLS is separately performed on MRI and FDG, MRI and florbetapir, 

FDG and florbetapir, MRI and FDG & florbetapir together, FDG and MRI & FDG and 

florbetapir together, florbetapir and MRI & FDG together, respectively. The extracted latent 

variables were used to train a Fisher’s LDA classifier. Both approaches were applied to 64 

MCI converters and 65 non-converters from ADNI based on voxel-wise gray matter 

measurements of MRI, voxel-wise FDG normalized to the average FDG of the cerebrum (as 

the reference region), and voxel-wise standardized uptake value ratio (SUVR) normalized to 

the cerebellum (as the reference region for florbetapir-PET). Using leave-one-out cross 

validation, results showed that the informed PLS approach achieved 81.40% classification 

accuracy (79.69% and 83.08% sensitivity and specificity); agnostic PLS achieved 82.17% 

classification accuracy (81.25% and 83.03% sensitivity and specificity), both outperforming 

single-modality models. Moreover, by adding ADAS-cog scores, agnostic PLS achieve a 

better accuracy of 86.05% classification accuracy (81.25% and 90.77% sensitivity and 

specificity).

4. Multi-modality models with modality-wise missing data

In using multi-modality data to build a prediction or classification model, a commonly 

encountered challenge is that not all the subjects in a study cohort have all the modalities 

available. This is due to various reasons such as cost, availability of imaging equipment, lack 

of patient consent, and patient drop off (in longitudinal studies). For example, although MRI 

is used in almost every medical institute/clinic for AD-related diagnosis and prognosis, not 

many places have FDG-PET. The availability of amyloid-PET imaging is even more limited, 

especially that Medicare currently does not reimburse the cost of amyloid-PET imaging. 

Also, due to patient drop off, some patients may only have baseline MRI (or other imaging 

modalities) but not at later time points. Note that we call this problem “modality-wise 

missing data”, which is different from conventional missing data problems. The latter can 

typically be handled by imputation algorithms, while the former cannot because 1) there can 

be a substantial portion of patients who miss at least one modality, 2) it is possible that few 

patients have all the modalities available, and 3) the mechanism of missing data is clearly 
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not “missing-at-random” which is a fundamental assumption that most imputation 

algorithms assume.

All the studies reviewed in the previous sections used datasets containing subjects with all 

modalities available, or with a small portion of missing data that can be imputed. No paper 

has been found that handled modality-wise missing data for diagnosis or prognosis at early 

stages of AD. However, there are a few papers developing methods to handle modality-wise 

missing data in classifying AD, MCI, and NC. Although this type of classification is outside 

the scope of this review, we would like to discuss these papers for purpose of raising 

awareness for the problem of modality-wise missing data and encouraging future research to 

apply the methods in these papers to the study of early stages of AD. In what follows, we 

discuss each paper in detail. Comparison of the pros and cons between these papers is 

provided in Table 5.

Yuan et al. (26) proposed an incomplete multi-source feature learning method (iMSF) to 

classify AD, MCI, and NC using baseline MRI, FDG-PET, CSF, and proteomics as four 

modalities. Data of 780 subjects were downloaded from ADNI with 172 AD, 397 MCI, and 

211 NC. Each subject had at least one modality. FreeSurfer was used to extract 305 features 

of MRI falling into five categories: average cortical thickness, standard deviation in cortical 

thickness, volumes of cortical parcellations, volumes of specific white matter parcellations, 

and total surface area of the cortex. 116 FDG-PET features were extracted using Automated 

Anatomical Labeling (AAL) corresponding to 116 ROIs. iMSF worked by first separating 

study subjects into multiple blocks, with each block having the same available modality/

modalities. Then, one classifier was built for each block. Instead of building the classifiers 

separately, iMSF adopted an L21 penalty to force blocks sharing the same modality to use a 

common subset of features in that modality when building block-wise classifiers. iMSF was 

combined with four other methods to construct a classifier ensemble, which outperformed 

commonly used imputation methods, methods using single modalities, and the method that 

threw out missing data. This comparison was based on a training-test split of the dataset with 

the training set containing from 50% to 75% of the data.

Xiang et al. (27) proposed an Incomplete Source-Feature Selection model (ISFS), which was 

applied to the same datasets as Yuan et al (26). The advantages of ISFS over iMSF included 

that the former could select modalities that were most relevant to the classification and could 

be used to classify new subjects whose modality availability was different from the training 

set (called “out-of-sample” classification), while iMSF did not have these two capabilities. 

The basic idea of ISFS was to estimate the weights β that combined features to produce a 

classification result as well as the weights α that combined the modalities. By penalizing β 
and α, both feature and modality selections could be achieved. Although such a bi-level 

learning model has been studied in the machine learning literature, Xiang et al. innovated it 

by further considering modality-wise missing data and allowing α to vary across different 

blocks. This paper showed that ISFS outperformed iMSF and other competing methods 

especially when the training sample size was small. This comparison was based on a 

training-test split of the dataset with the training set containing 10% or 50% of the data.
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Thung et al. (28) developed a matrix completion method for classification of AD, MCI, and 

NC, and prediction of three cognitive test scores (CDR global, CDR-SB2 and MMSE). The 

basic idea of the proposed method is to apply multitask learning twice, one on features and 

the other on samples, in order to reduce the original matrix composed of samples and 

features into a much smaller size. The reduced matrix was more “imputation-friendly” as it 

contained a smaller number of missing values, and therefore can be imputed using existing 

imputation algorithms. Specifically, in applying multitask learning on features, the original 

matrix was partitioned into small overlapping sub-matrices, each containing samples having 

at least one complete modality. Within each sub-matrix, a group-lasso based multitask 

learning algorithm was used to select a common subset of features across four tasks (one 

AD/MCI/NC classification task and three prediction tasks for the tree cognitive scores). In 

combining results from the sub-matrix-wise multitask learnings, features selected for at least 

one sub-matrix were kept for subsequent analysis. Next, multitask learning was applied to 

samples similar to the way that it was applied to features, but with samples in the test set 

treated as multiple output targets. The proposed method was applied to baseline MRI, FDG-

PET, and CSF data of 807 subjects from ADNI (186 AD, 395 MCI and 226 NC). All of 

subjects had MRI, 397 had FDG-PET, and 406 had CSF. Gray matter volumes and regional 

FDG of 93 ROIs were used as MRI and FDG-PET features, respectively. Compared with 

conventional imputation algorithms and two state-of-the-art methods (iMSF, Ingalhaiikar’s 

algorithm), the proposed method achieved higher classification accuracy based on 10-fold 

cross validation.

Liu et al. (29) proposed a view-aligned hypergraph learning method (VAHL), which worked 

by first dividing the dataset into several views based on the availability of different 

modalities. Then, they computed the distances between subjects using a sparse 

representation model and constructed one hypergraph for each view. Coherence among 

different views was captured by a proposed view-aligned regularizer, which considered that 

if one subject is represented by two feature vectors in two views, the estimated class labels 

for such two feature vectors should be similar because they correspond to the same subject. 

Furthermore, they integrated the view-aligned regularizer into a classification framework. 

The proposed method was applied to baseline MRI, FDG-PET, and CSF data of 807 subjects 

from ADNI (186 AD, 169 pMCI, 226 sMCI, and 226 NC). A baseline MRI patient was 

called pMCI if converting to AD within 24 months and sMCI if not. Gray matter volumes 

and regional FDG of 90 ROIs were used as MRI and FDG-PET features, respectively. By 

comparing VAHL with four conventional imputation algorithms as well as a number of 

state-of-the-art methods (two ensemble based methods and the previously reviewed iMSF, 

ISFS, and matrix shrinkage completion methods), VAHL outperformed all the other methods 

in classification of MCI vs. NC and pMCI vs. sMCI based on 10-fold cross validation.

Li et al. (30) proposed a deep learning (DL) framework where the input and output are two 

imaging modalities, MRI and FDG-PET. A 3-D convolutional neural network (CNN) was 

built using a training set of patients for whom both MRI and PET were available. The 

trained 3-D CNN was then used to predict missing FDG-PET using MRI for patients who 

only have MRI. Furthermore, a classifier was built using MRI and predicted or real FDG-

PET whichever is available. In image preprocessing, gray matter density maps from MRI 

and FDG-PET images rigidly aligned to the respective MRI images were smoothed using 
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Gaussian kernels. Note that different from classic ML approaches, the 3-D CNN did not 

need feature extraction from the MRI and FDG-PET images but can directly use the 3-D 

images. The proposed method was applied to baseline MRI, FDG-PET, and CSF data of 830 

subjects from ADNI (198 AD, 167 pMCI, 236 sMCI, and 229 NC). A baseline MRI patient 

was called pMCI if converting to AD within 18 months and sMCI if not. All the subjects had 

MRI but more than half did not have PET. Using a half-half training-test split, the proposed 

method achieved better accuracy in MCI vs. NC, AD vs. NC and sMCI vs. pMCI 

classifications compared with conventional imputation algorithms.

Finally, we would like to stress that all the aforementioned methods have strengths and 

limitations, as summarized in Table 5. Despite their respective unique strength, the common 

advantage of using these methods is to maximally utilize the available data. On the other 

hand, since each method is based on some assumption that may or may not be true for a real-

world dataset, there also exist risks that there may be a mismatch between the assumption of 

a method and the characteristics of the dataset. Nevertheless, one could always opt for not 

using any of these methods but eliminating samples with missing modalities and including 

only samples with all modalities available for training a predictive model. This could be a 

viable approach if the amounts of samples with missing modalities are not considerably 

large.

5. Overall workflow – from image processing to decision support

The previous sections focus on reviewing statistical models and machine learning algorithms 

for building a diagnostic or prognostic model with imaging features available. This is only 

part of the workflow. Another important part of the workflow, upstream to diagnostic/

prognostic model building, is image processing and feature computation. In this section, we 

summarize the major steps of this upstream building block and provide the entire workflow 

so that interested researchers and practitioners could follow through with their specific data.

The major steps included in MRI processing include 1) anterior commissure-posterior 

commissure (AC-PC) correction; 2) skull-striping followed by intensity inhomogeneity 

correction; 3) segmentation into grey matter (GM), white matter (WM), and CSF; 4) 

registration to a common anatomical space; 5) parcellation of GM into ROIs using an 

anatomically defined template. After these steps, volumetric measurement of each ROI is 

taken and used as features for subsequent machine learning models. PET processing 

primarily includes rigid transformation with respect to the corresponding MRI from the 

same subject. Then, the average intensity (e.g., FDG or SUVR depending on the type of PET 

imaging) within each ROI is computed. Normalization using the whole brain or a reference 

region is typically done for each PET ROI measurement. The normalized scores are used as 

features for the subsequent machine learning algorithms. Figure 1 provides a schematic 

diagram of the overall workflow.
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6. Conclusion

In this paper, we reviewed research in the past decade focusing on using multi-modality 

imaging data for diagnosis and prognosis of AD at early stages. Based on the review, we 

have the following major findings:

• All the works we have found and reviewed focused on MCI, while there is little 

research on the preclinical stage. It would be of great interest to perform and 

review studies focusing on the progression from normal aging to MCI, which 

would provide even earlier alarming and effective preventative strategies.

• In the study of MCI, most existing research focuses on building classifiers that 

used multi-modality imaging and non-imaging data to predict MCI conversion to 

AD. The accuracy is generally below or barely above 80% with MRI and FDG-

PET, even with inclusion of longitudinal imaging data. There is only one paper 

that additionally included florbetapir-PET and obtained over 80% classification 

accuracy. This provides evidence that including pathologic imaging helps the 

prognosis.

• Almost all the existing research on prognosis formulates the problem into a 

binary classification problem of MCI conversion by a certain time of interest. 

Disease progression is indeed on a continuous spectrum. Even for two patients 

who convert to AD within two years, their paths of progression could be much 

different. Prognostic models that predict the path of progression would provide 

great clinical value for properly intervening or managing the disease. This would 

need new model development that goes beyond binary classification to, for 

example, multi-class that represents different progression trajectories.

• Modality-wise missing data is a common problem when multi-modality imaging 

is used to make a prediction. However, little research has been found to address 

the problem of modality-wise missing data in developing a diagnostic or 

prognostic models at early stages of AD, though there are several recent studies 

focusing on classification of AD, MCI, and NC.

• Classic machine learning algorithms are still the mainstream methodologies used 

in the existing studies. DL-based algorithms have only been limited applied to 

early AD diagnosis and prognosis using multi-modality imaging, despite their 

popularity in other areas of computer vision.

Driven by these findings, we provide some recommendations on future research directions:

First, future research can gear more toward using multi-modality imaging for diagnosis and 

prognosis of AD at the preclinical stage. It has been found that more than one third of 

cognitively healthy individuals over 65 have moderate to high levels of brain β-amyloidosis, 

who have a higher risk of developing AD (4). Optimally, treatment trials should target the 

presymptomatic or preclinical stage, i.e., before significant cognitive impairment, to lower 

Aβ burden or decrease neurofibrillary tangle in order to prevent subsequent 

neurodegeneration and eventual cognitive decline.
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Second, imaging that provides pathologic biomarkers of AD such as amyloid PET should be 

combined with imaging modalities providing neuronal injury biomarkers such as MRI and 

FDG-PET in order to achieve a better prognosis at the early stages. An immediate, related 

challenge to obtaining amyloid imaging is that the modality is not presently widely available 

in clinics, which makes it very important to develop prognostic models that can make use of 

multi-modality images with modality-wise missing data. These models have greater, broader 

clinical utility than models that have to assume the availability of complete data or that are 

based on conventional missing data assumptions.

Last but not least, with the rapid growth of DL research in the AI societies and the proven 

effectiveness of DL applications in a variety of areas of computer vision including medical 

imaging, early-stage diagnosis and prognosis of AD using multi-modality imaging can 

benefit from DL development. More research is expected along this line.
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Abbreviations

AD Alzheimer’s disease

MCI mild cognitive impairment

MRI magnetic resonance imaging

FDG fluorodeoxyglucose

PET positron emission topography

FDA food and drug administration

NIA national institute of aging

AA Alzheimer’s association

IWG international working group

ML machine learning

AI artificial intelligence

NC normal control

CSF cerebrospinal fluid

SNAP suspected non-Alzheimer pathology

SVDs singular vector decompositions
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SUVRs standard uptake value ratios

SVM support vector machine

ICA independent component analysis

MKL multiple kernel learning

ROI region of interest

ADNI Alzheimer’s disease Neuroimaging Initiative

MMSE Mini-Mental State Examination

ADAS-Cog Alzheimer’s disease Assessment Scale-Cognitive subscale

GP Gaussian Process

NPSEs Neuropsychological Status Exam Score

VBM voxel-based morphometry

TBM tensor-based morphometry

AUC area under the curve

PLS partial least square

CDR clinical dementia rating

CNN convolutional neural network

DL deep learning
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Figure 1. 
Overall workflow from image processing to diagnostic/prognostic decision support (Module 

with * has been reviewed in Sections 2-4; Module with * is combined with feature selection 

for dimension reduction in some approaches and may also be a separate step.)
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Table 1

NIA-AA Criteria for diagnosing MCI due to AD (adapted from (3))

Diagnostic category Aβ (PET or CSF) Neuronal injury markers (FDG, tau, MRI)

MCI – core clinical criteria Conflicting or indeterminant or untested Conflicting or indeterminant or untested

MCI due to AD – intermediate likelihood Positive Untested

Untested Positive

MCI due to AD – high likelihood Positive Positive

MCI – unlikely due to AD Negative Negative
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Table 2

NIA-AA Criteria for preclinical AD research (adapted from (2))

Stages A β (PET or CSF) Neuronal injury 
markers (FDG, tau, 
MRI)

Subtle cognitive change

Stage 1 (Asymptomatic cerebral amyloidosis) Positive Negative Negative

Stage 2 (Amyloid positivity + synaptic dysfunction and/or 
neurodegeneration)

Positive Positive Negative

Stage 3 (Amyloid positivity + neurodegeneration + subtle 
cognitive decline)

Positive Positive Positive
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Table 4

Pros and cons of the studies in Table 3

Papers Pros Cons

Ritter et al. (16)
Use different data imputation and feature selection 
algorithms

Concatenating features from different modalities does 
not preserve within-modality feature integrity.

Shaffer et al. (17)
Use ICA for voxel-based analysis and imaging feature/
component extraction Same as above

Zhang et al. (18)

Encapsulate features of each modality to preserve intra-
modality integrity by MKL; can handle high-dimensional 
features Kernel-based classifier makes interpretation harder.

Liu et al. (19) Multitask joint feature selection across different modalities Same as above

Zhang and Shen (20)
Use multitask learning to exploit auxiliary data (MMSE and 
ADAS-Cog scores)

Same as above; lack of theoretical justification of why 
using auxiliary data would help despite empirically 
good performance.

Cheng et al. (21)
Use multitask learning to exploit auxiliary domain (AD vs. 
NC classification) Same as above

Young et al. (22) Use AD vs. NC classifier to classify MCI conversion

Based on an assumption yet to be validated that MCI 
converters are more like AD an non-converters more 
like NC

Hinrichs et al. (23) Incorporate longitudinal image data Kernel-based classifier makes interpretation harder.

Zhang et al. (24)
Incorporate longitudinal image data and perform feature 
selection Same as above.

Wang et al. (25)
Use PLS to interrogate between-modality covariance 
structure to include as features

Hard to tell if the improved accuracy is due to the PLS 
method or inclusion of pathological imaging data.
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Table 5

Pros and cons of the studies in Section 4

Papers Pros Cons

Yuan et al. (26)
Allow for joint feature selection across cohorts with 
different missing modality patterns

Assume little correlation between modalities so same features are 
selected for each cohort; cannot do out-of-sample prediction

Xiang et al. (27)
Use two separate weights to achieve feature and 
modality selection; can do out-of-sample prediction

Many parameters to be estimated; assume a product form for 
modality-wise and feature-wise coefficients

Thung et al. (28)
Use multitask learning to reduce features and samples 
making computation easier

Conventional missing data imputation algorithms are used on 
reduced dataset; same features are selected for each cohort.

Liu et al. (29)

Exploiting subject relationship by multi-view 
hypergraph representation and fusion naturally gets 
around the issue of missing modalities.

Many parameters to be estimated; hard to identify important 
features; model needs to be re-learned using all the data every 
time new test data is available.

Li et al. (30)
Use DL to create “pseudo” PET from MRI; raw 
images are used for classification not features.

Creating PET from MRI needs justification from imaging 
physics; Black-box DL model is hard to interpret.
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