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Abstract

Although estimated glomerular filtration rate (eGFR) and albuminuria are well established 

biomarkers of diabetic kidney disease (DKD), additional biomarkers are needed, especially for the 

early stages of the disease when both albuminuria and eGFR may still be in the normal range and 

are less helpful for identifying those at risk of progression. Traditional biomarker studies for early 

DKD are challenging because of a lack of good early clinical end-points, and most rely on changes 

in existing imprecise biomarkers to assess the value of new biomarkers. There are well 

characterized changes in kidney structure, however, that are highly correlated with kidney 

function, always precede the clinical findings of DKD and, at pre-clinical stages, predict DKD 

progression. These structural parameters may thus serve as clinically useful end-points for 

identifying new biomarkers of early DKD. In addition, investigators are analyzing tissue 

transcriptomic data to identify pathways involved in early DKD which may have associated 

candidate biomarkers measurable in blood or urine, and differentially expressed microRNAs and 

epigenetic modifications in kidney tissue are beginning to yield important observations which may 

be useful in identifying new clinically useful biomarkers. This review examines the emerging 

literature on the use of kidney tissue in biomarker discovery in DKD.
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INTRODUCTION

Diabetic kidney disease (DKD) has largely been a clinical diagnosis based on the presence 

of proteinuria and impaired kidney function in the setting of diabetes1. As such, kidney 

biopsies are not a routine part of management for DKD. However, kidney tissue has been 

invaluable for determining the structural changes underlying DKD and showing how these 
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structural changes relate to clinical findings. Glomerular basement membrane (GBM) width 

in normoalbuminuric people with type 1 diabetes, for example, predicts development of 

microalbuminuria, proteinuria, ESRD, and cardiovascular death2–4. Moreover, in 

multivariate piece-wise regression models, glomerular structural parameters classically 

associated with DKD, including increased GBM width, increased mesangial fractional 

volume, and reduced glomerular filtration surface correlate strongly with albuminuria and 

with renal functional changes throughout much of the clinical natural history of DKD, and 

renal interstitial changes are responsible for loss of kidney function in the later stages of the 

disease5–7.

The principal biomarkers presently used to predict DKD progression are albuminuria and 

estimated glomerular filtration rate (eGFR). However, not all cases of classical DKD are 

accompanied by increases in albuminuria8–11, which reduces the value of this biomarker, 

particularly in early DKD. Moreover, so called ‘persistent microalbuminuria’ defined as two 

of three consecutive urine samples in the microalbuminuria range, often spontaneously 

normalizes or stabilizes, limiting the value of this nonetheless useful biomarker2,12–14. Thus, 

it is important to develop additional biomarkers to supplement albuminuria14. The search for 

new biomarkers of DKD has centered primarily on identifying analytes in urine and blood 

that improve prediction of later established end-points, including ESRD, a GFR loss of 

>40%, or death. There is also an urgent need to identify biomarkers of earlier stages of DKD 

when advances in treatment may have the greatest chance of attenuating disease progression, 

yet this is a time when eGFR is often still in the normal range and before the onset of 

strongly predictive levels of albuminuria.

Much of what is written here is predicated on the simple but very important notion that the 

earlier preclinical lesions of diabetic nephropathy are the necessary precursors of the later 

more severe lesions that are the underpinning of the loss of GFR leading to ESRD. There are 

several ways in which kidney biopsy tissue may advance DKD biomarker discovery. The 

structural lesions associated with DKD can be reproducibly quantified and always precede 

changes in kidney function. As such, they may be used as end-points in biomarker studies. 

Searches are presently underway for proteins, peptides, or metabolites in the blood or urine 

that are reliably associated with earlier structural damage or predict changes in kidney 

structure and would therefore be useful biomarkers of early tissue injury and subsequent 

clinical progression of DKD. Such markers are likely interconnected in large networks 

which may be perturbed in the presence of disease, leading to changes in their 

concentrations in biological specimens such as urine or blood. Gene expression profiles 

derived from diseased kidney tissue may reflect these dynamic molecular perturbations 

underlying diabetic kidney structural injury. Their differential expression relative to healthy 

tissues or to tissues from people with diabetes who have very slow or no development of 

these lesions, will likely lead to the identification of candidate biomarkers for progression 

and/or protection from DKD as well as to new treatment targets15,16.

Changes in expression patterns of microRNAs (miRNAs) in kidney tissue may provide 

another means to identify key pathogenetic or protective processes underlying DKD risk and 

could be used to monitor development and progression of DKD17,18. In addition to being 

detectable in tissue, miRNAs can also be detected in blood and urine, raising the prospect 
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that miRNA concentrations in these easily accessible bio-specimens might reflect the 

underlying tissue changes and therefore be clinically useful biomarkers for DKD19,20.

Epigenetic factors may also impact gene expression21,22, and differences in gene 

methylation and histone modification in kidney tissue from affected and unaffected 

individuals may provide insight into genes and pathway modifications involved in DKD 

which may identify new biomarkers. As with miRNAs, differential gene methylation and 

histone modifications may themselves be useful biomarkers, as gene methylation and 

histone modification patterns can be identified in other, more accessible cells, including 

peripheral blood cells, which may reflect changes in the underlying kidney tissue23.

This review examines the emerging role of kidney biopsies in biomarker research and 

considers potential future developments. Research kidney biopsies are the most suitable 

source of tissue for these types of studies, as clinically indicated kidney biopsies are 

typically performed to identify nondiabetic kidney disease in the setting of diabetes24, so 

they are not as useful when attempting to predict progression of DKD.

What is DKD?

The Kidney Disease Improving Global Outcomes group (KDIGO) defines chronic kidney 

disease (CKD) as “abnormalities of kidney structure or function, present for greater than 

three months with implications for health”25. They further sub-divide CKD based on 

underlying cause, range of GFR, and degree of albuminuria26. Figure 1 illustrates the current 

stages of CKD along with their relationship to the risk of CKD progression to kidney failure, 

cardiovascular morbidity, and death. KDIGO proposes that the terms “microalbuminuria” 

and “macroalbuminuria” be replaced with “moderately increased” and “severely increased” 

albuminuria to better fit the distinction in degree of albumin loss.

The National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF 

KDOQI) defines DKD as the presence of elevated urine albumin excretion associated with 

progressive decline in GFR, increased systolic blood pressure, and high risk of kidney 

failure in people with diabetes27. Kidney biopsy is not routinely used to confirm the 

diagnosis of DKD, unless there is reason to believe that another kidney disease is involved, 

so it is not part of routine clinical management in most diabetic patients. Ascertaining DKD 

based solely on clinical assessment, however, inhibits biomarker discovery and the 

pathogenetic insights available from kidney tissue. This issue is particularly relevant in type 

2 diabetes, where CKD is more often due to nondiabetic causes than in type 1 diabetes28. In 

type 1 diabetes, biopsy studies have confirmed that DKD without albuminuria is associated 

with the traditional structural changes29, whereas this is less well established in type 2 

diabetes30,31.

In the early stages of DKD, GFR may be normal or even higher than normal 

(hyperfiltration). Hyperfiltration is seen in both type 1 and type 2 diabetes, though estimates 

of prevalence based on measured GFR vary markedly from as low as 6% to as high as 

73%32. Hyperfiltration is associated with an increased risk of moderately elevated 

albuminuria33,34, but at present there are limited data examining its effect on later stages of 
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DKD32. Nevertheless, because hyperfiltration is a common feature of early DKD, a person 

with a GFR above 90 ml/min may already have experienced a substantive decline in GFR. In 

non-linear (piece-wise) analyses of relationships between measured GFR and diabetic 

glomerulopathy parameters in people with type 1 diabetes, the point at which further 

reductions in GFR become strongly associated with these parameters is at 99 ml/min/1.73 

m2 35. In such settings, where the CKD level would at most be stage 1 or 2, it is necessary to 

consider rate of change in GFR, albuminuria, and other evidence of kidney damage for 

diagnosis of DKD. As treatment may modify both GFR and albuminuria, previous degrees 

of albuminuria should be considered. Moreover, the diagnosis of DKD might be doubtful, 

despite the combination of albuminuria and reduced GFR, in the absence of diabetic 

retinopathy, when there are signs of other systemic diseases, or when heavy proteinuria, 

rapidly falling GFR, or refractory hypertension are present1.

While eGFR and albuminuria remain useful biomarkers of DKD, there are times when they 

are not sufficient. For instance, DKD may occur in the absence of sustained albuminuria8–11. 

Moreover, these markers are clearly not sufficient when trying to assess early DKD, when 

eGFR is still in the normal range and before the onset of elevated albuminuria.

Biomarkers of kidney structure

While there are clear associations between structure and function at modest levels of GFR 

decline in DKD, these relationships are more ambiguous at earlier stages when albumin may 

not have increased appreciably and when GFR is maintained. Thus, biomarkers that are 

associated with kidney structure, which provides unequivocal evidence of early kidney 

damage36,37, may be of greatest use clinically for identifying people at highest risk for early 

DKD progression. This review includes studies of protein biomarkers in blood and urine that 

reflect underlying structural lesions (Table 1). Some of the studies examine cross-sectional 

associations between structural measures and biomarkers and others look prospectively at 

whether the putative biomarkers predict changes in structure.

Serum Tumor Necrosis Factor Receptor 1 (TNFR1) and 2 (TNFR2) are promising 

proinflammatory biomarkers for DKD progression and are associated with worsening 

albuminuria38, declining GFR39,40, onset of ESRD, and death41. Elevated serum TNFR1 and 

TNFR2 concentrations were also associated with kidney structural parameters of classical 

diabetic glomerulopathy in American Indians with type 2 diabetes, most of whom had 

preserved GFR and no albuminuria42. The strongest associations were with greater 

mesangial expansion and lower percentage of endothelial cell fenestrations, which were 

statistically significant after adjustment for clinical measures, including albuminuria and 

GFR (Figure 2). Both of these structural lesions are strong predictors of progressive DKD in 

this population43. Although the mechanism underlying the relationship between the TNFRs 

and progressive DKD are presently unknown, in animal models, TNFR1 is expressed in 

normal glomerular endothelium, whereas TNFR2 is only expressed in the glomerulus in 

disease44. The pro-inflammatory actions of TNF are mediated by TNFR1 activation, a 

process that is partially regulated by TNFR245.
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Advanced glycation endproducts (AGEs) are potential mediators by which hyperglycemia 

causes DKD. Several highly reactive dicarbonyl-derived AGEs are associated with 

progressive DKD defined by declining GFR46,47, and several studies now demonstrate 

strong associations between these AGEs and the structural determinants of that progression. 

In a cohort of people with type 1 diabetes and no evidence of DKD (i.e. no albuminuria and 

preserved GFR), three plasma AGEs – methylglyoxal hydroimidazolone (MGHI), 

carboxymethyl lysine (CML) and carboxy ethyl lysine (CEL) – positively predicted increase 

in GBM width over 5 years, and these associations were independent of diabetes duration 

and HbA1c
48,49. This observation is important because increased GBM width predicts 

advanced DKD in type 1 diabetes4. In a type 2 diabetes cohort with predominantly early 

DKD (normal or moderately elevated albuminuria and preserved GFR), serum AGEs were 

associated cross-sectionally with classical diabetic glomerulopathy lesions, with MGHI, 

CEL and CML all associated with greater mesangial volume. CML and glyoxal-

hydroimidazolone were also associated with higher cortical interstitial fractional volume, a 

parameter which is known to increase early in the natural history of kidney structural 

changes in type 1 diabetes50. AGEs are generated in the kidney and filtered by the 

glomerulus, and in DKD they accumulate in the glomerular interstitium and the capillary 

walls51 where they induce synthesis of extracellular matrix via induction of connective 

tissue growth factor52.

Monocyte Chemoattractant Protein 1 (MCP-1) is a cytokine that regulates migration and 

infiltration of monocytes in inflammation and as such is also a potential inflammatory 

biomarker. Urine MCP-1 is associated with rapid decline of eGFR in individuals with type 1 

diabetes and normoalbuminuria53 as well as GFR decline in individuals with type 2 diabetes 

and advanced kidney disease (macroalbuminuria and ≥stage 3 CKD)54,55. A kidney biopsy 

study recently found that urine MCP-1 is associated cross-sectionally with cortical 

interstitial fractional volume in individuals with type 1 diabetes and normoalbuminuria. It 

also predicts change in GBM width and increased cortical interstitial fractional volume over 

5-years in the same cohort, though the latter was only observed in women43.

Bradykinin has a direct renoprotective effect on kidney function, however there is also 

evidence that bradykinin can promote kidney damage in diabetes in some settings56–61. In a 

cross-sectional study62, plasma bradykinin and related peptides were modestly associated 

with kidney structural preservation in people with type 1 diabetes who were 

normoalbuminuric, normotensive, and had normal to high GFR. Higher bradykinin 

concentrations were associated with higher glomerular volume and total filtration surface 

area, and lower cortical interstitial fractional volume. In longitudinal analyses of the same 

cohort, bradykinin concentrations were associated with preservation of surface density of the 

peripheral glomerular basement membrane62. These changes were probably facilitated by 

the bradykinin 2 receptor, which mediates most of the physiological actions of bradykinin56. 

An inverse association appears to emerge between bradykinin and its related peptides and 

progression of DKD in more advanced disease, perhaps as activation of the bradykinin 1 

receptor becomes more prominent and stimulates inflammatory changes and fibrosis58,59.

White blood cell counts and fractions are biomarkers of inflammation, which are linked to 

diabetes and its vascular complications63–65, including a greater risk of ≥40% loss of GFR in 
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a European type 2 diabetes cohort66. These findings are thought to be related, at least in part, 

to activation of white cells by advanced glycation end-products. These activated cells in turn 

produce pro-inflammatory cytokines that promote local tissue damage67–69. A recent study 

in Pima Indians with type 2 diabetes found that lower lymphocyte and higher eosinophil and 

neutrophil fractions are also associated with early kidney structural damage, including 

increased GBM width and loss of glomerular endothelial cell fenestrations66. Examination 

of the kidney tissue revealed a higher proportion of WBC’s in the peripheral glomerular 

capillaries of participants with more advanced structural lesions, with frequent projections 

from the white cells touching endothelial cells within the glomerular capillary, suggesting 

signaling between these cells (Figure 3).

Beta-2 microglobulin is a filtration biomarker70 and in urine it is also a biomarker of 

tubulointerstitial injury71 as is N-Acetyl-β-d-Glucosaminidase (NAG)72. Both are candidate 

biomarkers for DKD progression, and in urine both are associated with albuminuria in 

diabetes73,74. Beta-2 microglobulin is also a key part of a urine proteomic panel used for 

distinguishing biopsy proven DKD from CKD not due to diabetes75. In a European study of 

eGFR loss among people with type 2 diabetes and established DKD (≥stage 3 CKD), serum 

beta-2 microglobulin predicts loss of >40% eGFR39, ESRD, and mortality39,76, but only 

marginally improves prediction when GFR and albuminuria are included in the models39,70. 

In type 2 diabetes, higher urine concentrations of both markers are associated cross-

sectionally with more advanced structural injury, including increased GBM width, mesangial 

expansion, and greater cortical interstitial fibrosis, but not with clinical DKD progression 

during follow-up77. These associations may not reflect a specific causal mechanism 

involving these proteins, but rather an increase in their urine concentration in response to 

tubular damage, predominantly affecting the proximal tubule, that accompanies progressive 

DKD.

The studies described above have successfully linked early structural damage in the kidneys 

to clinical DKD and to subsequent clinical progression of DKD, providing proof-of-concept 

for this approach to biomarker assessment. Further work in this area may include studies of 

other promising biomarkers of DKD, such as plasma kidney injury molecule-139,78,79, and 

may eventually lead to the establishment of a biomarker panel that will identify those at 

greatest risk of early DKD progression.

Gene transcription and DKD

In addition to identifying biomarkers that are associated with structural measures in kidney 

biopsy tissue, kidney tissue can also be used to examine the transcriptome. This allows not 

only greater insight into the pathologic processes underlying structural changes by 

identifying genes and pathways which are differentially expressed at various stages of DKD, 

but can also identify novel biomarker candidates. An extensive evaluation of the kidney 

transcriptome in CKD was undertaken by researchers across four CKD cohorts15. The study 

identified six genes which were differentially transcribed in CKD versus living kidney 

donors and were associated with eGFR in an initial sample set from the European Renal 

cDNA Bank (ERCB). One of the genes, epidermal growth factor (EGF), was also primarily 

expressed in the kidney, thus substantially increasing the likelihood that urine EGF 
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concentrations were related to kidney sources of the protein. In analyses of samples from the 

Nephrotic Syndrome Study Network (NEPTUNE) and the Peking University First Hospital 

immunoglobulin A nephropathy cohort (PKU-IgAN), urine EGF was associated with eGFR 

at the time of biopsy, and was associated with risk for declining GFR in longitudinal 

analyses.

In a study that included data from 31 previously published studies of DKD in type 1 and 

type 2 diabetes in which urine protein and peptide biomarkers were measured, the results of 

urine proteomic studies and bioinformatic data, including pathway data and protein-protein 

interactions for biomarkers known to be expressed in the kidney, were combined to identify 

the underlying pathological processes in DKD16. The human protein atlas was used to 

identify tissue sources within the kidney (e.g. glomerulus, proximal tubule, distal tubule) 

which expressed each of the urine biomarkers identified in the proteomic analyses. By 

looking at results from different clinical stages, the investigators identified temporal patterns 

in pathways involved with DKD – i.e. biomarkers relating to fibrosis at the earliest stages, 

and biomarkers relating to inflammation and wound healing in established DKD16. An 

example of their findings is shown in Figure 4, which displays a schematic of which 

biological processes are enriched in early DKD compared to uncomplicated diabetes. The 

figure illustrates many biological processes which are enriched in early DKD compared to 

uncomplicated diabetes. The figure illustrates many biological processes across many 

pathways, including lipid regulation, wound healing, coagulation, and extra-cellular matrix 

regulation, all of which may have associated informative biomarkers measurable in blood or 

urine. A limitation of this review paper is the uncertainty of these relationships with the 

underlying kidney pathology, which was not available in most cases.

Kidney miRNA and biomarkers

One of the mechanisms through which gene transcription is modified is via miRNAs, which 

themselves may have a role both as potential biomarkers and as targets for intervention in 

DKD18. A recent study looked in detail at kidney miRNA expression for a variety of causes 

of CKD, including DKD, in both the glomerular and the tubular compartments compared to 

tissue from healthy living donors80. Differentially expressed miRNAs were identified in both 

compartments. Some of these miRNAs were differentially expressed in several types of 

CKD, whereas others were unique to DKD. In general, there was greater overlap in miRNAs 

across diseases in the proximal tubules compared to the glomerulus, suggesting that 

proximal tubular changes may be a common pathway, whereas glomerular changes are more 

disease specific. MiRNAs can also be measured in blood and urine, and a variety of miRNA 

have been identified in both blood and urine that may play a role as biomarkers in 

DKD19,20,81,82. In type 1 diabetes, a set of urine miRNAs were differentially expressed in 

individuals with albuminuria compared to those without albuminuria20. One of the miRNAs, 

hsa-miRNA-214, was also over-expressed in the glomeruli in cases of DKD80. As 

techniques for measuring miRNAs in clinical samples improve, more developments in the 

potential use of miRNAs as biomarkers are expected18. Identification of informative miRNA 

markers of DKD in kidney tissue followed by a search for these markers in blood or urine 

may significantly enhance biomarker discovery in the future.
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Gene methylation and DKD

Gene methylation is another mechanism for modifying gene expression. Structure and 

methylation patterns in kidney tissue from people with CKD (due to DKD or hypertension) 

were compared with kidney tissue from healthy transplant donors. The investigators 

confirmed the presence of structural lesions among their CKD samples, including increased 

fibrosis, tubular atrophy, and mesangial expansion, compared to the healthy controls. They 

also found many genes with differential methylation pattern in kidney tubules83. Most of the 

differentially methylated areas had lower levels of methylation in the CKD cases than in 

controls. The most commonly affected sites for differential methylation were enhancer 

regions and introns. This was unexpected as usually the promoter regions are the principal 

sites affected by differential methylation, where promoter hypermethylation is associated 

with a reduction in gene transcription84. Some of the genes affected have a role in fibrosis 

pathways (such as Tumor Growth Factor beta), while others are associated with kidney 

development. Differential methylation in DNA extracted from blood can vary with DKD as 

well. In a study of patients with type 2 diabetes, methylation of the 

methylenetetrahydrofolate reductase gene was lower in those with macroalbuminuria than in 

those with normoalbuminuria85, and methylation of two candidate DKD genes, TIMP-2 and 

AKR1B1, was negatively correlated with albuminuria86. Relationships between methylation 

patterns in kidney tissue and in blood are presently under investigation and may yield 

clinically useful biomarkers in the future.

Are there alternatives to tissue?

Kidney biopsy tissue is important for observing the detailed structural changes in DKD, and 

this may be especially important in understanding kidney functional alterations in type 2 

diabetes. However, there are also developments in imaging that may allow us to assess 

structural changes non-invasively by making use of advances in magnetic resonance imaging 

(MRI)87,88. These approaches include the use of diffusion-weighted MRI, which measures 

the flow of water to determine degrees of fibrosis89,90; blood oxygenation level-dependent 

(BOLD) MRI which assesses the degree of hypoxia in tissue90,91; and MRI elastography 

(MRE) which measures tissue stiffness due to fibrosis92,93. The advantage of imaging to 

assess structure is not only that it is non-invasive, but that it also allows assessment of the 

whole kidney, whereas a biopsy can only show structure in one area of the kidney and 

kidney fibrosis is not uniform throughout the kidney. However, these imaging methods are in 

the early stages of development, and further work is needed before they are ready for clinical 

use94. Moreover, access to kidney tissue will be important for confirming the validity of 

these imaging methods as biomarkers of DKD.

Conclusions

Kidney tissue is a valuable resource for biomarker discovery. It may be most beneficial for 

identifying clinically useful biomarkers for the earliest stages of DKD where our currently 

available biomarkers are least effective. Identifying biomarkers that are linked to the earliest 

specific and non-specific structural changes seen in DKD may allow more precise risk 

prediction, pathogenetic insights, and earlier interventions which may preserve kidney 
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function and delay or prevent the onset of ESRD. Thus, in addition to identifying 

biomarkers, this work may also lead to new therapeutic interventions and the means to 

assess the efficacy of those interventions. Advances in imaging may replace the need for 

tissue in the future, but for the time being access to kidney tissue remains a powerful but 

underutilized tool for biomarker discovery.
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Clinical Summary

• Changes in kidney structure precede the clinical findings of DKD and provide 

useful endpoints for biomarker discovery in early DKD.

• Examination of differentially expressed genes, microRNAs, and epigenetic 

modifications in kidney tissue may also yield clinically useful biomarkers.

• Advances in imaging may replace the need for kidney tissue in the future, but 

for the time being access to kidney tissue remains a powerful but 

underutilized tool for biomarker discovery.
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Figure 1. 
Prognosis of CKD by GFR and albuminuria category. Green, low risk (if no other markers of 

kidney disease, no CKD); Yellow, moderately increased risk; Orange, high risk; Red, very 

high risk. CKD, chronic kidney disease; GFR, glomerular filtration rate; KDIGO, Kidney 

Disease: Improving Global Outcomes. Reprinted with permission from Definition and 

classification of CKD Kidney Int Suppl (2011). 2013 Jan;3(1):19–6225.
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Figure 2. 
Partial regression residual plot of the associations between tumor necrosis factor receptors 

(TNFRs), percent of normal endothelial cell fenestration (ECF), and mesangial fractional 

volume (VvMes). The residuals were computed from regressing each of the following 

variables: age, sex, diabetes duration, hemoglobin A1c, body mass index, and mean arterial 

pressure. Exclusion of the single outlier did not change the significance of associations 

between 2 morphometric variables. Reprinted with permission from Pavkov ME, Weil EJ, 

Fufaa GD, et al. Tumor necrosis factor receptors 1 and 2 are associated with early 

glomerular lesions in type 2 diabetes. Kidney Int. 2016;89:226–234. Copyright © 

International Society of Nephrology. Reprinted with permission from Looker HC and 

Nelson RG. Reading the tree leaves – how to enrich clinical trials of diabetic kidney disease 

Kidney Int. 2017;92:23–2595.
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Figure 3. 
Peripheral glomerular capillaries from a Pima Indian with type 2 diabetes. Arrows point to 

projections extending from the WBC to the adjacent endothelium within the glomerular 

capillary lumen. Transmission electron microscopy, ×3,000. WBC, white blood cell; GBM, 

glomerular basement membrane; P, podocyte foot processes; E, endothelial cell body; FE, 

fenestrated endothelium; CL, capillary lumen. Reprinted with permission from Wheelock 

KM, Saulnier PJ, Tanamas SK et al. White blood cell fractions correlate with lesions of 

diabetic kidney disease and predict loss of kidney function in type 2 diabetes. Nephrol Dial 

Transplant doi: 10.1093/ndt/gfx23166.
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Figure 4. 
Comparison of enriched biological processes in uncomplicated diabetes and incipient 

diabetic nephropathy. Significantly enriched biological processes were identified for each 

stage using Biological Networks Gene Ontology with Benjamini and Hochberg multiple 

testing correction (P<0.05) and then run on Enrichment Map with Jaccard coefficient of 0.5 

(P value cut-off = 0.001; false discovery rate Q-value cut-off = 0.05). Each node represents 

an enriched biological process. Red node colors correspond to high enrichment, whereas 

gray node colors correspond to no enrichment. As shown in the figure legend, the outer 

circle color corresponds to the level of enrichment in uncomplicated diabetes, whereas the 

inner circle color corresponds to that in incipient diabetic nephropathy. Edge thickness 

denotes the number of overlapping markers between two connected nodes within 

uncomplicated diabetes (blue) and within incipient diabetic nephropathy (green). DM, 

diabetes mellitus; DN, diabetic nephropathy. Reprinted with permission from Van JAD, 

Scholey JW, Konvalinka. J Am Soc Nephrol. 2017 Apr;28(4):1050–106116.
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