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Abstract

Item response theory has its origins in educational measurement and is now commonly applied in 

health-related measurement of latent traits, such as function and symptoms. This application is due 

in large part to gains in the precision of measurement attributable to item response theory and 

corresponding decreases in response burden, study costs, and study duration. The purpose of this 

paper is twofold: introduce basic concepts of item response theory and demonstrate this analytic 

approach in a worked example, a Rasch model (1PL) analysis of the Eating Assessment Tool 

(EAT-10), a commonly used measure for oropharyngeal dysphagia. The results of the analysis 

were largely concordant with previous studies of the EAT-10 and illustrate for brain impairment 

clinicians and researchers how IRT analysis can yield greater precision of measurement.

Historical Context

Item Response Theory (IRT) has its roots in Thurstone’s work to scale tests of “mental 

development” in the 1920’s (Bock, 1997). As discussed by Bock, Thurstone envisioned a 

measurement model in which the probability of success on a given intelligence test item was 

a function of the chronological age of the respondent. In other words, older children would 

have more success on more challenging test items because their mental abilities were more 

developed. Perhaps more importantly, the model that Thurstone conceptualized included 

parameters describing characteristics of the individual items and was built around the 

premise that respondents and items could be placed on the same quantitative latent 

continuum.

Thurstone’s conceptualization was formulated in subsequent years as the mathematical 

advances needed to realize his vision were developed (Lord & Novick, 1968; Rasch, 1960), 

along with extensions from manifest constructs, such as chronological age, to latent (i.e., 

unseen) constructs, such as mathematical ability, physical functioning, and pain. The 
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advantages of IRT have been described in a number of papers and book chapters: 

continuous, interval-level scoring, item-level parameters that facilitate the development of 

valid measures, precise scoring and reliability estimates, and valid comparisons of 

respondents who took more, fewer, or different items (DeVillis, 2006; Embretson & Reise, 

2013; Hambleton & Jones, 1993; Hays, Morales, & Reise, 2000; van der Linden & 

Hambleton, 2013). These advantages are important, as they, respectively, obviate 

assumptions (e.g., strictly parallel forms) that are difficult to satisfy and allow measures to 

be obtained more efficiently.

The relevance of IRT and measurement theories, generally, and to brain impairment research 

specifically, is twofold. First, many of the targets of interest in this research community are 

latent constructs (i.e., functions or symptoms along a continuum from low to high, or mild to 

severe) that are commonly assessed using clinician-rated or patient-reported outcome 

questionnaires, including functional status, participation, symptom frequency and severity, 

and quality of life. Second, the quality of our measures is fundamental to our science, 

governing the sample sizes of our studies, and accordingly, their cost, the time it takes to 

complete the research, and ultimately, the scientific progress that our fields are able to make. 

The sections below introduce IRT concepts and metrics. In addition, a Rasch-model analysis 

of the 10-item Eating Assessment Tool (EAT-10), a self-administered, symptom-specific 

outcome instrument for dysphagia (Belafsky et al., 2008), is provided to illustrate IRT. 

Finally, Table 1, below, includes definitions introduced throughout the paper.

Description of the Technique

IRT models can be grossly categorized into 1-parameter logistic (1PL), 2-parameter logistic 

(2PL) and 3-parameter logistic (3PL) models. The parameter in the 1PL model is the natural 

log of the odds of “success” on a dichotomous (e.g., correct/incorrect, yes/no) item or 

“endorsement” of a category on a polytomous (e.g., mild/moderate/severe, not at all/several 

days/more than half of the days/nearly every day). The 2PL model includes both the log-

odds of endorsement and additionally, a discrimination parameter, which is the slope of the 

S-shaped logistic curve at its inflection point. 3PL model includes both the log-odds of 

endorsement and discrimination parameter from other models and additionally, a pseudo-

chance “guessing” parameter, which is the lower asymptote of the logistic curve. Figure 1, 

below, shows the S-shaped logistic item characteristic curve, the discrimination (slope), and 

the pseudo-guessing parameter at the lower asymptote of the logistic curve. A steeper 

discrimination slope than that shown in Figure 1 would more precisely discriminate success 

or failure on an item (y-axis) as a function of person ability (x-axis).

1PL “Rasch” models (named after Danish mathematician Georg Rasch) and 2PL models are 

used commonly in the development and scoring of health-related outcomes, the latter often 

when sample sizes (>1000) permit modeling a discrimination parameter and the former 

when they do not. Philosophical considerations are also key factors in the choice between 

1PL and 2PL models for health outcomes (Andrich, 2004). The 3PL model is applied in 

educational settings but rarely in measuring health-related outcomes because it is difficult to 

assume that guessing is involved in self- or clinician-reported health measures.
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A high-level overview of the calculation process in the dichotomous Rasch model, for 

example, is as follows: First, the proportion correct for each person measured and each item 

administered are calculated. Next, the proportions correct are converted into person “ability” 

(also called theta) and item “difficulty” estimates by taking the natural log of the odds of 

success. Subsequently, in an iterative process, the item difficulty and person ability estimates 

are compared and adjusted until the sum of the squared item residuals is relatively stable 

between iterations and as close to zero as possible. Finally, the primary output from these 

calculations are logit (LOW-jit) values, which range, theoretically, from ± infinity, but 

commonly in practice, from ± 4.0. These logit values scale the persons and items together 

and allow, for example, for one to calculate the probability of success of persons on items 

with different logit values: the probability of success of a person on an item with the same 

logit estimate is 50%, on an item that is one logit greater is 27%, and on an item that is one-

half logit less is 63%.

When to use IRT Models

IRT models are useful in developing, validating and refining multi-item latent construct 

measures, where individual items evaluate different positions along the continuum of the 

latent construct. The models originated in educational testing circles and are most readily 

applicable to multi-item survey questionnaires, which are test-like in that they use many 

items to approximate the different facets of complex constructs (e.g., mathematics ability, 

depression). Multi-item questionnaires are also similar to educational tests in that they are 

summed or combined in some other way to produce a score, which is a composite of the 

different facets of the latent construct. These similarities between educational tests and 

survey questionnaires facilitated the application of IRT models to health measurement 

constructs.

IRT models are less useful for questionnaires that treat single survey items as discrete 

measures of latent construct. For example, in a study of medical decision making, 

Zickmund-Fisher and colleagues asked respondents to rate health care decision making for a 

variety of health decisions: “Was it mainly your decision, mainly the health care provider’s 

decision, or did you and the health care provider make the decision together?” (p. 88S). In 

the analysis, the responses of, “mainly the provider,” “shared,” and “mainly the patient” for 

each decision (e.g., medication initiation, cancer screening) were compared. In this example, 

the degree of shared decision making for a particular medical condition is a latent construct, 

in and of itself, and is assessed with a single questionnaire item, not multiple items.

It should be pointed out that although IRT models are useful in developing, validating and 

refining multi-item latent construct measures, they are more esoteric and less familiar that 

Classical Test Theory (CTT) approaches. CTT considers observed scores (X) simply, as the 

product of a respondent’s True Score (T), the average of repeated observations of observed 

scores, and error (E), the difference between observed and true scores (see DeVillis, 2006 

and Kean & Reilly, 2014 for thorough contrast of CTT and IRT). Additionally, the IRT 

transformation from raw scores to logits may complicate the clinical use of scores, though 

this may be obviated by logit-to-T-score or percentile transformations for audiences who are 

familiar with these concepts (Kroenke, Monahan, & Kean, 2015).Though arguable, the 
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relative lack of refinement realized in measures developed with CTT vs. IRT methods may 

be better attributed to the failure of scale developers to carry out a comprehensive set of 

instrument development and evaluation approaches than to the statistical approach used, 

despite the statistical advantages of IRT.

Precision in Measurement

Despite being less straightforward and requiring stronger assumptions (discussed below) 

than CTT, IRT models often improve the precision of measurement (i.e., the inverse of error; 

reliability) (Fries, Bruce, & Cella, 2005). Precision in the measurement process and 

consistency of scores is critical and perhaps underappreciated in health measurement relative 

to educational measurement research communities. Consider, though, that less error results 

in more accurate assessment of measured abilities and of change, such as the improvement 

associated with a clinical intervention. Accordingly, improved accuracy can reduce the 

standard deviation (SD) (i.e., the spread) of baseline assessments or change scores because 

the variability in outcomes would be less affected by measurement error and would more 

closely approximate the true estimate of symptom burden, or the effect of the intervention in 

the study population. A reduction in the SD of baseline or change scores results in greater 

effect size (ES) estimates, as the SD of baseline or changes scores is used as the 

denominator in common ES calculations (e.g., Cohen’s d, Standardized Response Mean, 

respectively). In sum, greater reliability results in less error, and generally, smaller SDs and 

greater ES estimates.

Standard deviations and effect size estimates are critical because they govern the sample size 

of the study and, accordingly, the per patient study costs and time to complete the study. 

This can be illustrated using a sample size calculation comparing the means of two groups 

on a continuous measure - a common clinical trial design. Using conventional thresholds for 

type I and type II error, 0.05 and 0.20, respectively, the sample size is equal to 16 * the SD2 / 

Δ2. Table 2, below, illustrates the impact of more precision in measurement.

Example 1 is an unlikely scenario in brain impairment research because the expected study 

effect size (i.e., expected difference between groups / SD) is 1/1 = 1, and our interventions 

rarely move outcomes to this degree. It is included here because the simplicity of the math 

most plainly illustrates the relationships. The effect size in Example 2 is realistic in this 

context, and, in comparison with Example 1, the sample size, costs, and time to complete the 

study increase dramatically. The most illustrative comparison is that between Examples 2 

and 3, which differ only by the SD of scores in study samples and to a degree that can 

reasonably be expected from the greater precision realized by a more reliable outcome 

measure.

Though the difference between SDs is modest, the impact is considerable: the study 

completed with the more precise outcome measure can be completed with 2/3rds of the 

resources and will be finished nearly a year earlier than that done with the less precise 

outcome measure. These time and costs savings are critical components to increasing the 

impact of research on clinical care. As such, the application of measurement theory concepts 
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is useful at any stage in the development and refinement of outcome measures, including 

exploratory analysis, as well as in the planning stages of research.

Concepts and Metrics to Achieve Greater Measurement Precision

One way to conceptualize measurement is to think of it as the assignment of value. To assign 

values, we need units. We could measure distance, for instance, by using rocks as units, 

lining them up in a straight line and counting them. Our accuracy might be poor, though, 

because rocks vary in size and because our line may not be straight or level. Measures 

developed using CTT can suffer from the same problems as our line of rocks: the units vary 

in size and the line is usually not straight.

Interval-Level Measurement

Take, for instance, a rating scale with the following response options: 0 = no difficulty, 1= 

mild difficulty, 2 = moderate difficulty, 3= severe difficulty. The numerical labels for the 

response options suggest that there is a one-to-one correspondence between the ordered 

natural numbers and the response options. If true, this would produce an interval level scale 

in which the difference between categories is interpretable. However, we don’t know that the 

magnitude of difficulty that separates mild and moderate difficulty is the same magnitude as 

that which separates moderate and severe difficulty; the labels could just as easily be 0 = no 

difficulty, 2.3= mild difficulty, 4 = moderate difficulty, 14= severe difficulty. When the 

“space” between the points on rating scales is evaluated, it is often the case that the units 

vary in size.

In the CTT approach, interval-level measurement can be assumed if both the true latent trait 

and a set of observed scores are normally distributed. Although the latter can be evaluated, 

the former cannot, and making such an assumption is unreasonable in many circumstances. 

IRT makes no assumptions and instead models interval-level measurement, when the data fit 

the model, using the raw score-to-logit transformation. In the case of polytomous rating 

scales, each response option is modeled, so if the metric distance between “no difficulty” 

and “mild difficulty” is different from the distance between “moderate difficulty” and 

“severe difficulty”, that difference can be accounted for in the scoring of persons. The focus 

of IRT approaches at the item level and on the response options instead of the summed score 

results in more precise score estimates, improving the accuracy and efficiency of research.

Unidimensionality

The notion of “straight and level” is associated with the term “dimensionality” in 

measurement theory and our rock distance measure in a hilly area would be 

“multidimensional”, as it measures the distance between two points as well as changes in 

elevation between the two. Though both CTT and IRT assume unidimensionality - a single 

dimension of measurement - the assumption is usually given more attention in IRT. The 

ubiquity and conceptual accessibility of CTT undoubtedly contribute to this assumption 

being overlooked. Regardless of cause, ignoring this assumption results in less measurement 

precision, just as the rock measure of distance is less precise in a hilly context relative to a 

flat one.
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If the rocks in our line are all the same size, our measurements could still be inaccurate if the 

rocks are not carefully arranged in a straight line and sitting on level ground. Though both 

traditional and modern measurement development methods assume a level and straight, or 

unidimensional, foundation, this property receives far more attention in modern approaches, 

and as a result, the accuracy of the assignment of values increases.

The most common way to evaluate dimensionality is through factor analysis, which 

produces linear combinations of observed variables based on the intercorrelations of items. 

This approached is used in both CTT and IRT paradigms, though more regularly in the latter. 

Highly intercorrelated items would be unidimensional, whereas variable item 

intercorrelations would multidimensional. Parallel analysis is another approach to evaluate 

dimensionality that is paradigm agnostic (CTT or IRT). In addition to these, Principal 

Components Analysis (PCA) of the item residuals is often used in the Rasch paradigm. The 

residuals come from items that do not fit the model perfectly. The PCA is used to identify 

relationships between the items outside of the relationship accounted for by the IRT model. 

Additionally, item fit is related to dimensionality and represents the degree of discrepancy 

between observed responses on a given item and what was expected by the model. Item fit is 

unique to IRT because of the item-level focus of the analysis. Item misfit can arise due to a 

host of different measurement problems, including multidimensionality, poor item quality, or 

data quality errors.

Targeting and Person Separation

Targeting and person separation also contribute to the precision of measurement. Targeting, 

or coverage, means a good match between the distribution of persons and item logit scores. 

In a well-targeted sample, there will be groups of items wherever there are groups of 

persons. Well-targeted samples achieve high person separation, a reliability metric that 

reflects the reproducibility of person ability estimates. Low person separation in a sample 

indicates that the measure may not be not sensitive enough to distinguish between high and 

low performers.

Data assumptions

IRT models have three basic assumptions. The first is unidimensionality, discussed above, 

and restated here as a single trait accounting for the respondent’s performance on a set of 

items. This is an assumption of the vast majority of models, though some models assume 

more than one trait underlies item responses and this assumption of multidimensionality is 

reflected in the mathematical formulation. Nearly all IRT models used to model health 

outcomes assume unidimensionality. The second assumption is local independence, which 

means that there is no relationship between items that is unaccounted for by the IRT model. 

In other words, the respondent’s performance on an item reflects only the respondent’s 

latent trait ability and characteristics of the item. The final assumption is monotonicity, 

which means that the probability of more extreme or greater responses on an item 

correspond with a greater amount of the latent trait being measured. For example, there 

should be a correspondence between higher levels of depression and more extreme (e.g., 

nearly all of the days) categories on the item rating scales.
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The sample size requirements for IRT analyses depend upon the structure of the data, the 

missingness in the data, and the IRT model used in calibration. Reasonable precision may be 

obtained using simple data structures and simple models with 100–150 respondents, whereas 

more complex data structures and complex models require a minimum of 1000 respondents. 

IRT models are generally robust to missing data.

Findings of prior studies of the EAT-10

The Eating Assessment Tool (EAT-10) is a 10-item, self-administered, symptom-specific 

outcome instrument for dysphagia (Belafsky et al., 2008). The 10 items are rated on a 5-

point rating scale (0–4) with labels “0 = No problem” and “4 = Severe problem”. Table 3 

displays the EAT-10 item stems.

The initial validation of the EAT-10 was conducted by Belafsky and colleagues (Belafsky et 

al., 2008). Initially, clinicians wrote 20 items that were subsequently reduced to 10 after the 

least reliable and most redundant items were identified in a clinical sample using test-retest 

and inter-item correlations, respectively. The 10 items were administered to 100 healthy 

volunteers to define the upper limit of normal, which was defined as 2 SD from the summed 

score mean. Test-retest reliability, internal consistency and validity of the EAT-10 were 

evaluated in a clinical sample using Pearson product-moment coefficient, Cronbach’s 

coefficient alpha, and responsiveness to intervention, respectively. The results indicated that 

the EAT-10 demonstrated reasonable intra-item test-retest coefficients (0.72 to 0.91), high 

internal consistency (0.96) and statistically significant change between pre-treatment (19.87 

± 10.5) and post-treatment (5.2 ± 7.4) scores in group of patients with dysphagia.

Subsequently, Rasch-model IRT analysis of the EAT-10 was performed by Cordier et al. in a 

population of persons with oropharyngeal dysphagia receiving evaluations at outpatient 

dysphagia or otorhinolaryngology clinics in Italy, Spain, Sweden and Turkey (Cordier et al., 

2017). They reported on rating scale validity, operationalized as monotonically increasing 

scores, on the fit of persons and items to the model, on the dimensionality of the measure, on 

differential item functioning, and on floor and ceiling effects of the measure.

There were several key findings from the Cordier et al. (2017) report. First, they found 

evidence that a subset of items had questionable fit with the model using standardized but 

not mean-square fit statistics and evidence that the measure was reasonably, if not strictly, 

unidimensional. Next, they found person separation <2 and 23% of the sample at the floor of 

the measure (i.e., a minimum possible score of 0), indicating that the measure inadequately 

differentiated levels of oropharyngeal dysphagia in the sampled population. Additionally, 

they noted monotonically increasing average measure scores, consistent with the assumption 

of IRT models, but large steps (relative to the center of the rating scale) and disorder 

between the average item thresholds where adjacent categories are equally probable (i.e., 

Rasch-Andrich thresholds: the sum of [person measures-item measures] / count of 

observations in a category) Based on this disordering, Cordier and colleagues (2017) 

suggested that thought should be given to collapsing rating scale categories.
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Worked example

Our worked example is an extension of the Cordier et al. (2017) report in a new population 

of 1036 persons following surgical intervention of the cervical spine. The data set was 

complete (i.e., no data were missing). The mean age of the sample was 55.39 years (13.99), 

and included 543 females and 493 males. Data were analyzed using joint maximum 

likelihood estimation in the Masters Partial Credit Model as implemented in Winsteps 

version 3.92.0.1.

Item Fit

Item fit is reported in many places in Winsteps. The output here was from Winsteps Table 14 

and the IFILE output file. The last column of Table 3 displays the point-measure correlation 

(PTMZ) which is a Pearson correlation between the individual items and the measures of the 

respondents who received those scores. These point-measure correlations should be positive 

but the size of correlation is less indicative of fit with the model than fit statistics, which 

average the squared standardized residuals between actual and modeled data.

These all exceed 0.40, indicating the scores on the individual items accord with the average 

scores across the remaining items. The second and fourth columns display the mean-squared 

fit statistics (MNSQ) for infit and outfit, respectively. These indicate how well the item 

responses fit the model. Infit is more sensitive to unexpected response to items that are well 

targeted to the heart of the distribution of persons, whereas outfit is more sensitive to 

unexpected responses on items that fall at the extremes. The third and fifth columns display 

the standardized weighted (infit) and unweighted (outfit) mean-squared fit statistics (ZSTD), 

respectively, which convert the mean-square into an approximate t-statistic that are less 

sensitive to sample size than MNSQ values. Misfit on MNSQ is generally indicated by 

values >1±0.4 and on ZSTD values >2.0. Larger, but not smaller, fit values compromise 

measurement and suggest deviation from unidimensionality.

Infit MNSQ thresholds (>1∓0.4) identified items 7 and 9 as misfitting, and outfit MNSQ 

thresholds identified items 1, 7 and 9 as misfitting. Infit (weighted) ZSTD thresholds (>±2.0) 

and outfit (unweighted) ZSTD thresholds identified items 1, 4, 7, 9 and 10 as misfitting. The 

misfit of items in the present study largely accords with the findings of Cordier et al. (2017) 

who also report misfit with item 6. However, for these items (save item 6), the estimates 

reported by Cordier and colleagues (2017) were smaller, not larger, than expected and 

indicate “overfit” - the model predicts the data better than expected. Although overfitting 

items can result in inflated summary statistics, these very well fitting items are usually 

retained in the analysis.

Dimensionality

Analyses of dimensionality can be reported in many ways through Winsteps. The output 

here was obtained from Winsteps Table 23. Table 4 reports the Eigenvalues and percentage 

of variance in the data and that explained by the measures and by the first and second 

contrasts. Eigenvalues are items’ worth of data (total eigenvalues is equal to the number of 

items).
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Contrasts are “dimensions” in the item residuals - the “left over” variance unexplained by 

the Rasch “dimension”. Consistent with the analysis of Cordier and colleagues (2017), a 

single dimension accounts for most (16.14 Eigenvalue units; 61.8%) of the variance, and 

similarly, the first (1.54 Eigenvalue units; 5.9%) and second (1.39 Eigenvalue units; 5.3%) 

contrasts account for a small amount of unexplained variance.

We could conclude, using the cutoffs Cordier et al. (2017) used (>40% explained variance 

by the Rasch dimension; 2.0 Eigenvalue units) that despite being somewhat noisy, the 

EAT-10 is reasonably unidimensional and that the noise may be attributable to a number of 

items have content that contributes significantly to both noise and measurement. Another 

approach is to examine the content of the items in the contrasts to determine if the items 

with positive and those with negative loadings have something in common conceptually 

outside of their relationship with other items. The last column of Table 3 shows the PCA 

loadings of the item residuals on the first contrast with the negative loadings in bold 

typeface. However, this comparison does not appear to point to an obvious conceptual driver 

of the relationships between items. Additionally, Winsteps Table 23 shows correlations 

between item residuals. High positive correlations between item residuals may indicate local 

dependence between pairs of items, a violation of an IRT model assumption. In the present 

analysis, the correlations were all negative and none were larger than −0.26. Consistent with 

the conceptual comparison of items, it appeared that noise, rather than substance, was 

responsible for the unexplained variance.

Targeting and Person Separation

Targeting and person separation were examined and are available in Winsteps Table 3.1. 

This analysis indicated that 595 of the 1036 respondents had a minimum extreme score of 0. 

Accordingly, the mean logit score of the items was 0.00 (by default) and the mean score of 

persons was −4.22. Going back to our logit to probability relationship, the mean of persons 

in the sample has a 98.5% chance of being “above” (e.g., less dysphagia symptoms) the 

mean item threshold. This is akin to giving a 1st grade math test to 8th grade students - the 

measure is so easy that it is nearly uninformative with respect to differentiating the level of 

the latent construct (e.g., symptoms or math skills) for most of the sample. This floor effect 

was larger than that (23%) reported by Cordier and colleagues (2017), though differences in 

the prevalence of dysphagia between the populations seem to explain the differences. The 

person separation (0.86) and reliability (0.42) in the sample were, accordingly, low. 

Cronbach’s coefficient alpha (internal consistency) was 0.95.

However, examination of the 441 (non-extreme) persons who reported some dysphagia 

symptoms or quality of life compromise suggested that the measure is better at 

differentiating levels of dysphagia among those reporting some burden. In this 

subpopulation, the difference between the item and person means was −2.31 logits, still 

large but better. The person separation and reliability estimates rose to 1.93 and 0.79, 

respectively. Therefore, within the subpopulation of persons reporting some dysphagia 

burden, the EAT-10 can distinguish nearly three statistically different levels of dysphagia 

burden ((4*1.93+1)/3 = 2.91; Wright & Masters, 1982). These values are close to the rule-

of-thumb minimum person separation (2.0) and reliability (0.80) values put forth in the 
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literature and suggest that the EAT-10, perhaps with modifications, could reliably 

differentiate levels of dysphagia burden in a symptomatic population.

Ordering of Polytomous Categories

As mentioned above, Cordier et al. (2017) reported five distinct and correctly ordered 

categories when looking across the items. Though not reported, their choice to look across 

items may have been a result of their use of the Andrich Rating Scale Model (the default 

model in Winsteps), which models all items with the same rating scale. The approach taken 

in the present analysis was to model the data using the Masters Partial Credit Model, which 

allows the rating scale structure to vary from item to item, and then to look at the category 

ordering item-by-item. Also across item, Cordier et al. (2017) examined average item 

thresholds (relative to the center of the rating scale) where adjacent categories are equally 

probable (i.e., Rasch-Andrich thresholds) and found large steps and disordering between the 

categories. Based on this disordering, Cordier and colleagues (2017) suggested that thought 

should be given to collapsing rating scale category 0 with 1 and 3 with 4 to produce a 3-

point rating scale (i.e., 0,1,2 vs. 0,1,2,3,4).

We examined the category probability curves for each item. The curves are model-based 

probability (y-axis) of observing each category of the response structure at each level of item 

difficulty (x-axis). Figure 2 shows the category probability curve for item 1.

The colors correspond to the different rating scale options: 0=red, 1=blue, 2=pink, 3=black, 

4=green. The categories are ordered from 0–5 across the item difficulty; as the difficulty 

increases, the probability of greater degree of problem on the item also increases. 

Importantly, all categories are most probable at some point on the continuum. This 

correspondence between rating scale and item difficulty held for all items except items 3 and 

8. Figure 3 shows the category probability curve for item 3.

It shows that all of the categories are logically ordered but that category 3 is not most 

probable at any point on the continuum (i.e., the black curve is smaller than adjacent curves 

at all points on the continuum). The curves for item 8 were nearly identical; showing that 

category 3 was never most probable and indicates that for items 3 and 8, collapsing 

categories 3 and 4 may improve precision of measurement. However, collapsing categories 3 

and 4 across all items, as suggested by Cordier and colleagues (2017), risks losing 

information because category 3 was most probable in 8 of the 10 EAT-10 items. This 

analysis did not support collapsing categories 0 and 1 in any items.

The average measure for a category is also used to evaluate rating scale functioning. This 

metric represents the model-estimated average ability, in logits, of persons who respond with 

that category on a particular item. The average measure increased monotonically for each 

item except items 2, 6 and 9. Table 5 shows the average measures for these three items, 

which can be obtained from many tables in Winsteps, including Table 14, as these were.

For each item, the average measure went down slightly between categories 4 and 5, 

suggesting that thought be given to collapsing these categories.
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Concluding Comments

The application of the Rasch model to the EAT-10 yielded findings that were largely 

consistent with those of Cordier et al. (2017): the EAT-10 has a considerable floor effect, 

appears to measure a broad but single dimension, identifies just two levels of oropharyngeal 

dysphagia severity (high, low) in the subsample who report dysphagia symptoms, and 

EAT-10 items 1 and 9 fit the measurement model poorly. In addition, Cronbach’s coefficient 

alpha, the CTT internal consistency metric, was estimated to be 0.95, nearly identical to the 

estimate of 0.96 reported by Belafsky and colleagues. The use of IRT modeling in this 

example sheds light beyond the estimate of the internal consistency of items and to elements 

that speak more directly to the precision of measurement.

Reflection on the concepts from the introduction is useful as we consider these results. First, 

the high internal consistency (0.95) is significantly influenced by the large percentage of the 

sample at the floor of the measure – there is a strong association between all of the zeros 

from respondents who are poorly targeted by the EAT-10. However, the zeroes tell us 

nothing about levels of the latent trait in a large percentage (57%) of the sampled population, 

and more zeroes would lead to higher alpha estimates but tell us even less about dysphagia 

in a similar population. Although floor and ceiling effects are understood as problematic in 

the CTT tradition, the construct of targeting (i.e., coverage) and the reflection of poor 

targeting in the person separation metric helps quantify the problem. If we were to exclude 

the extreme scores and analyze only respondents with some burden, coefficient alpha would 

likely drop as a result of the increased variability in scores despite the improved ability of 

the measure to differentiate levels of dysphagia within the sample, as reflected by the 

increase in person separation reported for non-extreme respondents. Although there are 

approaches in the CTT tradition that could be used to understand these limitations of the 

EAT-10, they are used less often, perhaps because they are less commonly available in 

statistical packages or because those who are aware of these approaches are also aware of 

IRT models and the distinct advantages of this modeling approach over analogous routines 

in the CTT tradition.

Administering the measure to a symptomatic population would likely improve the targeting. 

The logistic transformation of raw scores by the IRT modeling may also help improve the 

precision of the measure. Additionally, the analyses of dimensionality and ordering of the 

rating scales suggest that further improvements may be possible by targeting a narrower, or 

perhaps more carefully defined unidimensional construct, by designing items that 

operationalize that definition and that are written in the voice of persons with dysphagia, and 

through careful consideration and empirical testing of the rating provided to rate item stems.
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Figure 1. 
Example item characteristic curve
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Figure 2. 
Category probability curves for EAT-10 Item 1, “My swallowing problem has caused me to 

lose weight”.
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Figure 3. 
Category probability curves for EAT-10 Item 3, “Swallowing liquids takes extra effort”.

Kean et al. Page 15

Brain Impair. Author manuscript; available in PMC 2018 September 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript

Kean et al. Page 16

Table 1

Selected definitions introduced throughout the paper

Term Definition

Classical Test Theory Measurement model in which the raw, observed (usually summed) scores are considered a combination of a 
person’s True Score and error.

Dichotomous A response format with two categories (e.g., yes/no).

Disordered categories Occurs when increasing person measures do not correspond to increasing rating scale categories; as “ability” 
estimates increase, so should ratings on individual items.

Eigenvalue Item’s worth of variance accounted for by a dimension in the data.

Infit The information-weighted average of the squared standardized deviation of observed performance from 
expected performance.

Item Response Theory Measurement model built around the relationship between a person’s performance on individual items and 
their performance on the measure overall.

Latent constructs A property which is the target of measurement but which cannot be directly observed, such as satisfaction or 
confidence.

Local independence No relationship exists between items outside of that accounted for by the measurement model.

Logit A logarithmic transformation of the ratio of the probabilities of a correct and incorrect response, or of the 
probabilities of adjacent categories on a rating scale.

Masters Partial Credit Model Polytomous Rasch model that allows for different thresholds for each item.

Measurement precision The amount of variation in measurement; the inverse of error.

Monotonicity The expected item scores always increase as the person “ability” (e.g., health state) increases.

Outfit The unweighted average of the squared standardized deviations of the observed performance from the expected 
performance.

Parallel forms If each examinee has the same true score on both forms of the test and the error variances for the two forms are 
equal, we can consider the two tests strictly parallel.

Person separation The number of statistically different levels of performance that can be distinguished in a normal distribution 
with the same "true" S.D. as the current sample.

Polytomous A response format with multiple categories (e.g., rarely/occasionally/sometimes/often).

Rasch-Andrich thresholds Location on the latent variable (relative to the center of the rating scale) where adjacent categories are equally 
probable

Targeting Choosing items with difficulty equal to the person ability

True score The average of the observed scores obtained over an infinite number of repeated testing with the same test.

Unidimensional A single latent trait that is the focus of measurement.
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Table 2

A comparison of three hypothetical measures and their associated study sample sizes, costs and study 

durations

Example 1 Example 2 Example 3

α 0.05 0.05 0.05

β 0.20 0.20 0.20

SD 10 10 8

Expected difference between group means (Δ) 10 2.5 2.5

Effect Size 1 0.25 0.3125

Sample Size 16 256 164

Cost ($1500/participant) $24,000 $384,000 $246,000

Time to complete study (10 participant/month) 1.6 months 25.6 months 16.4 months
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Table 4

Raw score variance explained in total, by measures, and by principal components of item residuals

Eigenvalue Percent

Total Raw Variance in Observations 26.14 100.0%

Raw Variance Explained by Measures 16.14 61.8%

Raw Variance Explained in 1st Contrast 1.54 5.9%

Raw Variance Explained in 2nd Contrast 1.39 5.3%
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Table 5

Average measure of persons (relative to each item) who responded with each rating scale category

Item # Response
Option

Ability Mean

2 1 −4.79

2 −1.39

3 −0.24

4 0.51

5 0.5

6 1 −4.8

2 −1.48

3 −0.25

4 0.61

5 0.13

9 1 −4.88

2 −2.26

3 −0.5

4 0.25

5 0.12
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