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Abstract

The individual sample heterogeneity is one of the biggest obstacles in biomarker identification for complex diseases such as
cancers. Current statistical models to identify differentially expressed genes between disease and control groups often over-
look the substantial human sample heterogeneity. Meanwhile, traditional nonparametric tests lose detailed data informa-
tion and sacrifice the analysis power, although they are distribution free and robust to heterogeneity. Here, we propose an
empirical likelihood ratio test with a mean–variance relationship constraint (ELTSeq) for the differential expression analysis
of RNA sequencing (RNA-seq). As a distribution-free nonparametric model, ELTSeq handles individual heterogeneity by
estimating an empirical probability for each observation without making any assumption about read-count distribution. It
also incorporates a constraint for the read-count overdispersion, which is widely observed in RNA-seq data. ELTSeq demon-
strates a significant improvement over existing methods such as edgeR, DESeq, t-tests, Wilcoxon tests and the classic
empirical likelihood-ratio test when handling heterogeneous groups. It will significantly advance the transcriptomics
studies of cancers and other complex disease.
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Introduction

The individual heterogeneity hurdles biomarker identification
for complex diseases and complicates the study of cancer path-
ology. An enormous amount of individual heterogeneity has
been observed across multiple cancer types, such as breast can-
cer, renal cell carcinoma and prostate cancer [1–3]. In our own
analysis of RNA sequencing (RNA-seq) data, we also observed
that tumor samples are more heterogeneous compared with
normal tissue samples (Supplementary Figure S1). Additionally,
different cancer types exhibit different degree of heterogeneity
(Supplementary Figure S2). The heterogeneity may result from
the disease etiological heterogeneity, sample preparation con-
tamination or simply from individual-level variability. It is cru-
cial to take such heterogeneity into account when aiming to
identify biomarkers accurately and reproducibly.

High-throughput RNA-seq has been widely used to quantify
transcriptomes. However, differential expression analysis of
genes based on read counts remains statistically complicated
and challenging. Most of the current statistical models such as
edgeR and DESeq [4, 5] use negative binomial (NB) distributions
to identify differentially expressed (DE) genes. These parametric
models aim to handle the overdispersion problem in RNA-seq
data (i.e. a larger variation across samples is observed than that
expected from Poisson variables). However, the substantial
human sample heterogeneity complicates the situation and
makes the distribution fitting difficult. Meanwhile, traditional
nonparametric tests, such as rank-based Wilcoxon tests, lose
detailed data information and sacrifice the analysis power, al-
though they are distribution free and robust to heterogeneity.

Here, we propose a novel nonparametric test, which pre-
serves much information from original data and is specifically
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designed to the characteristics of RNA-seq data. More im-
portantly, it can deal with the different degree of hetero-
geneity for each group. Specifically, we propose an empirical
likelihood ratio test with a mean–variance relationship
constraint (named as ‘ELTSeq’) for the identification of DE
genes through RNA-seq read counts. We tested our method
through simulations and publicly available cancer RNA-seq
data sets. ELTSeq demonstrates a significant improvement
over existing methods such as edgeR and DESeq.

Materials and methods
Empiricallikelihood ratiotest

The empirical likelihood ratio test (ELT) is a nonparametric
method first proposed by Owen [6], and the two-sample ELT
was later developed [7]. Here, we further modify the model by
introducing additional constraints on the mean–variance rela-
tionship for the overdispersion characteristics of RNA-seq data
(named as ‘ELTSeq’).

In the classic ELT, supposing that fX1; X2; . . . ;Xng is a random
sample from a distribution F, we define the empirical cumu-
lative distribution of the sample as FnðxÞ ¼ 1

n

Pn
i¼1 1 Xi �xf g . If there

are no ties in the observations (i.e. all values are distinct), pið� 0Þ
is the probability that the distribution F places on
the distinct value Xi. The empirical likelihood function

is LðFÞ ¼
Qn

i¼1 pi, and the unconstrained maximum empirical like-
lihood is LðFnÞ ¼ n�n So the empirical likelihood ratio is as
follows:

RðFÞ ¼ LðFÞ
LðFnÞ

¼ nn
Yn
i¼1

pi (1)

If there are ties [8], supposing that the distinct values zj appear
nj � 1 times in the sample, and has probability pj under F,

the likelihood function can be expressed as LðFÞ ¼
Yk

j¼ 1
pj

nj ,

where k is the number of distinct values in the data.
The unconstrained maximum empirical likelihood is

LðFnÞ ¼
Qk

j¼1
nj

n

� �nj
. So the empirical likelihood ratio is as

follows:

RðFÞ ¼ LðFÞ
LðFnÞ

¼
Yk

j¼ 1

npj

nj

 !nj

¼
Yk

j¼ 1

ðnwiÞnj ¼ nn
Yn

i¼ 1

wi (2)

where the weight wi is acquired by splitting pj equally on obser-
vation Xi with value zj. As Equations (1) and (2) are equivalent,
we proceed with Equation (1) as if there were no ties in the
calculation.

Supposing that an RNA-seq experiment has been con-
ducted to generate a data set of two groups, the sample size
is n1 and n2, respectively. For a gene g, let xi represent
the mapped read count in sample i of Group 1, and yj be the
mapped read count in sample j of Group 2. The read counts are
prenormalized so that the sequence depth of two groups is the
same (more details in ‘Normalization’). Here, u1 and u2 are
used to denote the true expression level of the gene g
in Groups 1 and 2, respectively. The hypotheses to test are
as follows:

H0 : u1 ¼ u2 ¼ u versus H1 : u1 6¼ u2

Denote pi as the empirical probability for the observed read
counts in Group 1, and qj for Group 2. The constraints for empir-
ical probabilities can be written as follows:

Xn1

i¼1

pi ¼
Xn2

j¼1

qj ¼ 1; pi � 0; qj � 0 (c1)

Other constraints include the following:

Xn1

i¼1

pixi ¼
Xn2

j¼1

qjyj ¼ u; (c2)

Xn1

i¼1

piðxi � uÞ2 > u; (c3)

Xn2

j¼1

qjðyj � uÞ2 > u (c4)

where ðc2Þ stands for the null hypothesis; ðc3Þ and ðc4Þ are
our proposed overdispersion constraints. The classic ELT only
has ðc1Þ and ðc2Þ constraints without the overdispersion con-
straints. As the unconstrained maximum empirical likelihood is
ðn1Þ�n1 ðn2Þ�n2 , let R be the maximum empirical likelihood ratio:

R ¼ sup n1
n1 n2

n2
Y

i

pi

Y
j

qj

���ðc1Þ; ðc2Þ; ðc3Þ; ðc4Þ

8<
:

9=
;

log ðRÞ ¼ n1 log ðn1Þ þ n2 log ðn2Þ þ
Xn1

i¼1

log ðpiÞ þ
Xn2

j¼1

log ðqjÞ

Under the null hypothesis, �2log(R) approximates X2
1 distribu-

tion based on [6]. Then, we can obtain P-values for ELTSeq.

Simulationstudies

As we know, if

X � Poisson ðkÞ and k � Gamma r;
1� v

v

� �
;

Then,

X � NBðr; vÞ

As r is the shape parameter and 1�v
v is the scale parameter of

gamma distribution, we define the scale ratio s between two NB
distributions as follows:

s ¼
1�v1

v1

�
1�v2

v2

:

Ten samples of transcriptomes with 1000 genes as Group 1 were
simulated in which 100 of those genes were DE genes compared
with the other 10 simulated samples of Group 2. The expression
ratio (i.e. the ratio of the two means of the two NB distributions)
was fixed for DE genes and was 1 for non-DE genes. Thus,
the means were the same for non-DE genes. For Group 1, v1 was
sampled from estimates from real ata, and was chosen from
1, 2, 3,. . ., 15. The scale ratio s was chosen from 0.1, 0.2, . . ., 0.9,
1, 2, . . ., 16. These values were determined based on the estimated
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parameters of real data. Specifically, two of eight cancer types from
The Cancer Genome Atlas (TCGA) data were randomly selected
and fitted into NB models. By repeating this procedure 10 times,
we observed that r was <15, and s was <16 for a large majority of
genes (�94.3%). After r1 of Group 1 and scale ratio s were chosen,
the corresponding r2 and v2 of Group 2 can be calculated as
follows:

r2 ¼
r1s

fold change
and

v2 ¼
v1s

1� v1 þ v1s
:

For each pair of r and s, the simulation was run for 100 times to
obtain the average power for different methods with the false
discovery rate (FDR) [9] controlled at 0.05.

Real data studies

Three data sets were involved in the real data analysis. The
prostate cancer data [10] were downloaded from the NCBI GEO
data base (GSE22260), which was obtained by sequencing the
transcriptome (polyAþ) of 20 prostate cancer tumor samples
and 10 matched normal tissues using the Illumina GAII plat-
form. The lung cancer data [11] were also downloaded from the
NCBI GEO database (GSE40419), which contains RNA-Seq data
for 87 lung adenocarcinomas and 77 adjacent normal tissues
with the Illumina HiSeq 2000 platform. Eight types of cancer
data were downloaded from TCGA [12], and the details can be
found in Supplementary Table S1.

In the analysis of the prostate cancer data, we started from
raw sequence reads. We performed read mapping through
Bowtie2 [13] and summarized the read counts. In the analysis of
the lung cancer data, we downloaded the RPKM (Reads Per
Kilobase of transcript per Million mapped reads) values and
then converted them to read counts based on the sequence
depth. For the TCGA data, eight cancer types including UCEC,
LUAD, READ, LUSC, KIRC, HNSC, COAD and BLCA were selected,
and gene-level read counts were directly downloaded from the
TCGA Web site (https://tcga-data.nci.nih.gov/tcga/).

Normalization

RNA-seq read count data were normalized before applying
ELTSeq. The normalizing factor for a given sample was calcu-
lated as the following. Let ��x be the mean read count across all
genes among all samples (including both populations). Let �xi be
the mean read count across all genes for sample i. Then, the
normalization factor for sample i is ci:

ci ¼
��x
.

�xi

Normalized read count for sample i was obtained by multiplying
ci. In this way, the total number of read counts for each sample
was normalized to the same value.

Software

The results presented in this article were obtained by using ELTSeq
(programmed in MATLAB version R2013b with the Optimization
Toolbox), as well as the R packages edgeR 3.2.4, DESeq 1.12.1.
These R packages were used with the default differential

expression pipelines as recommended in the software. ELTSeq
needs to optimize a convex function in a nonconvex space, which
is a nonconvex optimization problem. We apply the interior-point
algorithm implemented in the Optimization Toolbox of MATLAB
[14] to solve this problem. Similar to other rank-based nonpara-
metric models, when the minimum read count of a group is even
larger than the maximum read count of the other group, we lose
the detailed difference information. No solution exists for our
ELTSeq theoretically, and we rank these genes as the most signifi-
cant DE genes. But this scenario was rare in real data analysis. In
the analysis of the prostate cancer data, only 6 of 23 384 (0.0257%)
genes were such extreme cases with no solutions. In the analysis
of the TCGA tumor samples, we did 28 pairwise DE analyses. On
average, only 0.0788% of 20 532 genes were such extreme cases.
Our ELTSeq is available at http://www-rcf.usc.edu/~liangche/soft
ware.html.

Results

The classical ELT was first proposed by Owen [6, 15], which usu-
ally relies on the mean constraint. Our ELTSeq uses the fact that
large majority of genes show overdispersion in expression lev-
els quantified by RNA-seq and introduce another constraint on
the mean–variance relationship.

Simulation studies

To investigate the power of our ELTSeq model, we simulated
RNA-seq data according to NB distributions specified by the fit-
ting of real data sets from TCGA [12, 16–20]. As expected, NB dis-
tributions only fit around 70% of expressed genes (excluding
genes with a median of zero read count across samples) from
these cancer RNA-seq data (Supplementary Table S2). A NB dis-
tribution can be formed as a mixture of Poisson and gamma dis-
tributions. The mean parameter of the Poisson distribution
further follows a gamma distribution with the scale parameter
p/(1� p) and the shape parameter r [21]. In our simulations, p1

for Group 1 was randomly sampled from the estimates from the
real data. The shape parameter r1 was chosen between 1 and 15,
and the scale ratio s between the two samples was chosen from
0.1 to 16. The ranges of r1 and s were again determined by the
fitting of the TCGA data to NB distributions. The expression
ratio for non-DE genes was 1, and different values were tested
for DE genes. Once p1, r1, s and the expression ratio are set, the
p2 and r2 values can be set correspondingly. The detailed distri-
bution of the r1 and s estimates for the TCGA data can be found
in Figure 1A. The majority of genes exhibit an r1 value between
0 and 5, or an s value between 0.1 and 1. A similar distribution
of the r1 and s estimates was observed when we conducted the
same procedure to a prostate RNA-seq data set [10] (Figure 1B).

We simulated NB distributions with different shape and
scale ratio parameters chosen from the above ranges. For each
pair of parameters chosen, 10 samples of transcriptomes with
1000 genes as Group 1 were simulated in which 100 of those
genes were DE when compared with the other 10 simulated
samples of Group 2. The expression ratio of the DE genes was
fixed as 2 or 1.5. Average power of DE gene identification with
the FDR [9] of 0.05 was then obtained after 100 runs of simula-
tion. As shown in Figure 2A and C, ELTSeq shows a significantly
improved statistical power compared with other methods when
s was between 0.1 and 1. When s is >1, ELTSeq still performs
much better than others, especially where the majority genes
are distributed, i.e. r1 value between 0 and 5 (Figure 2B and D).
We should emphasize that the simulations were designed based
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on NB distributions, which favors edgeR and DESeq, as they
were built on the NB assumption. Our ELTSeq, however, still per-
forms better than them. More simulations with different expres-
sion ratios (Supplementary Figures S3 and S4) or with larger
sample sizes (Supplementary Figures S5–S6) still show that
ELTSeq is better than or comparable with other NB-based meth-
ods even when the data were simulated according to their NB
distribution assumptions. Similar conclusions can be drawn
when the false discovery proportion (FDP) or the type I error rate
is controlled (Supplementary Figure S7). As we mentioned, NB
distributions only fit around 70% of expressed genes. However,
the rest of genes are still overdispersed (Supplementary Table
S3). We further found that >90% of those unfitted genes are with
extreme outliers >3�inter-quartile range. To investigate the
performance of the different methods when read counts are not
NB distributed, we further simulated transcriptomes from NB
distributions with manually added extreme outliers. As we ex-
pect, when the NB assumption is violated and outliers are pre-
sent, ELTSeq establishes even larger advantages compared with
other methods (Supplementary Figure S8). The poor perform-
ance of edgeR and DESeq indicates that these parametric models
are not reliable when outliers are present and the NB assump-
tion does not hold. The benefits from the constraint on the
mean–variance relationship can be observed by the comparison
between our ELTSeq and the classic ELT (Figure 3). ELTSeq
shows a larger analysis power than ELT especially when the
between-group difference is subtle with small expression ratios.
One-sided Wilcoxon signed-rank tests were conducted to statis-
tically compare the power of ELTSeq with that of ELT, and the
advantage of ELTSeq is statistically significant especially for
subtle between-group differences (Supplementary Figure S9).
The above simulations were for the sample size of 10. We fur-
ther compared the power of ELTSeq and ELT for different sample
sizes when the differential signal is strong (i.e. expression
ratio ¼ 2) and the FDP or the type I error rate was controlled.
Again, the advantage of ELTSeq is statistically significant when

the sample size is small (i.e. 10) with a P-value of 3.63 � 10�18

(one-sided Wilcoxon signed-rank test, Supplementary Figure S10).
However, when the sample size is large (i.e. 50 or 100) and the dif-
ferential signal is strong (i.e. expression ratio ¼ 2), ELTSeq per-
forms similarly to ELT.

Real data analysis

Biomarker identification
Biomarkers’ identification is of great importance in cancer stud-
ies. Robust DE genes between patients and healthy controls can
serve as biomarkers for disease. The DE analysis of the prostate
cancer RNA-seq data [10] was conducted with ELTSeq, edgeR
and DESeq. Top 50 DE genes identified from each of the three
methods were used as biomarkers to perform the sample clus-
tering, respectively. The clustering accuracy rate calculated
from the K-means (K ¼ 2) clustering was 0.83 for ELTSeq, 0.53
for edgeR and 0.63 for DESeq. By using top 50 DE genes identified
by ELTSeq, all normal samples except two are clustered to-
gether, and the two groups can be almost perfectly classified
through the hierarchical clustering (Figure 4A), while the per-
formance of edgeR and DESeq is much worse. Besides the hier-
archical clustering, the random forest algorithm [22] was also
carried out to perform the classification. The top 50 DE genes
identified by ELTSeq establishes the smallest out-of-bag errors
compared with those from edgeR and DESeq (Figure 4B), which
again suggests that the DE genes identified by our ELTSeq can
be efficient biomarkers of cancers. Similar conclusions were
achieved when analyses were carried out with top 100 DE genes
(Supplementary Figure S11) or with DE genes under the FDR
control of 0.01 (Supplementary Figure S12). Comparison be-
tween ELTSeq and ELT also shows the advantages of ELTSeq in
real data analysis (Supplementary Figure S13). Similarly, we per-
formed the DE analysis to identify biomarkers of cancers in
TCGA [12]. We used 50% of normal and tumor samples as the
training set to identify DE genes. The remaining 50% of both

Figure 1. Distribution of parameters r and s estimates from real data. (A) Comparison between two cancer types from the TCGA data. (B) Comparison between the pros-

tate tumor and normal tissues.
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groups of samples were used as the testing set to investigate
how well these DE genes can serve as biomarkers for the can-
cers. A total of six different cancers with both tumor and normal
RNA-seq data were analyzed. For each comparison, top 100 DE
genes were obtained. They were used as features to perform the
K-means (K ¼ 2) clustering in the testing set to distinguish
tumor and normal samples. The classification accuracy was
acquired for different methods, and ELTSeq shows the highest
accuracy in four of six clustering results (Figure 4C).

Disease classification
Similarly, we performed the DE analysis to distinguish different
cancer types. Eight different types of tumor RNA-seq data from
TCGA were analyzed, which resulted in 28 pairwise compari-
sons among these different tumors (only tumor samples were
used). For each pairwise comparison, top 20 DE genes were

obtained. The union of all these top genes was used as features
to cluster the samples of the eight tumor types in the testing
set. Silhouette plots (Figure 5A) were generated based on the re-
sults of the K-means clustering (K¼8). The silhouette value is a
measure of how similar a point is to points in its own cluster,
when compared with points in other clusters. Negative silhou-
ette values mean this point may not be correctly clustered. The
cluster results of ELTSeq show less number of negative silhou-
ette values compared with edgeR and DESeq, which suggests
that these different cancer types can be well classified by the
top DE genes identified by ELTSeq. Additionally, we calculated
the average silhouette values for the three methods. The aver-
age silhouette value for ELTSeq is 0.1639, while 0.1223 for edgeR
and 0.1432 for DESeq. All these prove that the cluster strength
of ELTSeq is the highest of the three methods studied. We fur-
ther calculated the principal components of samples in the

Figure 2. Average power for different methods in simulations. (A) The expression ratio is 2 and the scale ratio s is between 0.1 and 1. (B) The expression ratio is 2 and s

is between 1 and 16. (C) The expression ratio is 1.5 and s is between 0.1 and 1. (D) The expression ratio is 1.5 and s is between 1 and 16. For each pair of chosen param-

eters, simulation was run for 100 times to obtain the average power of true DE gene identification with a FDR of 0.05. The parameter p1 for Group 1 was randomly

sampled from real data estimates.
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testing set only using the union of top 20 DE genes. The tumor
samples in the testing set can be better separated using the first
two principal components generated by DE genes identified
from ELTSeq, compared with edgeR and DESeq (Figure 5B). Even
more, the results of ELTSeq are more consistent with a previous
study, which classifies different cancer types in TCGA through
integrative analysis of multiple types of genomics and

proteomics data [23]. For example, UCEC samples formed their
own cluster and were distinct from other cancer types. LUSC
and HNSC samples were clustered together but were in a differ-
ent cluster from most LUAD samples. Our ELTSeq obtained
similar results, although only RNA-seq data were analyzed
here. We also used top 20 DE genes identified in each pairwise
comparison as features to cluster the corresponding two cancer

Figure 3. Power differences between ELTSeq and ELT. Z axis plots the power difference with a FDR of 0.05. It is always nonnegative, suggesting that ELTSeq is better

than the classic ELT under all circumstances when the sample size is 10.

Figure 4. Performance of different methods for biomarker identification. (A) Dendrogram of the prostate tumor and normal tissue samples clustered by top 50 DE genes

identified by ELTSeq, edgeR and DEseq, respectively. (B) Out-of-bag classification errors when running the random forest algorithm by growing 50 trees using top 50 DE

genes of the prostate cancer data as features. (C) Clustering accuracy rate of the K-means (K¼2) clustering for tumor and normal tissue samples in the testing set. Top

100 DE genes identified by each method were used as features, respectively. The classification accuracy rate is defined as the number of correctly classified samples

divided by the total number of samples.
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samples in the testing set with the K-means (K ¼2) clustering.
The overall classification accuracy rate was obtained for each
DE analysis (Figure 5C). ELTSeq achieved the highest accuracy
rates in 21 of 28 pairwise comparisons. Similar results were ob-
tained when we used top 50 DE genes (Supplementary Figure
S14). We therefore concluded that ELTSeq can greatly facilitate
the disease classification through the accurate DE gene
identification.

Reproducibility of DE gene identification
To show that ELTSeq can provide robust DE gene identification
by taking individual heterogeneity into account, we designed
a resampling analysis. The DE analysis of a lung cancer data
set [11] was performed with ELTSeq, edgeR and DESeq. We
applied a P-value threshold of 0.05 to declare significant DE
genes. Then, we took bootstrap samples from the 87 tumor
and 77 normal samples, respectively, by sampling with
replacement, and the sample sizes for both groups were kept
the same. The same DE analysis was performed for the boot-
strap samples. We investigated the percentage of overlapping
significant DE genes with the original result. This resampling
process was conducted for 50 times, and overlapping percent-
ages were obtained for every run. Boxplots of the overlapping
percentages (i.e. reproducibility) were plotted for each method
(Figure 6). ELTSeq clearly shows higher overlapping per-
centages compared with edgeR and DESeq. Similar results
were obtained with the P-value cutoff equal to 0.005 or the FDR
cutoff equal to 0.05 (Supplementary Figures S15 and S16).
Thus, the reproducibility of DE gene identification is much
improved because of the fact that ELTSeq can handle sample
heterogeneity well.

Discussion

Here, we proposed an ELT, which is robust to individual hetero-
geneity for DE analysis of RNA-seq. Heterogeneity (because of
sample contamination, individual variation and so on) has been
observed in various cancer types, and the widespread existence
of outliers in gene expression further confirms the severity of
this issue (Supplementary Figures S1 and S2). For DE analysis of
RNA-seq, most analysis tools focus on the overdispersion across
samples, while the presence of individual heterogeneity is more

Figure 5. Performance of different methods for tumor classification. (A) Silhouette plots based on the results of the K-means clustering (K¼8 for eight tumor types).

The union of top 20 DE genes across all 28 pairwise comparisons was used as features to cluster the samples in the testing set. (B) Scatter plots of eight different types

of tumor samples in the testing set using the first two principal components calculated with the union of top 20 DE genes. (C) Boxplot of pairwise classification accuracy

rate of the K-means (K¼2) clustering using top 20 DE genes identified by each method.

Figure 6. Robustness of biomarker identification. For the analysis of the lung

cancer data set, DE gene overlapping percentages between 50 runs of bootstrap

sampling and the original data were calculated and plotted as boxplots for each

method. The overlapping percentage was calculated as the ratio between the

sizes of intersection and union sets of DE genes identified from the original data

and the bootstrap data.
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difficult to handle. Our ELTSeq takes both problems into ac-
count and demonstrates its advantage in simulations and real
data analysis.

The ELT method combines the reliability of nonparametric
methods and the effectiveness of the likelihood approach [24].
Confidence regions generated by ELT models are usually better
than confidence regions based on the asymptotic normality
when the sample size is small [24]. Our consideration of the
‘variance larger than mean’ constraint was specifically designed
to the characteristics of RNA-seq data and benefits the DE ana-
lysis of RNA-seq. By taking both individual heterogeneity and
overdispersion into account, ELTSeq further improves the DE
analysis of RNA-seq data by providing more robust statistics.
Our simulation results show the advantages of ELTSeq over ELT
when the differential signal is weak or the sample size is small
(Figure 3, Supplementary Figures S9 and S10). We observed that
sometimes the variance constraint is satisfied automatically
during the numerical calculation without additional proced-
ures, which may explain the similar performance between
ELTSeq and ELT when the differential signal is strong or the
sample size is large.

Besides the overdispersion of read counts across different re-
gions of the same gene [25], the overdispersion of gene-level
read counts is also observed across samples. The NB model has
been widely used in RNA-seq data analysis to handle the over-
dispersion [26]. Although for many genes, the read count can be
fitted into NB models, tests built on NB models are still impre-
cise because the parameter estimators are not accurate enough
especially when the sample size is small [27, 28]. Both edgeR
and DESeq used special techniques to improve the parameter
estimation by pooling genes. Specifically, in edgeR, an empirical
Bayes procedure was used to shrink the dispersions toward a
consensus value [5]. In DESeq, the variance was assumed to be a
smooth function of the mean and it allows the pooling of genes
with similar expression for parameter estimation [4]. However,
the improvement of parameter estimation is still limited, and
the overall performance of edgeR and DEseq is generally worse
than our ELTSeq, even though our simulation based on NB mod-
els benefits edgeR and DEseq.

The real RNA-seq data analysis further demonstrates that
our ELTSeq can provide robust and reliable biomarkers for
cancers. In our real data analysis, we ignored the pairing in-
formation for some of the individuals with matched tumor and
normal samples to fully use all available samples. The pairing
violates the independence assumption. However, its effect on
the P-values for these two specific data sets is negligible
(Supplementary Figures S17 and S18). On the other hand, we
must admit that the negligible effect could be case specific,
and the violation may cause biased results for other data sets.
More advanced methods are expected in the future to con-
sider the partially paired data design. The identified disease
genes provide starting points for developing risk-modifying or
disease-modifying therapeutic interventions for cancers or
other complex disease.

Key Points

• Heterogeneity (because of sample contamination, in-
dividual variation and so on) has been observed in
various cancer types, and the widespread existence of
outliers in gene expression further confirms the sever-
ity of this issue.

• For the DE analysis of RNA-seq, most analysis tools

model the overdispersion across samples based on NB
distributions. However, the NB distributions cannot
well capture the individual heterogeneity in cancers.

• We propose ELTSeq which can take both overdisper-
sion and heterogeneity into account. It is distribution
free and enjoys the analysis convenience of likelihood
ratio tests. Simulations show that ELTSeq is even bet-
ter than NB-based methods when the reads were
simulated from NB distributions.

• The real RNA-seq data analysis further demonstrates
that ELTSeq can provide robust and reliable biomarkers
for cancers. The identified disease genes provide start-
ing points for developing risk-modifying or disease-
modifying therapeutic interventions for cancers or
other complex disease.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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