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Abstract

Cerebrovascular dysfunction is detected prior to the onset of cognitive and histopathological 

changes in Alzheimer’s disease (AD). Increasing evidence points out to a critical role of 

cerebrovascular dysfunction in the initiation and progression of AD. Recent studies identified the 

mechanistic/mammalian target of rapamycin (mTOR) as a critical effector of cerebrovascular 

dysfunction in AD. mTOR has a key role in the regulation of metabolism, but some mTOR-

dependent mechanisms are uniquely specific to the regulation of cerebrovascular function. These 

include the regulation of cerebral blood flow, blood-brain barrier integrity and maintenance, 

neurovascular coupling, and cerebrovascular reactivity. This article examines the available 

evidence for a role of mTOR-driven cerebrovascular dysfunction in the pathogenesis of AD and of 

vascular cognitive impairment and dementia (VCID), and highlights the therapeutic potential of 

targeting mTOR and/or specific downstream effectors for vasculoprotection in AD, VCID, and 

other age-associated neurological diseases with cerebrovascular etiology.
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Introduction

Alzheimer’s Disease (AD) and vascular cognitive impairment and dementia (VCID) are the 

leading causes of dementia among the elderly, with AD and VCID amounting to 

approximately 60% and 20% of all dementia cases respectively. While specific lesions and 

histopathological hallmarks define AD and VCID, and relatively ‘pure’ cases of AD and 

VCID can be identified in the clinic, the presentation of most AD and VCID cases is 

heterogeneous, and thus diagnosis can present a challenge. This is because symptoms, risk 

factors and etiologies of AD and VCID are partially overlapping and coexist in the majority 
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of cases. Not surprisingly, pathologies common to both types of dementia are 

cerebrovascular in nature [1].

Brain vascular dysfunction is also involved in the etiology of related dementias including 

Lewy body dementia (LBD) and Parkinson’s disease (PD). Indeed, cerebrovascular 

dysfunction is one of the earliest events in these dementias, best exemplified by diminished 

cerebral blood flow (CBF) [2, 3]. A recent study incorporating large data sets from the AD 

Neuroimaging Initiative (ADNI) suggested that vascular dysfunction indicated by decreased 

CBF may be the first abnormal biomarker in AD progression, as well as the one that shows 

the largest magnitude of change [4].

A significant barrier to effective treatments for AD, which are currently unavailable, is that 

we still do not sufficiently understand the mechanisms that drive its onset and progression. 

While the neuronal contributions to AD pathogenesis have been extensively studied, 

cerebrovascular mechanisms of AD, which show substantial overlap with those of VCID, are 

only partially understood. Prominent cerebrovascular changes in AD include chronic 

hypoperfusion [4], increased blood brain barrier (BBB) permeability [5], impaired 

neurovascular coupling [6], and diminished cerebrovascular reactivity [7].

The mammalian/mechanistic target of rapamycin (mTOR) may be a critical effector of 

cerebrovascular dysfunction in AD and potentially other dementias [8–10]. mTOR is a major 

signaling hub that integrates nutrient/growth factor availability with cellular metabolism. 

mTOR also regulates the rate of aging across phyla, including invertebrates and mammals 

[11]. Rapamycin, an mTOR inhibitor, is the first drug that has been experimentally proven to 

slow down the rate of aging in mice [12]. Work from our lab [8, 10, 13, 14] and others [15] 

has identified mTOR as a major regulator of cerebrovascular damage and dysfunction in 

AD. While mTOR has a critical role in regulation of cellular metabolism through actions at 

multiple signaling pathways, some mTOR-dependent mechanisms are uniquely specific to 

regulation of cerebrovascular function. These include the control of CBF, BBB integrity and 

maintenance, neurovascular coupling, and cerebrovascular reactivity. This review will 

discuss the role of mTOR in the control of cerebrovascular function with a specific emphasis 

on dysregulation in AD and VCID.

mTOR and CBF deficits in AD and other dementias

Chronic cerebral hypoperfusion, as evidenced by dysfunctional and/or reduced CBF, occurs 

prior to cognitive impairments, brain atrophy, amyloid β (Aβ) accumulation, and a clinical 

diagnosis of AD [4]. Experimental evidence suggests that cerebral hypoperfusion produces 

cognitive impairments, synaptic alterations, and Aβ oligomerization [16]. Further, primary 

vascular deficits lead to Aβ accumulation and tau hyperphosphorylation [17]. Therefore, it 

has been proposed that brain microvascular dysfunction and loss of cerebrovascular density 

may trigger the imbalance in the levels of hyperphosphorylated tau and fibrillar Aβ observed 

in AD, both of which are associated with a further disruption of cerebrovascular function. 

This concept has been formulated as the “two-hit” hypothesis of AD [5].
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Underlying the CBF reductions observed in AD are decreases in regional and global 

vascular density [18]. mTOR drives cerebromicrovascular density loss, leading to profound 

CBF deficits, by decreasing microvascular nitric oxide (NO) bioavailability in brains of mice 

modeling AD [8] through inhibition of nitric oxide synthase (NOS) activity. Indeed, mTOR 

attenuation induces endothelium-dependent cortical vasodilation via NO release [8]. In 

agreement with this notion, prior in vitro studies showed that mTOR inhibits endothelial 

NOS (eNOS) phosphorylation and activation and NO-dependent arterial vasodilation [19]. 

Moreover, a link between the inhibition of mTOR and the activation of eNOS had been 

suggested by studies showing that Akt, which phosphorylates eNOS and increases NO 

production, can be activated by rapamycin treatment [20] and conversely, that activation of 

mTOR results in Akt inhibition [20].

Amyloid-β, causally implicated in AD, is generated in brain by cleavage of the amyloid 

precursor protein (APP) in association with neuronal activation [21]. Aβ is released at 

synaptic sites into the interstitial fluid [21]. Several physiological mechanisms act to prevent 

Aβ accumulation, but the largest contributor is transvascular Aβ clearance, as over 85% of 

Aβ is continuously cleared out of the brain through the BBB [5]. As expected, disrupted 

transvascular Aβ clearance leads to accumulation of Aβ in the brain, causing AD-like 

pathophysiological changes [22].

Consistent with a critical role of microvascular integrity and function in Aβ removal from 

brain, systemic mTOR inhibition reduces Aβ levels in brain and improves cognitive function 

in mouse models of AD [14], even after the onset of AD-like deficits [8]. In these AD 

models, mTOR promotes the accumulation of Aβ in brain by inhibiting autophagy [14, 15], 

and by decreasing Aβ clearance as a result of decreased vascular density and subsequent 

reduced CBF [8]. The preservation of vascular density and function that is observed as a 

result of mTOR attenuation in AD models may be sufficient to decrease brain Aβ and 

improve cognitive outcomes in AD and VCID, because physical exercise, which restores 

adequate brain perfusion, reduces both Aβ deposition and tau phosphorylation [23] in 

models of AD and other tauopathies. Thus, these studies support the notion that 

hypoperfusion has a critical and potentially initiating role in the etiology of AD.

In agreement with a central role of mTOR-driven loss of cerebrovascular integrity and 

decreased cerebral perfusion in the etiology of neurological diseases of aging beyond AD, 

studies from our laboratory have shown that mTOR is involved in brain vascular 

disintegration and subsequent CBF deficits and cognitive impairment in low-density 

lipoprotein receptor knockout (LDLR−/−) mice, a well-established model of atherosclerosis 

that recapitulates the vascular dysfunction of VCID [9].

mTOR and BBB breakdown in AD and other dementias

The BBB is formed by a monolayer of vascular endothelial cells that line the brain 

microvasculature and dynamically regulate the exchange of molecules between the 

peripheral circulation and the central nervous system. A critical function of BBB is to 

restrict the entry of plasma components into the brain. Clinical and experimental studies 

indicate that BBB breakdown is one of the earliest events in the pathogenesis of AD [5]. 
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Further, recent studies suggest that BBB breakdown may underlie early cognitive changes in 

mild-cognitive impairment (MCI), as evidenced by increased BBB permeability in patients 

with MCI compared to age-matched controls [24].

The BBB is maintained by intercellular tight junctions that reduce the permeability of the 

brain endothelium [5]. Aβ induces changes in tight junction protein expression, resulting in 

BBB disruption [25]. Additionally, vascular Aβ accumulation is associated with 

degeneration of cellular components of the vasculature, including endothelial cells, smooth 

muscle cells and pericytes [26]. Although cerebral microvascular accumulation of misfolded 

forms of tau in AD and other tauopathies has been documented [27, 28], how the 

accumulation of misfolded tau in cerebromicrovasculature contributes to cerebrovascular 

dysfunction in AD is currently unknown. Some studies have suggested, however, that 

vascular tau accumulation may contribute to BBB breakdown in AD and in other tauopathies 

[29], suggesting that both Aβ and pathogenic forms of tau contribute to BBB disintegration 

in AD.

mTOR attenuation reduced or prevented BBB breakdown in several models of age-

associated neurological disorders, suggesting a broad role of mTOR in BBB dysfunction in 

age-related brain disease states. mTOR inhibition with rapamycin attenuated BBB 

breakdown in rat models of cerebral ischemia-reperfusion injury [30, 31], subarachnoid 

hemorrhage [32], and pharmacologically-induced status epilepticus during the chronic phase 

[33]. These studies point out to a key role of mTOR in BBB breakdown in several different 

models of age-associated neurological disease. The exact mechanisms by which mTOR 

promotes BBB breakdown, however, have not yet been sufficiently studied. Evidence exists 

that mTOR inhibition with rapamycin maintains adequate levels of tight junction protein 

expression in cultured cells [31]. Additionally, recent work using in vivo models suggests 

that BBB breakdown may follow an mTOR-dependent increase in matrix metalloproteinase 

9 activity [30], which is involved in the degradation of the extracellular matrix and has been 

associated with various pathological processes, including cerebral hemorrhage and BBB 

disruption in AD [25]. These studies provide support for the notion that mTOR activity may 

have a critical role in BBB breakdown in age-associated neurological disorders, including 

prominently AD and VCI. Despite the abrogation of BBB breakdown, however, attenuation 

of mTOR activity increased cortical infarct volume in an ischemia-reperfusion model [34], 

suggesting that mTOR activation may be necessary for neuronal survival after cerebral 

ischemia and reperfusion. A potential use of mTOR inhibitors preventively for stroke, or in 

individuals affected by diseases associated with a high risk of cerebral ischemia [34], like 

diabetes, might thus be limited. Because of the urgent need for interventions to slow down or 

block the progression of AD and other dementias, and the potential for the use of mTOR 

inhibitors in aged individuals without major undesirable side effects [35], there is a pressing 

need for additional research to precisely define the mechanisms of mTOR-dependent BBB 

disintegration, and to precisely determine the functional and cognitive consequences of BBB 

restoration by mTOR inhibition in models of various neurological disorders. BBB 

breakdown may be one of the earliest events in AD progression [24]. Thus, understanding 

the mechanisms by which mTOR regulates BBB integrity may be important to devise early 
interventions to delay or block the development of AD.
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mTOR and neurovascular uncoupling in AD

Rapid increases in blood flow to areas of the brain with high neuronal activity are required 

to maintain cellular homeostasis and function. This is accomplished through neurovascular 

coupling, a homeostatic response mediated by complex intercellular signaling events 

involving neurons, astrocytes, vascular smooth muscle cells and endothelial cells [36]. 

Significant neurovascular coupling deficits are observed in patients with AD [6], and these 

deficits are recapitulated in several different mouse models of AD [37, 38]. NO production 

via activation of the neuronal form of nitric oxide synthase (nNOS) contributes significantly 

to the neurovascular coupling response by inducing local vasodilation in response to 

neuronal activation [6]. Dysfunctional neurovascular coupling in mouse models has been 

reported to occur both from reduced neuronal NO production [39] as well as from a 

diminished CBF response to otherwise unimpaired NO signaling [38]. Thus, differences in 

timing or in levels of Aβ accumulation or the concomitant expression of human tau forms in 

different mouse models may impact neurovascular coupling and lead to cerebrovascular 

dysfunction through different mechanisms. Further studies are needed to better define the 

mechanisms underlying neurovascular coupling impairment in AD.

Because mTOR is a key driver of cerebrovascular damage and disintegration in several 

mouse models of AD [8, 10] and in a model of VCI [9], it is reasonable to hypothesize that 

mTOR contributes, at least indirectly, to neurovascular coupling deficits in these models. 

Very little is known at present, however, about the role of mTOR in the regulation of 

neurovascular coupling. Interestingly, some of the mechanisms that underlie neurovascular 

uncoupling, including oxidative stress [40] arising from increased NADPH-derived reactive 

oxygen species (ROS) production [41], are regulated by mTOR. Specifically, mTOR drives 

the increase in ROS observed after ischemic injury in rat brain [31]. Furthermore, ROS itself 

activates the Akt/mTOR pathway in brain [42], suggesting a feedforward mechanism 

involving mTOR and ROS production that leads to neurovascular uncoupling and 

cerebrovascular dysfunction. Indeed, a recent unbiased quantitative mass spectrometry-based 

proteomic study showed that proteomic alterations in hippocampus involving myelination, 

dendrite homeostasis and oxidative stress were associated with the upregulation of ribosomal 

proteins and mTOR in animals heterozygous for a null allele of tuberous sclerosis complex 1 

(Tsc1+/− mice) [43], a negative regulator of mTOR. These studies further showed that the 

observed proteomic changes were a direct consequence of increased mTOR activity since 

treatment of Tsc1+/− mice with rapamycin was sufficient to normalize levels of proteins 

related to oxidative stress, myelin homeostasis, and protein synthesis that were altered in 

control-treated Tsc1+/− mice. These data strongly support a direct role of mTOR in the 

regulation of oxidative stress in hippocampus, as well as in the regulation myelin 

homeostasis in brain, the latter having been well-established through the regulation of 

oligodendrocyte maturation.

mTOR and cerebrovascular reactivity in AD

Vasomotor reactivity, or the ability of vessels to dilate and constrict in response to 

physiologic or pharmacological stimuli, is mediated by coordinated responses of vascular 

endothelium and smooth muscle cells. Endothelium-depedent vasomotor reactivity is 
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decreased in patients with AD and VCID [7], and smooth muscle cells degenerate in AD 

[44]. Most studies addressing mechanisms of vascular smooth muscle dysfunction in AD 

have used a mouse model of AD (Tg2576) that expresses the Swedish familial AD mutated-

form of APP (APPSwe). Tg2576 mice develop extensive vascular lesions recapitulating 

cerebral amyloid angiopathy (CAA), the accumulation of fibrillar Aβ within the 

cerebrovasculature. CAA is highly prevalent in AD, but can also accumulate to a lesser 

extent during normal aging, and is associated with brain microhemorrhages. Tg2576 mice 

recapitulate the age-dependent increase in vascular fibrillar Aβ burden that is associated 

with altered vascular smooth muscle cell morphology, and the loss of vascular smooth 

muscle cells in vascular segments with high Aβ load [45]. CAA-like lesions in Tg2576 mice 

decrease smooth muscle cell-dependent responses necessary for relaxation and subsequent 

vasodilation in response to NO. These deficits are detectable prior to overt loss of vascular 

smooth muscle in Tg2576 mice [45]. Studies in the Swedish-Arctic APP transgenic 

(APPSweArc) mouse model of AD, however, did not reveal deficits in the smooth muscle-

dependent component of vasoreactivity, but found significant decreases in NO 

bioavailability that accounted for the overall deficit in vascular reactivity documented in this 

model [46]. These data suggest that Aβ negatively impacts several functions of different 

microvascular cell compartments, and that specific functional consequences of Aβ exposure 

are related to differences in timing of Aβ expression and accumulation, as well as its specific 

localization in different transgenic mouse models of AD.

AD and VCID are characterized by an insensitivity to endothelium-dependent vasodilation, 

and these deficits are causally linked to decreased vascular reactivity in AD. The 

endothelium-dependent component of brain microvascular dilation depends on the synthesis 

of NO by eNOS within brain microvascular endothelial cells. In agreement with a critical 

role of brain vascular endothelial dysfunction in the cerebrovascular deficits of AD, changes 

in eNOS activity have been linked to AD pathology. Accumulation of both Aβ and 

neurofibrillary tangles are associated with reduced eNOS expression in the brain capillaries 

of human patients with AD, and with endothelial cell apoptosis [47]. Loss of eNOS activity 

can in turn promote tau phosphorylation in a mouse model of AD [48], suggesting that the 

accumulation of AD pathology and the dysregulation of eNOS may be linked in a 

feedforward loop. The mTOR inhibitor rapamycin induces eNOS phosphorylation, restores 

endothelium-dependent vasodilation, and produces NOS-dependent restoration of baseline 

CBF [8].

In agreement with a central role of cerebrovascular dysfunction in the early stages of AD 

progression, young adult carriers of the ApoE4 allele show reduced cerebrovascular 

reactivity before developing detectable cognitive impairments [49]. Interestingly, mTOR 

attenuation is sufficient to preserve cerebrovascular integrity and function in ApoE4 

transgenic mice [10], suggesting that mTOR is a critical driver of early cerebrovascular 

dysfunction in a model of sporadic AD associated with ApoE4 carrier status. Because 

mTOR activity reduces NOS-dependent cerebromicrovascular NO bioavailability, mTOR 

inhibitors may be efficacious for the preservation of cerebrovascular function as an early 

treatment and intervention in AD.
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Intriguing recent studies (reviewed in [50]) have suggested that overactivation of the renin-

angiotensin system may underlie cerebrovascular dysfunction in AD. Angiotensin-II (Ang-

II) and Ang-III levels are higher in AD patients compared to age-matched control subjects, 

and Ang-III is strongly associated with both Aβ and phosphorylated tau pathology [51]. In 

agreement with an important role of the renin-angiotensin axis in AD pathogenesis, it has 

been reported that centrally acting angiotensin-converting enzyme inhibitors temporarily 

delay progression of AD cognitive deficits [52], and recent studies in mouse models of AD 

showed that beneficial effects of the angiotensin receptor blocker losartan in reduced onset 

and progression of AD may be related to its selective blockage of the angiotensin IV 

receptor [53]. Furthermore, overactivation of Ang-II has been shown to contribute to 

cerebrovascular pathogenesis in stroke through vasoconstriction, activation of pro-

inflammatory factors, and increased oxidative stress in the parenchyma [54]. Ang-II strongly 

activates mTOR, and blockade of its receptor, the angiotensin type I receptor, reduces 

activity of the mTOR pathway [55], which can ameliorate cerebral microcirculatory changes 

to improve brain perfusion [56]. Additionally it was shown that mTOR inhibition with 

rapamycin prevented in vitro aortic endothelial cell dysfunction induced by Ang-II, 

including preservation of eNOS phosphorylation, NO production, and vasodilation [57]. 

Taken together, these data suggest that improvements in cerebrovascular function from 

therapeutic interventions targeting the renin-angiotensin system in AD may at least partially 

result from the direct inhibition or downregulation of mTOR activity.

Conclusions and Perspectives

Recent studies highlight the role of cerebrovascular dysfunction in the pathogenesis of AD 

and VCID. Given that cerebrovascular dysfunction can be detected prior to the onset of 

cognitive impairments, presentation of AD-associated pathologies, and a diagnosis of AD 

[4], there has been recent interest in exploring the potential of CBF deficits as a non-invasive 

biomarker for risk of AD development, as well as a target for intervention early in the 

pathogenesis of AD. Our laboratory and others have identified the mTOR pathway as a 

potential target for brain vasculoprotection in AD and VCID [8–10, 14]. Since mTOR-

dependent cerebrovascular dysfunction is not limited to AD models, the mTOR pathway 

may be a suitable target for early intervention in several different disorders beyond AD that 

have cerebrovascular dysfunction as a common etiology.

Adverse effects of rapalogs at doses used in oncology or organ transplantation may be of 

concern [58]. Thus it is crucial that the mechanisms of rapamycin- and rapalog-induced 

neuroprotection and vasculoprotection are elucidated to enable the design of better 

strategies, such as the use of existing drugs, or development of new ones, that target key 

effectors of rapamycin-induced neuroprotection and/or vasculoprotection while avoiding 

potential undesirable side effects. However, a relatively recent study showed that a 6-week 

course of rapamycin enhanced the response to the influenza vaccine by about 20% in elderly 

volunteers over 65 years of age, without significant adverse events [35]. These findings 

underscore the need for additional exploratory proof-of-concept studies in the elderly, which 

would be the target population for interventions aimed at blocking or delaying AD 

progression early during development of the disease. Since mTOR inhibitors are available 

clinically, translational studies of dementias with cerebrovascular dysfunction could follow 
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quickly. As these studies are performed, rapamycin- or rapalog-based therapies to treat AD 

can be designed that take advantage of strategies such as intermittent administration, as well 

as personalized dosage and frequency of treatment.
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