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Abstract

Purpose—Golden-angle RAdial Sparse Parallel (GRASP) MRI reconstruction requires gridding 

and re-gridding to transform data between radial and Cartesian k-space. These operations are 

repeatedly performed in each iteration, which makes the reconstruction computationally 

demanding. This work aimed to accelerate GRASP reconstruction using self-calibrating GRAPPA 

operator gridding (GROG) and to validate its performance in clinical imaging.

Methods—GROG is an alternative gridding approach based on parallel imaging, where k-space 

data acquired on a non-Cartesian grid are shifted onto a Cartesian k-space grid using information 

from multi-coil arrays. For iterative non-Cartesian image reconstruction, GROG is performed only 

once as a pre-processing step. Therefore, the subsequent iterative reconstruction can be performed 

directly in Cartesian space, which significantly reduces computational burden. Here, a framework 

combining GROG with GRASP (GROG-GRASP) is first optimized and then compared with 

standard GRASP reconstruction in twenty-two prostate patients.

Results—GROG-GRASP achieved ~4.2-fold reduction in reconstruction time compared to 

GRASP (~333 minutes v.s. ~78 minutes) while maintaining image quality (SSIM≈0.97 and 

RMSE≈0.007). Visual image quality assessment by two experienced radiologists did not show 

significant differences between the two reconstruction schemes. With a GPU implementation, 

image reconstruction time can be further reduced to ~14 minutes.

Conclusion—GRASP reconstruction can be substantially accelerated using GROG. This 

framework is promising towards broader clinical application of GRASP and other iterative non-

Cartesian reconstruction methods.
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Introduction

Interest in the use of radial sampling for clinical MRI has been rapidly increasing during the 

past few years. It has been applied for many clinical studies (1) including cardiac (2–7), 

abdominal (8–12), breast (13–15), and neuro (16–18) imaging. Radial trajectories exhibit 

inherently incoherent undersampling behavior, which makes this sampling strategy an 

attractive acquisition scheme for the application of sparsity-based reconstruction methods 

(19–22). Compared to conventional Cartesian sampling, radial sampling has lower 

sensitivity to motion (23) and enables continuous data acquisitions when a golden-angle 

reordering scheme is used (24). These features are attractive for many dynamic post-contrast 

imaging applications.

Golden-angle RAdial Sparse Parallel (GRASP) MRI (21) is a framework that combines 

multi-coil compressed sensing reconstruction with golden-angle radial sampling and has 

been successfully applied for different clinical applications (25). However, one of the major 

barriers that limits broader applicability of GRASP as well as many other iterative non-

Cartesian reconstruction methods in clinical routine is the long reconstruction time. This is 

mainly attributed to a) the iterative nature of compressed sensing and b) an additionally 

required step to interpolate the k-space from a non-Cartesian grid onto a Cartesian grid prior 

to the fast Fourier transform (FFT). Such an interpolation process is known as gridding and 

is usually implemented via convolution of the non-Cartesian k-space with a predefined 

kernel. This gridding step, together with a re-gridding step that transforms data back to non-

Cartesian k-space, are repeatedly performed for each iteration in GRASP. This adds 

increasing burden to the reconstruction that is already computationally expensive.

Several methods can enable iterative non-Cartesian reconstruction without performing 

gridding/regridding during iterations, thus reducing image reconstruction burden. For 

example, non-Cartesian data can be simply interpolated onto a Cartesian grid in a pre-

processing step prior to the iterative process (20). Alternatively, the Toeplitz-structure of the 

forward and backward encoding operators (i.e., EHE) can be exploited, which allows 

replacing the gridding steps by a simple multiplication with the FFT of the pre-calculated 

point-spread function of the sampling process (26–28). GeneRalized autocalibrating 

partially parallel acquisitions Operator Gridding (GROG) (29) is another promising 

technique to speed up iterative non-Cartesian image reconstruction. GROG shifts non-

Cartesian k-space data onto a Cartesian grid using parallel imaging in a one-to-one mapping 

process. Therefore, the synthesized k-space can be treated as a dataset of Cartesian samples, 

enabling reduction of reconstruction time by performing the subsequent iterative process 

directly in Cartesian space.

The feasibility of combining GROG with iterative non-Cartesian image reconstruction has 

been investigated in several studies. For example, it has been applied to non-Cartesian MR 

parameter mapping (30), real-time mouse imaging (31), dynamic-contrast-enhanced (DCE) 
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MRI (32,33), and cardiac perfusion imaging (34). These results showed that GROG enables 

remarkable reduction of reconstruction time without sacrificing image quality or temporal 

fidelity. However, the approach has never been systematically evaluated in a clinical setting. 

In this work, we aimed to i) extend the GRASP approach by incorporating GROG, ii) further 

optimize this framework for improved reconstruction performance, and iii) evaluate the 

performance of this approach in clinical patient scans.

Methods

GROG-GRASP: Extending GRASP with Self-Calibrating GROG

Density Compensation Filter in GROG—Conventional non-Cartesian image 

reconstruction begins with a step for sampling density compensation, followed by 

convolution gridding, inverse FFT (iFFT), and deapodization to generate the final image. In 

radial imaging, a Ram-Lak filter, which is referred to as rDCF hereafter, is often used for 

density compensation. In contrast, a GROG reconstruction first shifts all radial k-space 

points onto a Cartesian grid, resulting in a Cartesian k-space where data are distributed in a 

pseudo-radial pattern (see Figure S1 in supplementary materials). The GROG process is 

performed as

S(kx + δx, ky + δy) = Gx
δxGy

δyS(kx, ky) [1]

where each radial k-space point at location [kx,ky] is shifted to its nearest Cartesian position 

at [kx+δx,ky+δy] by a distance of δx and δy in kx and ky direction, respectively. Gx and Gy 

represent weights used for the shifting, which can be pre-calculated using acquired radial k-

space data (35). Before applying the iFFT, the sampling density is compensated by dividing 

the estimated Cartesian k-space by the GROG Density, which is a matrix indicating the 

number of samples that fall onto each Cartesian position. If no point is shifted to a given 

Cartesian position, the GROG Density is set to one at this position. The GROG density 

compensation filter (gDCF) for n spokes can then be defined as:

gDCF kx, ky n
= 1

GROG Density kx, ky n

[2]

Figure 1 compares the undersampling behavior between convolution gridding and GROG 

using a radial prostate dataset with 26 spokes and an in-plane matrix size of 224×224. Figure 

1a shows the image reconstructed using convolution gridding with rDCF (Ram-Lak filter), 

which was implemented using the non-uniform FFT (NUFFT) toolbox (36). Figure 1b 

shows the image reconstructed using GROG with gDCFdefault, where gDCFdefault indicates 

the gDCF calculated using the same number of spokes used for image reconstruction (i.e., 

gDCFn=26 in this case). While NUFFT generated a sharp image, GROG introduced 

noticeable blurring with gDCFdefault. This can be attributed to the fact that gDCFdefault 

prefers signal to noise ratio (SNR) over resolution as described in (26,34). Figure 1c shows 

images reconstructed using GROG, where gDCF was calculated with a larger number of 
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spokes than that used for image reconstruction (n>26). With increasing n, the visual 

sharpness of the reconstructed images is improved, indicating that the use of gDCF with a 

large n can resolve blurring in GROG reconstruction.

From GRASP to GROG-GRASP—In the standard GRASP reconstruction (Figure 2a), 

the optimization starts with the dynamic multi-coil radial k-space after data sorting (21). 

During each iteration, the radial k-space data are first interpolated onto a Cartesian grid with 

a convolution, followed by an iFFT to generate an image-series. After optimization update, 

the image is transformed back to radial k-space to enforce data consistency. Such iteration is 

repeatedly performed until a certain stopping criterion is reached. The cost function is 

formulated as:

d = argmin
d

1
2 Ed − DS 2

2 + λ Td 1 [3a]

E = DGFC [3b]

Here, F is the FFT operator, C represents coil sensitivity maps, d is the to-be-reconstructed 

dynamic image series, S is the sorted radial k-space data, G represents the convolution 

gridding operator, and T is a sparsifying transform. The rDCF (D in Equation 3) is included 

in the iterative process to speed up convergence (37). To ensure that the encoding operator E 
and its Hermitian transpose (denoted as EH) are adjoint, rDCF is separated into two square 

root terms, one applied in a pre-compensation step before each iteration and the other one 

applied during each iteration as shown in Figure 2a.

In the modified GRASP framework using GROG (referred to as GROG-GRASP), GROG is 

performed as a pre-processing step to generate corresponding dynamic multi-coil Cartesian 

k-space data (Figure 2b). The iterative reconstruction is then performed by solving:

d = argmin
d

1
2 Ed − WSc 2

2 + λ Td 1 [4a]

E = WFC [4b]

Here, Sc represents Cartesian k-space data after GROG. Therefore, mapping during the 

iterative process is only performed between image space and Cartesian k-space. As shown in 

Figure 2b, gDCFdefault is applied in the GROG process to compensate for the radial 

sampling density. To ensure fast convergence, an additional filter, referred to as GROG 

weighting filter (W), is calculated using the following equation:
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W =
gDCFn

gDCFdefault
[5]

This filter is incorporated in each iteration, with a role similar to the rDCF in standard 

GRASP. The design of W is based on the observation from Figure 1 that gDCF for a large n 
resolves the blurring effect caused by the variable-density pseudo radial data distribution. 

When n equals the number of spokes used for reconstructing each frame, gDCFn equals 

gDCFdefault and therefore, no additional weighting (W=1) is applied. As in the standard 

GRASP reconstruction, W is separated into two square root terms to ensure that E and EH in 

Equation 4 are adjoint.

The computational complexity of single-threaded 2D convolution gridding and subsequent 

FFT can be calculated as (38):

c1 · M · K1, K2
︸Convolution

+ c2 · N · log(N)
︸FFT

[6]

16/3Here, c1 and c2 are system and implementation dependent coefficients, M is the total 

number of k-space samples, K1 and K2 are the convolution kernel widths in two spatial 

dimensions, and N is the total number of pixels of the convolved grid. While the exact 

computation time of the convolution depends on its implementation (36), it is evident that 

the convolution step is computationally expensive. Therefore, eliminating this operation 

from the iterative reconstruction leads to faster overall reconstruction time.

Data Acquisition

In this IRB-approved and HIPAA-compliant retrospective study, MR raw data from twenty-

two male patients (age=64.78±6.67 years), who were referred for clinical DCE prostate MRI 

exam at our institute between 02/2017 and 06/2017 and who were imaged using a radial T1-

weighted GRE sequence, were collected. Written informed consent was waived.

Each patient dataset was acquired on a clinical 3T MR scanner (MAGNETOM Prisma, 

Siemens Healthineers, Germany) in transverse orientation using a fat-saturated 3D stack-of-

stars golden-angle radial imaging sequence (1). Golden-angle radial sampling was employed 

in the kx-ky dimension, while Cartesian sampling was used along the slice dimension. 

Relevant imaging parameters were: TR/TE = 4.12/1.96 ms, matrix size = 224×224×(21–26), 

in-plane field of view (FOV) = 240×240 mm2, voxel size = 1.07×1.07×3.0 mm3, flip angle = 

12°. 1755 spokes were acquired for each partition, resulting in an average total scan time of 

197.45 ± 12.51 seconds. After ~15 seconds of the scan, a full-dose (0.1 mmol/kg of body 

weight) of contrast agent (Gadavist, Bayer Healthcare) was injected at a rate of 2 mL/sec.

Image Reconstruction

Both GRASP and GROG-GRASP reconstructions were performed in Matlab (Mathworks, 

MA). After coil-compression to 10 virtual channels (39), 26 consecutive spokes were 
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grouped for one dynamic frame, resulting in a temporal resolution of ~2-3 seconds/volume. 

The GROG reconstruction code was obtained from https://github.com/edibella/

Reconstruction. First-order finite differences along the temporal dimension were chosen as 

the sparsifying transform T. To ensure a reasonable balance between image quality and 

temporal fidelity, a fixed regularization parameter was empirically selected, which was done 

separately for GRASP and GROG-GRASP (21). For GRASP, convolution gridding was 

performed with a 6×6 Kaiser-Bessel kernel and 1.5-fold oversampling. For GROG-GRASP, 

the weighting filter W (Eq. 5) was calculated with n=350 (≈224∙π/2), which was empirically 

selected according to the Nyquist criterion. To assess the influence of the parameter n, the 

GROG-GRASP reconstruction was repeated with n=100 and n=1000 in one dataset.

The optimization problem for both reconstruction schemes was solved using a non-linear 

conjugate gradient algorithm. The stopping criterion for all reconstructions was set as 24 

iterations or a change of the objective function smaller than 10−4, whichever was achieved 

faster. Coil sensitivity maps were estimated from the static 3D image volume reconstructed 

from all spokes using the adaptive combination approach (40). To further improve 

processing speed, GROG-GRASP was additionally performed on GPUs by using the 

MATLAB function “gpuArray”. Following iFFT along the slice dimension, all slices of each 

dataset were reconstructed sequentially. Reconstructions were performed on a server 

equipped with 256 GB RAM and two 6-GB NVIDIA GPU cards. The reconstruction time 

for each dataset was recorded for comparison.

Image Analysis

The structural similarity index (SSIM) and root-mean-square error (RMSE) between 

GRASP and GROG-GRASP were calculated slice-by-slice for all datasets. The results were 

averaged over all slices and all subjects to represent mean ± standard deviation. 

Additionally, two regions of interest (ROIs) from a central slice of each dataset were 

manually drawn in the femoral artery and the prostate. The temporal signal profiles for these 

two ROIs were compared between GRASP and GROG-GRASP. First, the temporal signals 

were converted to relative enhancement signals as follows:

E(t) =
S(t) − Sbaseline

Sbaseline
[8]

where Sbaseline is the signal intensity before contrast enhancement, calculated by averaging 

the first five time points (~15s). The initial area under the curve (IAUC), which is calculated 

as the area under the curve for the first 90 seconds (41), was measured for all temporal 

signals:

IAUC(t) = ∫
0

t
E(τ)dτ [9]

Additionally, the initial slope was determined:
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Initial Slope =
E(tp)

tp
[10]

where tp is the time to a point where a given signal profile has the steepest gradient. IAUC 

and initial slope were averaged to represent mean ± standard deviation across all subjects, 

and Intraclass Correlation Coefficient (ICC) was calculated to assess the correlation between 

the signals computed from GRASP and GROG-GRASP.

Visual Image Quality Assessment

To assess image quality in a more clinically focused way, two post-contrast phases (one 

arterial phase and one delayed phase) were manually selected from each dataset. After 

pooling and randomizing the respective GRASP and GROG-GRASP images, two board-

certified abdominal radiologists (H.C. and C.H., with 10 and 2 years of post-fellowship 

experience, respectively), who were blinded to the reconstruction schemes, scored overall 

image quality, sharpness of prostatic capsule and overall artifact level. A 4-point Likert-type 

scale was used for the scoring: overall image quality: 4=good, 3=adequate, 2=borderline, 

1=non-diagnostic; sharpness of prostatic capsule: 4=good, 3=adequate, 2=partially seen, 

1=not seen; overall artifact level: 4=none, 3=mild, 2=significant, 1= unreadable. The 

reported scores were averaged over the two readers and mean ± standard deviation was 

calculated for both contrast phases. A non-parametric paired two-tailed Wilcoxon signed-

rank test was performed for statistical assessment, with a P-value less than 0.05 indicating 

statistical significance. Inter-reader variability was assessed using the Bland-Altman 

analysis.

Results

Figure 3 compares results from the GROG-GRASP reconstructions with different W. 
Reconstruction without additional weighting (W=1) generated noticeable blurring, which is 

consistent with the effect observed in Figure 1. Both image sharpness and convergence 

speed are improved when n increases. Similar results were obtained for n=350 and n=1000, 

confirming the selection of n=350 for GROG-GRASP.

Figure 4a compares GRASP with GROG-GRASP for three different temporal frames of a 

representative dataset. For all phases, no visual difference was observed between the two 

reconstruction schemes. Figure 4b shows the corresponding temporal signal profiles from 

two ROIs in the femoral artery and the prostate (red and yellow circles), suggesting high 

temporal correlation between the two methods.

The SSIM indexes and RMSE between GRASP and GROG-GRASP were 0.97 ± 0.01 and 

0.007 ± 0.002, suggesting a high degree of similarity. The IAUC, initial slope, and ICC are 

summarized in Table 1a, indicating strong correlation between the temporal signal profiles 

generated from GRASP and GROG-GRASP. Table 1b summarizes the readers’ scores. No 

significant difference (P>0.05) was found throughout all assessment categories. The inter-

reader variability is shown in Figure S2 (supplementary materials). Reconstruction times for 
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GRASP and GROG-GRASP were 332.67 ± 32.83 minutes and 78.34 ± 8.04 minutes, 

respectively, averaged over all datasets. With GPU implementation, the reconstruction time 

of GROG-GRASP was further reduced to 14.04 ± 1.29 minutes (representative images are 

shown in supplementary Figure S3).

Discussion

In this work, we proposed a framework that combines GRASP with self-calibrating GROG. 

GROG-GRASP eliminates the requirement for the convolution gridding steps within the 

iterative optimization, thus enabling a substantial reduction of reconstruction time compared 

to conventional GRASP. The performance of GROG-GRASP was validated in a patient 

cohort, which is an important step prior to translation of this approach into clinical practice. 

The SSIM, RMSE, ICC, and visual image quality assessment suggested that the combination 

of GRASP with GROG preserves image quality and temporal fidelity. In addition, we have 

also optimized the reconstruction algorithm to further improve reconstruction performance 

by incorporating an additional filter during the iterative process. For the implementation of 

this filter, the parameter n has to be chosen. However, the exact choice of n only has a minor 

influence on image quality, and choosing n according to the Nyquist rate (n=base 

resolution∙π/2) gave consistent results over all datasets used for this study.

Since GROG is used as a pre-processing step, it can benefit a broad range of iterative non-

Cartesian reconstruction methods, including techniques based on k-space based or image-

space based parallel imaging, compressed sensing, or their combinations. Prerequisites for 

successful implementation of GROG are a sufficient number of coil-array elements and 

adequate SNR (29). Given the wide-spread use of many-element coil arrays and the 

availability of a high-SNR dataset when all acquired radial spokes are combined for GROG 

calibration, these requirements are intrinsically fulfilled.

In this study, the performance of GROG-GRASP has been demonstrated for prostate 

imaging and therefore only for male subjects. However, the reconstruction performance of 

the proposed technique is independent of the particular application and can be extended to 

other applications such as cardiac or liver MRI.

Conclusion

GRASP reconstruction can be substantially accelerated using self-calibrating GROG as pre-

processing step to obtain Cartesian k-space data. This permits elimination of the time-

consuming gridding process from each iteration of the optimization process while 

maintaining image quality. The proposed combination shows promise towards 

implementation of GRASP and other iterative non-Cartesian reconstruction methods in 

clinical routine.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison between NUFFT-based and GROG-based reconstruction of an undersampled 

dataset with 26 radial projections. While the reconstruction with NUFFT leads to a sharp 

image with dominant streaking artifacts (a), a standard GROG implementation with 

gDCFdefault inherently prefers SNR over resolution, which introduces blurring (b). This can 

be overcome by modifying the GROG density compensation function (gDCFn (c)), where n 
denotes the number of spokes which is used for the design of this filter. With increasing n, 

the blurring is resolved and results are similar compared to the image obtained with NUFFT.
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Figure 2. 
Reconstruction pipeline of conventional GRASP (a) and GROG-GRASP (b). For GRASP, 

computationally expensive convolution gridding and regridding steps are performed in each 

iteration. For GROG-GRASP, this is overcome by shifting the acquired radial k-space data 

with GROG on a conventional Cartesian grid as pre-processing step. Similar to the radial 

DCF (rDCF) which is repeatedly applied during the conventional GRASP reconstruction, a 

weighting filter W is employed for GROG-GRASP to improve reconstruction performance.
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Figure 3. 
Influence of the design of the weighting filter W on GROG-GRASP image quality. 

Reconstruction without an additional filter (n=26, W=1) leads to slow convergence and 

blurring, which is improved when an additional filter (n>26) is used. While slight blurring 

remains for n=100, sharp images and rapid convergence are achieved when choosing n 
according to the Nyquist criterion (n=base resolution∙π/2≈350). Results are similar when 

using higher n (e.g., n=1000), suggesting that image quality is consistent within a certain 

range for n.
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Figure 4. 
(a) Three different contrast phases, reconstructed with standard GRASP (first row) and 

GROG-GRASP (second row). No visual differences can be seen between the two methods. 

This finding is confirmed by the temporal signal profiles, which show high temporal 

correlation (b).
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Table 1(b)

Qualitative comparison between GRASP and GROG-GRASP for two contrast-enhancement phases. No 

significant differences (P>0.05) between the two reconstruction schemes were found in all assessed categories.

Overall Image Quality Sharpness of Prostatic Capsule Overall Artifact Level

Arterial Phase
GRASP 3.07±0.48 3.07±0.51 3.00±0.47

GROG-GRASP 3.05±0.47 3.10±0.52 3.02±0.51

Delayed Phase
GRASP 3.55±0.38 3.73±0.34 3.52±0.40

GROG-GRASP 3.52±0.40 3.69±0.40 3.50±0.42

Scoring criteria:

For overall image quality, 4=good, 3=adequate, 2=borderline, 1=non-diagnostic.

For sharpness of prostatic capsule, 4=good, 3=adequate, 2=partially seen, 1=not seen.

For overall artifacts level: 4=none, 3=mild, 2=significant, 1=unreadable
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