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Abstract

Purpose—To estimate multiple components within a single voxel in magnetic resonance 

fingerprinting (MRF) when the number and types of tissues comprising the voxel are not known a 
priori.

Theory—Multiple tissue components within a single voxel are potentially separable with MRF 

due to differences in signal evolutions of each component. The Bayesian framework for inverse 

problems provides a natural and flexible setting for solving this problem when the tissue 

composition per voxel is unknown. Assuming that only a few entries from the dictionary 

contribute to a mixed signal, sparsity promoting priors can be placed upon the solution.

Methods—An iterative algorithm is applied to compute the maximum a posteriori estimator of 

the posterior probability density to determine the MRF dictionary entries that contribute most 

significantly to mixed or pure voxels.

Results—Simulation results show that the algorithm is robust in finding the component tissues of 

mixed voxels. Preliminary in vivo data confirms this result, and also shows good agreement in 

voxels containing pure tissue.

Conclusions—The Bayesian framework and algorithm shown provide accurate solutions for the 

partial volume problem in MRF. The flexibility of the method will allow further study into 

different priors and hyperpriors that can be applied in the model.
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Introduction

Partial volume (PV) is a problem inherent to any imaging modality with limited spatial 

resolution, and MRI is no exception1. The partial volume effect occurs when the voxel size 

is larger than the physical structures found within a voxel, or when part of a boundary 

between two tissues is contained within a voxel. In these cases, the corresponding images 

may exhibit blurring artifacts or an appearance that averages the structures within the voxel. 

Different methods can be used to identify voxel composition. In the case of multiple T2 

components within a voxel, multiexponential models have been used to estimate T2 

relaxation times.2 A common way to handle partial volume problems is to treat the signal 

from a mixed voxel as a weighted sum of tissues that are thought to be present. For example, 

in the brain, mixed voxels are generally modeled as weighted sums of white matter, gray 

matter, and cerebrospinal fluid (CSF) signals.3 This type of model has been applied for 

segmentation of tissues in the brain3–5, to address partial volume issues in arterial spin 

labeling6,7 and to compute the arterial input function in cerebral perfusion MRI.8 Statistical 

models have also been considered,9 but again, tissue types are assumed to be known a priori. 
A more complicated model using a non-local means filter for denoising and Markov 

Random Fields for PV classification is used to calculate partial volume coefficients.10 A 

Bayesian classification approach has also been considered11 in which histograms are used to 

represent the contents of each voxel and for classification. Another approach which uses a 

three dimensional manifold to model partial volume effects between white matter, gray 

matter, and CSF12, has been applied in vivo for brain segmentation13. The common thread in 

these approaches is that a small, fixed subset of tissue types is assumed to be sufficient to 

describe each voxel signal over the image. This kind of approach can clearly fail whenever a 

tissue varies throughout the organ of interest, or in diseased tissues, where the individual 

voxel components may be completely unknown.

Magnetic resonance fingerprinting (MRF)14 is a technique that is capable of producing 

quantitative maps of tissue parameters such as T1 and T2 relaxation times using a 

pseudorandom data acquisition scheme and a pattern matching algorithm. A dictionary is 

created using simulations of the Bloch Equations to generate signal evolutions with different 

combinations of tissue properties as inputs. Acquired data are matched to the closest 

dictionary entry to produce accurate quantitative maps.14 MRF is not immune to the partial 

volume effect. For a given voxel that exhibits partial volume effects due to the presence of 

more than one tissue type, the match chosen from the dictionary will correspond to an entry 

that represents a function of several different entries corresponding to the true tissue types 

found within that voxel, and the effective parameter values assigned will not accurately 

represent the voxel composition in mixed voxels.

To remedy the problem of partial volume in MRF, a model was proposed14 and analyzed in 

which voxel signals could be decomposed using a least squares method as a weighted sum 

of two or three distinct signals, provided these signals were fixed in advance. This model has 

been shown to be robust to noise15 and has been evaluated, for example, in the case of white 

matter, gray matter, and CSF segmentation in the brain. Additionally, dictionary based 

methods have also been proposed16,17, which remove any erroneous weight calculation due 

to the complex-valued signals by allowing only real, nonnegative weight contribution. 
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However, as with conventional non-MRF methods for partial volume, these MRF methods 

cannot solve the problem when the tissues present in a mixed voxel are not known a priori, 
as may be the case in a tumor or other pathological tissues. In these cases, fitting a mixed 

voxel signal with two or three incorrectly chosen dictionary entries could mask the 

pathological tissue as a weighted sum of healthy tissues.

This work focuses on subvoxel components in relatively distinct compartments, each of 

which is smaller than the voxel, but larger than the diffusion mixing distance, shown in 

Figure 1(a). This type of model represents situations in which there are many cells of 

individual tissue types present within a single voxel. In contrast, voxels which contain 

multiple components, that are on a smaller scale than the diffusion distance, shown in Figure 

1(b), present a greater challenge to solve. A straightforward application of MRF would 

result in one, well-mixed component. Other methods such as MRF for chemical exchange 

(MRF-X)18 may be able to resolve the subvoxel composition for these cases, but this is 

beyond the scope of the work discussed here.

In this study, we present an alternative approach that does not require prior knowledge of the 

individual tissue components. In this method, given a full dictionary of potential signal 

evolutions, we search for a solution that represents the voxel signal using the proper number 

of dictionary entries as supported by the data. Under this assumption, we can take advantage 

of recent advances in sparse reconstruction to find a solution. In particular, we propose to 

use the Bayesian framework for inverse problems.19 This method provides a flexible 

procedure for computing a weight vector for each potential tissue using the data and prior 

assumptions as guides. In this framework, all unknowns are modeled as random variables 

with associated probability density functions, and the solution to the inverse problem is also 

a probability density, called the posterior distribution. Point estimates and sampling 

techniques can be used to compute representative solutions from the posterior density. The 

proposed algorithm identifies the number of entries from the MRF dictionary present within 

a voxel. The accuracy of the method is investigated through simulations and performance is 

evaluated in two healthy subjects and one of brain tumor patient.

Theory

If the dictionary used in MRF is denoted by D, and y is an observed MRF voxel signal, the 

partial volume problem can be formulated as the solution to the inverse problem

y = Dx + e  [1]

for a weight vector x and noise term e. As formulated in [1], the problem is ill-posed, and 

without adding any prior information, the solution may not be unique or may be too 

sensitive to small perturbations in the data. The solution x should be a sparse, or near sparse, 

vector, with larger weights corresponding to the entries of D that contribute most 

significantly to the mixed voxel signal. We will assume that both the signal and all 

dictionary entries have been normalized to have length one, that is, ||y|| = 1. Note that we use 

||·|| to represent the usual Euclidean norm.
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The MRF dictionary is represented as a matrix D ∈  ℂt × n where t represents the number of 

time points and n is the number of parameter combinations or tissue types. An observed 

signal y can be represented as a weighted sum of a subset of N dictionary entries 

y = ∑i = 1
N xλi

dλi
, for dictionary entries dλ1

, …,   dλN
 with weights xλ1

, …,   xλN
. When the 

subset Λ = λ1, …,   λN  is known a priori, the weight vector × can be found as the solution 

to a linear least squares problem. Since the subset Λ is generally unknown, the problem 

needs to be modeled using the full dictionary as in [1], where x is the vector of 

corresponding weights and e is complex zero-mean Gaussian noise. However, solving [1] in 

the least squares sense, that is, minimizing ‖y − Dx‖2, will result in a dense solution, and it 

will be extremely difficult to pick out the few tissue types that have the most significant 

contributions to the voxel signal.

Using the Bayesian paradigm for inverse problems, all unknowns in the problem are 

modeled as random variables with associated probability density functions. The solution is 

the posterior density, given by Bayes' formula, π x y ∝ π y x π x , which is in terms of the 

likelihood and prior probability densities. The posterior density can be explored using 

sampling techniques, or point estimates, such as the maximum a posteriori or conditional 

mean estimators.

The likelihood provides the probability of obtaining the observed signal, assuming that the 

parameter x is known. In this application, the noise is assumed to be Gaussian with zero 

mean and constant variance σ2, e ∼ N 0, σ2I , and the likelihood density is

π y x ∝ exp − 1
2σ2‖y  − Dx‖2 , [2]

where ∝ denotes proportionality.

Construction of the Prior and Hyperprior Densities

The prior density encodes any prior knowledge or belief about the weight vector x, where no 

assumptions are made about the observed data y. The vector x should be sparse, or 

approximately sparse, with the largest values corresponding to entries that contribute to the 

mixed signal. To that end, each weight x j,   j = 1,   …,   n is assumed to be independent and 

normally distributed with zero mean and variance θ j,   x j ∼ N 0, θ j . The prior density is then

π x =  
detTθ

−1/2

2 π exp − 1
2‖Tθ

−1/2x‖2   [3]

for covariance matrix Tθ = diag   θ1, …,   θn . while a Gaussian density does not, in general, 

encourage sparse solutions, we note that the variance does influence the magnitude of 
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random draws from the distribution, as it controls the spread. Hence, for a small variance θ j, 

it is more likely that a random draw from N(0,   θ j) will be close to zero, whereas a larger 

variance will allow a higher probability of obtaining a larger realization. An example is 

shown in Figure 2. Note that the weights are allowed to be complex-valued, due to the 

arbitrary phase observed in the MRF acquisition. Since the variance θ j,   j = 1,   …,   n is 

presumed to be unknown, it will also be modeled as a random variable. To this end, each θ j

is assumed independent and identically distributed, following a Gamma distribution, with 

shape and scale parameters α and β, respectively,

π θ j ∝ θ j
α − 1 exp

−θ j
β . [4]

Random draws from a Gamma distribution with properly chosen parameters α and β will 

have a higher probability of being small, while still allowing for large outliers. This in turn 

controls the width of the Gaussian priors placed on x j.
20 An example of a Gamma 

probability density function is plotted in Figure 2. The variables θ j are called hyperpriors.19 

This type of method is also sometimes referred to as Bayesian compressive sensing21, since 

it provides a way to find a sparse solution in the Bayesian framework as opposed to 

traditional compressed sensing methods.

The joint probability density of the unknowns is written in terms of the conditional density 

as π x,   θ =   π x θ π θ . The posterior density, which is the solution to the inverse problem 

in the Bayesian framework, is proportional to the likelihood, prior, and hyperprior densities, 

and is given through Bayes’ formula as

π x, θ y ∝ π y x π x θ  π θ . [5]

Therefore, the posterior density here is

π x, θ y ∝ exp − 1
2σ2‖y  − Dx‖2 − 1

2‖Tθ
−1/2x‖2 − 1

β ∑
j = 1

n
θ j − α − 3

2 ∑
j = 1

n
logθ j [6]

The function to be minimized is formulated by taking the negative logarithm of Eq. [6],

arg min
x, θ

1
2σ2‖y  − Dx‖2 + 1

2‖Tθ
−1/2x‖2 + 1

β ∑
j = 1

n
θ j + α − 3

2 ∑
j = 1

n
logθ j [7]
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Methods

To obtain a point estimate for the solution to the inverse problem, the maximum a posteriori 
estimator is computed, minimizing the function [7], by alternating between updating x and θ
20. After initialization of the weights and the dictionary, 

( k   =   0,   x k   =   0,   D k   =   D), the variance vector θ is first updated via an 

analytical solution using simple differentiation. The kth iterate yields the updated variance

θ j
k   = β η +  

x j
k − 1 2

2 β + η2
1/2

, [8]

where η   =   α   –   3/2   /2. The next step is the minimization problem in x, which, for 

fixed θ, is reduced to a linear least squares problem. This is solved using the conjugate 

gradient method for least squares22 with prior conditioning20 and a change of variables

w k = arg min y − D k − 1 Tθ
k 1/2w

2
+ μ‖w‖2 , [9]

where μ is a regularization parameter for the Tikhonov regularization scheme, and can be 

related to the noise σ. The CGLS iterations are stopped when the difference between the 

residuals at the kth and (k-1)st iteration drops below a predetermined tolerance.

Then, × is updated as

x k = Tθ
k 1/2w k . [10]

To further encourage sparsity and ease the computational burden, the dictionary is trimmed 

after each iteration by removing the columns corresponding to the smallest weight values xj, 

defined using a fixed percentage (5%) of the dictionary size, to form an updated dictionary 

D(k+1) before the next iteration proceeds. This is necessary for two reasons. First, the MRF 

dictionary can grow to extremely large sizes when more parameter combinations are 

considered or added, and pruning the dictionary will result in faster computations. Second, 

there are groups of dictionary entries that have similar T1 and T2 values, which, when 

solving an ℓ2 minimization problem, may cause the weights to spread across these similar 

entries. Pruning the dictionary will allow only the most significant dictionary entries to 

remain in the solution of this method.

Note that the number of tissue types present in a given voxel is not an input into the 

problem, but can be inferred based on the analysis of the final output. The algorithm is 

stopped based on a desired number of dictionary entries to represent the mixed voxel. This 

step is critical, as leaving too many dictionary entries to represent a mixed voxel will leave 

in incorrect and noncontributing entries in the solution. On the other hand, due to the 
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similarity between dictionary entries with T1, T2 values that are relatively close, running the 

algorithm until only a small number of dictionary entries remain runs the risk of pruning a 

significantly contributing entry.

In practice, due to the nature of complex-valued MRF signals, the weights x will be 

computed as complex. However, to avoid the confusion of complex or negative valued 

weights, after all of the iterations have been completed, the complex value x j will be 

projected to the nonnegative real line by considering the magnitude as the weight value.

Numerical simulations were performed to evaluate the accuracy of the output of the 

algorithm. In vivo analysis was aimed at investigating the sensitivity of the algorithm tuning 

parameters and demonstrating utility in identifying healthy and pathological tissues.

Simulation Data

Signals were simulated as weighted sums of entries from a dictionary computed using a 

FISP MRF23 sequence. The dictionary contains signal evolutions using 5970 different T1, T2 

combinations and t = 3000 time points, resulting in a complex-valued matrix of size 3000 × 

5970. The T1 values ranged from 10 to 2950 ms, in increments of 5 ms between 10 and 90 

ms, increments of 10 ms up to 1000 ms, increments of 20 ms up to 1500, and increments of 

50 ms up to 2950 ms. The T2 values ranged from 2 to 500 ms, in increments of 2 ms up to 

10 ms, increments of 5 ms up to 150 ms, increments of 10 ms up to 200, and increments of 

50 ms up to 500 ms.

A numerical phantom was simulated as a time series of 256 × 256 MRF frames divided into 

four regions, each a square of size 128 × 128 pixels, representing mixtures between the 

different tissue types. Mixed signals were simulated using two dictionary entries, with T1 

and T2 pairs chosen to represent white matter, gray matter, brain tumor, and CSF.24 Pixels 

within each region were generated as the same predefined mixture of tissue types: a 50/50 

mixture of white matter and gray matter, a 50/50 mixture of white matter and tumor, a 50/50 

mixture of tumor and CSF, or a 90/10 mixture of white matter and tumor. The time series 

was then transformed into k-space using the Fourier transform, where Gaussian noise was 

added as a percentage of the maximum k-space value. Sampling was completed using a 

variable density spiral trajectory to produce both fully sampled and undersampled data, 

which were then reconstructed back to the image domain using gridding and the non-

uniform fast Fourier transform.25 For the undersampled data set, one arm out of the full 48 

spiral trajectory was used at each TR, and then rotated 7.5° for the next TR. The signal-to-

noise ratio (SNR) was computed in the image domain, using the mean value of the first 256 

× 256 image. The algorithm was then applied to four randomly chosen pixels within each of 

the regions. For each noise level, a Monte Carlo simulation was performed, repeating the 

entire process over ten repetitions.

An additional test was completed using the fully sampled simulated data just described, 

where the signals and dictionaries were truncated to represent different signal lengths in 

order to investigate the effect of the acquisition length on the partial volume results. For this 

analysis, the noise level was fixed to achieve an average SNR of 5.6, and signal lengths were 
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250, 500, 1000, and 2000. Note that in each case, these were the first time points out of the 

3000 originally simulated.

Algorithm parameters varied slightly, and were tested more rigorously on the in vivo data.

Volunteer

To test the model on in vivo data, informed consent was obtained from three volunteers in an 

IRB-approved study and were scanned at 3T (Skyra, Siemens Medical, Erlangen, Germany 

or Verio, Siemens Medical, Erlangen, Germany). A 20-channel head receiver array was 

used, and the data were reconstructed using the nonuniform Fast Fourier transform25, after 

which adaptive coil combination was used to combine the images from each channel26.

Two volunteers were normal subjects, scanned using an MRF-FISP23 sequence. The 

sequence parameters are as follows: variable flip angle between 0 and 74 degrees and 

variable TR between 11.5-14.5 ms. For both the fully sampled and undersampled data, the 

FOV was 300 mm × 300 mm with matrix size 256 × 256. A variable density spiral 

trajectory, used in23 was used for both acquisitions, which requires 48 spiral interleaves to 

fully sample the outer 256 × 256 region in k-space and 24 interleaves to fully sample the 

innermost 25%. The acquisition window was 5.6 ms. For the undersampled data, one spiral 

arm was used at each TR and rotated 7.5° for the next TR. For one volunteer, fully sampled 

data were acquired in k-space, for the other, undersampled data were acquired using one 

spiral arm at each TR. The dictionary was the same as used in the simulations, containing 

5970 different combinations of T1 and T2 and 3000 time points. For the fully sampled data 

set, voxels were analyzed from several regions of the brain to determine how the Bayesian 

algorithm performed in comparison to the traditional MRF matching, without the severe 

aliasing artifacts that are typically observed in MRF.

The undersampled data set was used to analyze the sensitivity of the algorithm to the 

Gamma distribution parameters α and β, as well as the regularization parameter μ, in the 

presence of artifacts due to undersampling. Voxels were chosen to be representative of three 

types: a white matter/gray matter mixture, a gray matter/CSF mixture, and pure white 

matter. Different algorithm parameter values were used to determine which were most 

successful in separating mixed voxel signals, while at the same time correctly identifying the 

single component in the white matter voxel.

One patient was consented and scanned27 using an MRF-bSSFP sequence prior to surgery 

for brain tumor resection. Based on histopathology, this patient was diagnosed with 

glioblastoma multiforme (GBM). Relevant sequence parameters include 300 mm × 300 mm 

FOV, matrix size 256 × 256, slice thickness 5 mm, flip angle varied between 0-60 degrees, 

and TR varied between 8.7-11.6ms. The same variable density spiral trajectory was used as 

described for the MRF-FISP acquisition, with one spiral used in each TR. For this bSSFP 

sequence, off-resonance frequency is an additional parameter that is built into the dictionary. 

In this case, the dictionary contains 2999 time points, 3307 combinations of T1 and T2, and 

77 different off-resonance frequencies, resulting in a three-dimensional matrix of size 2999 

× 3307 × 77. The T1 values range from 100 to 2950 ms, in increments of 20 ms from 100 to 

1000 ms, increments of 40 ms up to 2000, and increments of 50 ms up to 2950 ms. The T2 
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values range from 10 to 500 ms, in increments of 5 ms from 10 to 100 ms, increments of 10 

up to 300 ms, and increments of 50 ms up to 500 ms. The off-resonance values range from 

−300 to 290 Hz, in increments of 2 Hz for frequencies between −60 and 60 Hz, and 

increments of 20 Hz for frequencies outside of this range. For purposes of this work, we 

consider partial volume only in terms of T1 and T2 relaxation times, hence at each pixel a 

subdictionary of size 2999 × 3307 was chosen based on the off-resonance frequency 

calculated using the traditional MRF matching prior to analysis in the Bayesian MRF PV 

algorithm. Further details regarding the sequence parameters for the MRF acquisitions used 

in this work are in supporting Figure S1 and also are described in14,23.

Interpretation and Visualization

The algorithm output yields multidimensional results at each voxel of T1, T2 pairs along 

with corresponding weights. The dimension of each is determined by the number of 

iterations run in the algorithm. For in vivo data, fewer iterations were run to account for 

additional noise and artifacts.

For the simulation data, a k-means analysis is used to cluster the results into groups to 

determine the mean T1 and T2 values of each cluster.

In vivo results require a more sophisticated analysis, as we do not know the number of tissue 

types contained in a given voxel, in which case a k-means analysis cannot be applied. To this 

end, results will be visualized on a voxel-wise basis, and thus it is only feasible to visualize a 

sampling of the results from the slice. These results will be visualized as T1 and T2 scatter 

plots, corresponding to the T1 and T2 values of the dictionary entries that remain at the final 

iteration of the algorithm. Overlaid on top of each point will be plotted another circle, where 

the weight value assigned to that dictionary entry is represented by the color intensity.

Comparison to 𝓁1 minimization

A typical approach to minimization problems when a sparse solution is desired, is to apply 

regularization using the ℓ1 norm,

min ‖y − Dx‖2 + λ ‖x‖1 . [11]

Various algorithms have been developed to solve problems of this form. For comparison, we 

applied the fast iterative shrinkage algorithm (FISTA),28 which has been shown to be 

computationally efficient for problems of the form [11]. The algorithm updates the solution 

iteratively using soft thresholding. FISTA was applied to both the simulated and volunteer 

data. The value of λ was fixed at 0.01 for each application of FISTA. For the simulated data, 

the algorithm was stopped at 3000 iterations, the dimension of the data.

Results

For all results shown here, computations were completed on a standard desktop computer 

using MATLAB (The Mathworks, Inc.).
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Simulation

The Bayesian MRF algorithm was terminated after 130 iterations, resulting in eight out of 

the original 5970 original dictionary entries. The algorithm took about 12 seconds to run for 

each pixel. Results from each region were analyzed using a k-means analysis to compute the 

means of each of the clusters found. Using these clusters, the weights, computed from the 

algorithm could be summed to give a relative fraction of each species present. The resulting 

mean T1 and T2 values and relative fractions of the clusters are summarized in Table 1 for 

several SNR values. Only one SNR level for the undersampled data is shown (with the 

smallest level of additive noise in k-space) due to the severe aliasing from undersampling.

FISTA was applied to both the fully sampled and undersampled simulated data with the 

number of iterations fixed at 3000. Analyzing one mixed signal using FISTA took about 110 

seconds. The number of nonzero weights contributing to the mixed signal varied from 657 to 

1650 for fully sampled and 492 to 1309 for undersampled. Note that this is not a parameter 

that can be easily fixed to yield the same number at each voxel, as is the case in the Bayesian 

MRF algorithm, and the number of nonzeros is far too many to make an accurate inference 

about the components comprising the mixed signal. Recall that for the simulations, Bayesian 

MRF algorithm was run until only eight dictionary entries remained, which is a stark 

contrast to the FISTA results. In both cases, the dictionary had 5970 total entries.

For the mixed signals in the undersampled simulation, FISTA did not always retain the 

correct tissue components, and, the large number of nonzeros, does not allow for a clear 

separation of tissue types for partial volume. Additionally, to run the 3000 iterations on one 

pixel took about two and a half minutes of computation for undersampled data, compared to 

12 seconds for the Bayesian algorithm, in which the dictionary is reduced to the eight most 

significant dictionary components. A significant problem is the large number of nonzero 

entries in the FISTA solution after 3000 iterations, which make it too difficult to reliably 

differentiate the distinct components from a mixed signal. By increasing the number of 

iterations, we can decrease the number of nonzero dictionary entries, however, this comes at 

a high computational cost. For example, running 25000 iterations of FISTA will result in a 

solution with about 100-200 nonzero entries, however, this calculation takes almost 20 

minutes at one pixel. The FISTA results for the simulated data are summarized in Table 2. 

Note that for comparison, the simulated data used here is the same as that used for the 

results in Table 1.

Results for the test where acquisition length was varied are shown in Table 3. In general, the 

T1, T2, and corresponding weights improved as the signal length increased.

Normal Volunteer

The data obtained from the fully sampled acquisition was used to compare the fit between 

the MRF match, which yields one T1, T2 pair per voxel, and the multidimensional set of T1, 

T2, and weights that result from the Bayesian algorithm. For a given voxel, denote by d, the 

dictionary entry which yields the largest complex inner product, as computed in the 

traditional MRF matching. The MRF residual is computed as y − d , where both y and d are 

normalized to unit length. Similarly, if the Bayesian algorithm yields a set of dictionary 
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entries di and associated weights xi, the residual for the Bayesian algorithm is computed 

||y −   ∑i xidi  || Results for both methods were phase corrected to match y. Residuals were 

computed at voxels within different regions in the brain; one each is assumed to correspond 

to pure white matter, pure CSF, partial volume white matter and gray matter, or partial 

volume gray matter and CSF. The residuals at each voxel within the regions are shown in 

Figure 3.

Three individual voxels in the undersampled data were analyzed to determine the sensitivity 

of the results to varying the three parameters α, β, and μ in the presence of artifacts due to 

aliasing. The three voxels are indicated in the MRF T1 map shown in Figure 4. The blue 

marker indicates a voxel with gray matter/CSF partial volume, yellow indicates white 

matter/gray matter partial volume, and red indicates a voxel of pure white matter. For each 

voxel, 110 iterations of the algorithm were run, resulting in 21 dictionary entries at the final 

iteration, which took approximately 12 seconds per voxel. Shown in Figure 5(a)–(c) are the 

scatterplot results for each of these three voxels using the fixed parameters β = 0.1, and μ = 

0.01. Figures 5(a) and 5(c) use α = 1.75, whereas the white matter/gray matter voxel in 

Figure 5(b) uses α = 3.5.

Plots demonstrating the sensitivity of algorithm results to the Gamma distribution 

parameters and the regularization parameter are shown in the supporting Figures S2, S3, and 

S4. From these plots, appropriate ranges of the values of α, β, and μ can be deduced. In 

particular, the algorithm appears to be the least sensitive to the values for α and β, except, 

perhaps, in the case of alpha for white matter/gray matter separation. Results are most 

sensitive to the regularization parameter μ. When the value of μ is too small, the results tend 

toward a least squares solution, with little impact from the penalty term to minimize the 

weight variances. As the value of μ is increased, results stabilize toward a reasonable 

solution, but when increased further, all voxels will converge to the effective MRF result.

FISTA was also applied to the undersampled in vivo data set for the same three highlighted 

voxels. Here, 5000 iterations of FISTA required almost 3 minutes per voxel, and 15000 

iterations required over 8 and a half minutes per voxel. The number of nonzero contributing 

dictionary entries again varies, with as many as 220 in the case of GM/CSF after 5000 

iterations to 76 in the pure white matter voxel after 15000 iterations. Compared to the results 

obtained from applying FISTA in simulation, the number of nonzeros in the solution are 

reduced, however, to obtain results similar to the Bayesian MRF algorithm in vivo still 

requires far more computation time. Results from FISTA for the undersampled in vivo data 

are shown in Figure 5(d)–(i).

Patient

The parameters for the Gamma distribution were chosen to be α = 1.75, β = 0.01. The 

regularization parameter μ was fixed at 1e-3 for this experiment. The algorithm was stopped 

after 80 iterations when there were 46 dictionary entries remaining to explain each 

individual voxel signal. Stopping the algorithm early, as is done here, prevents the possible 

exclusion of a small, but still significant contribution from dictionary entries which may 

represent pathological tissue. Allowing more dictionary entries to be present in the solution 
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will, however, require further analysis of the results than when fewer dictionary entries 

remain.

Five voxels chosen away from the tumor region in presumably healthy tissue were chosen 

for analysis, one each of pure white matter, gray matter, and CSF, along with two voxels 

which potentially exhibit partial volume. These results are shown in Figure 6.

Regions of interest (ROIs) were drawn by a neuroradiologist to define regions of solid tumor 

and peritumoral white matter. Voxels were selected from these ROIs to show examples of the 

algorithm analysis in the pathological regions of solid tumor and peritumoral region with 

scatterplots shown in Figure 7. A voxel within the solid tumor indicates a dominant 

component with a smaller short-T2 component also present. On the other hand, the voxels 

from within the peritumoral region indicate a partial volume effect between a component 

with mid-range T1 and T2 values and a separate fluid-like component. The presence of two 

distinct components within these voxels suggest that the single-component MRF result may 

be incorrect, as it lies in between the two components found through the partial volume 

analysis.

Discussion

The results from the simulated mixed signals show that the algorithm allows separation of a 

mixed signal into two component dictionary entries. Even when the T1 and T2 values for the 

component signals are relatively close together, as is the case for white matter and gray 

matter, the algorithm is able to clearly resolve two distinct components, though the resulting 

cluster centroids are less accurate due to the closeness of these T1, T2 values. This is a point 

for future consideration, Additionally, tests run where the signal length was varied show that 

the algorithm performs better when the number of time points is increased. Comparing the 

results from Table 3 with the first three columns of Table 1, show that the most accurate 

results are achieved when 3000 time points are used.

The in vivo results are also encouraging. A particular challenge of solving the partial volume 

problem without any prior assumptions about the tissue composition of each voxel is how to 

validate the model in vivo. In both the FISP and bSSFP versions of MRF, the algorithm 

shows agreement in areas of the brain that are highly likely to be pure tissue, as 

demonstrated in areas of pure white matter, gray matter, or CSF, as seen in the single voxel 

results. The residual comparison shown in Figure 3 suggests that even in the case of voxels 

containing a pure tissue, it may be more accurate to represent the subvoxel composition as a 

distribution of dictionary entries, rather than picking a single match. Most certainly this is 

the case in mixed voxels, as the MRF match is attempting to explain at least two different 

components with only one T1, T2 pair.

Of particular interest are the voxel results from the patient, which show the potential of the 

algorithm in regions of pathological tissue, where the composition within a given voxel may 

not be known in advance.

Comparison between our results and those from FISTA suggest that both methods may be 

able to identify multiple voxel components, though FISTA requires much longer 
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computation times. The Bayesian MRF method provides results much more quickly, and 

will benefit from parallelization, as a fixed number of iterations can be chosen in advance, as 

a desired number or percentage of dictionary entries desired to represent the mixed voxel 

signal.

The choice of the algorithm parameters requires further optimization. In particular, these 

parameters may have different effects given different pathologies or mixed voxel types. 

Finding an optimal regularization parameter will be an important aspect of the problem, due 

to the impact a too large or too small regularization parameter can have on the solution.29 

This is seen in Figure S4, as too small of a regularization parameter produces incorrect and 

results dominated by noise, however too large of a regularization parameter will cause 

convergence in all cases to the single-component MRF solution. In addition, since the 

method is iterative, with both an inner and outer loop, the stopping criteria need to be 

optimized as well, as this can also effect regularization. The number of iterations is fixed in 

advance and can be chosen based on any number of factors, by considering an L-curve29 to 

determine tradeoff between the residual norm and regularization, or by choosing a desired 

sparsity level. In the case of in vivo data, it is prudent to retain a larger number of dictionary 

entries to obtain the final solution, to avoid incorrectly pruning significant entries due to 

noise or undersampling artifacts.

In regards to the computation times shown in this work, we have not yet optimized the code 

through more efficient programming or parallelization. Each pixel is treated independently, 

so the algorithm can be parallelized resulting in a much faster implementation. Currently, the 

most computationally expensive step in the algorithm is the solution of the linear least 

squares problem [9], with the dictionary size being the main roadblock. Pruning the 

dictionary, as has been proposed here, significantly allows for speed up of this step; for 

example, in the FISP dictionary of size 3000 × 5970, solving [9] requires about 0.5 seconds 

in MATLAB, thus pruning the dictionary as the iterations proceed is an easy way to save 

time.

The noise model used in the current implementation may also require further optimization. 

Though complex, zero-mean Gaussian noise is used here, there are factors that may 

influence the behavior of the noise seen in MRF, in particular, as related to the gridding 

reconstruction and mulitchannel data.30 The model considered here does not take a multi-

channel acquisition into account, however, relies on the pseudo-randomized spatial encoding 

in the original MRF implementation for the Gaussian noise assumption.

There are still avenues to explore in this methodology, and other techniques that may 

improve the accuracy or efficiency of this method. For example, the inverse Gamma 

probability distribution has similar properties to the Gamma distribution, and can also be 

used for the hyperprior distribution.31 Additionally, we have taken the approach here to 

compute a point estimator to the full posterior distribution shown in [6]. An alternative 

approach is to explore the posterior distribution via sampling techniques using Markov 

Chain Monte Carlo sampling techniques19 though the computational cost to this approach 

would be expensive, as there would need to be a different posterior distribution 
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corresponding to each pixel. However, this approach may offer a valuable alternative to 

validate and understand the solution to this problem.

To manage and visualize the multidimensional results, there are other possibilities beyond 

voxel-specific scatterplots that can be explored, including k-means clustering or learning 

vector quantization.32 Additionally, a promising method is the mean shift algorithm,33 which 

has the advantage that the number of clusters do not need to be estimated from the results. In 

this method, the result is viewed as a probability density, and the modes are estimated using 

the derivative.

Conclusion

We have provided a flexible framework for approaching the partial volume problem in MRF, 

when tissue types are not assumed known a priori. This methodology has advantages over 

traditional partial volume methods, which tend to force the solution to fit two or three 

predefined tissue types.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Support for this work was provided by NIH 1R01EB016728-01A1, NIH 5R01EB017219-02, and Siemens 
Healthineers.

References

1. Tohka J. Partial volume effect modeling for segmentation and tissue classification of brain magnetic 
resonance images: A review. World Journal of Radiology. 2014; 6(11):855–864. [PubMed: 
25431640] 

2. Reiter DA, Lin PC, Fishbein KW, Spencer RG. Multicomponent T 2 relaxation analysis in cartilage. 
Magnetic Resonance in Medicine. 2009; 61(4):803–809. [PubMed: 19189393] 

3. Ruan S, Jaggi C, Xue J, Fadili J, Bloyet D. Brain tissue classification of magnetic resonance images 
using partial volume modeling. IEEE transactions on medical imaging. 2000; 19(12):1179–87. 
[PubMed: 11212366] 

4. Shin W, Geng X, Gu H, Zhan W, Zou Q, Yang Y. Automated brain tissue segmentation based on 
fractional signal mapping from inversion recovery Look-Locker acquisition. NeuroImage. 2010; 
52(4):1347–1354. [PubMed: 20452444] 

5. Ahlgren A, Wirestam R, Stahlberg F, Knutsson L. Automatic brain segmentation using fractional 
signal modeling of a multiple flip angle, spoiled gradient-recalled echo acquisition. Magnetic 
Resonance Materials in Physics. 2014; 27(6):551–565.

6. Asllani I, Borogovac A, Brown TR. Regression algorithm correcting for partial volume effects in 
arterial spin labeling MRI. Magnetic Resonance in Medicine. 2008; 60(6):1362–1371. [PubMed: 
18828149] 

7. Petr J, Schramm G, Hofheinz F, Langner J, van den Hoff J. Partial volume correction in arterial spin 
labeling using a Look-Locker sequence. Magnetic Resonance in Medicine. 2013; 70(6):1535–1543. 
[PubMed: 23280559] 

8. van Osch M, Vonken E, Bakker C, Viergever M. Correcting partial volume artifacts of the arterial 
input function in quantitative cerebral perfusion MRI. Magnetic Resonance in Medicine. 2001; 
45(3):477–485. [PubMed: 11241707] 

McGivney et al. Page 14

Magn Reson Med. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9. Tohka J, Zijdenbos A, Evans A. Fast and robust parameter estimation for statistical partial volume 
models in brain MRI. NeuroImage. 2004; 23(1):84–97. [PubMed: 15325355] 

10. Manjón JV, Tohka J, Robles M. Improved estimates of partial volume coefficients from noisy brain 
MRI using spatial context. NeuroImage. 2010; 53(2):480–490. [PubMed: 20600978] 

11. Laidlaw DH, Fleischer KW, Barr AH. Partial-volume Bayesian classification of material mixtures 
in MR volume data using voxel histograms. IEEE transactions on medical imaging. 1998; 17(1):
74–86. [PubMed: 9617909] 

12. West J, Warntjes JBM, Lundberg P. Novel whole brain segmentation and volume estimation using 
quantitative MRI. European Radiology. 2012; 22(5):998–1007. [PubMed: 22113264] 

13. West J, Blystad I, Engström M, Warntjes JBM, Lundberg P. Application of Quantitative MRI for 
Brain Tissue Segmentation at 1.5 T and 3.0 T Field Strengths. PLoS ONE. 2013; 8(9):1–12.

14. Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, Griswold MA. Magnetic resonance 
fingerprinting. Nature. 2013; 495:187–192. [PubMed: 23486058] 

15. Deshmane, A., Ma, D., Jiang, Y., Fisher, E., Seiberlich, N., Gulani, V., Griswold, M. Proceedings 
of the 22nd Annual Meeting. ISMRM; 2014. Validation of tissue characterization in mixed voxels 
using MR fingerprinting; p. 94

16. Deshmane, A., McGivney, D., Jiang, Y., Ma, D., Griswold, M. Proceedings of the 24th Annual 
Meeting. ISMRM; 2016. Enforcing a physical tissue model for partial volume MR fingerprinting; 
p. 2998

17. Cao, X., Liao, C., Wang, Z., Ye, H., Chen, Y., He, H., Chen, S., Liu, H., Zhong, J. Proceedings of 
the 24th Annual Meeting. ISMRM; 2016. An improved tissue-fraction MRF (TF-MRF) with 
additional fraction regularization; p. 4223

18. Hamilton, J., Deshmane, A., Griswold, M., Seiberlich, N. Proceedings of the 24th Annual Meeting. 
ISMRM; 2016. MR fingerprinting with chemical exchange (MRF-X) for in vivo multi-component 
relaxation and exchange rate mapping; p. 431

19. Calvetti, D., Somersalo, E. Introduction to Bayesian Scientific Computing: Ten Lectures on 
Subjective Computing. New York: Springer; 2007. 

20. Calvetti D, Hakula H, Pursiainen S, Somersalo E. Conditionally Gaussian Hypermodels for 
Cerebral Source Localization. SIAM Journal on Imaging Sciences. 2009; 2(3):879–909.

21. Ji S, Xue Y, Carin L. Bayesian compressive sensing. IEEE Transactions on Signal Processing. 
2008; 56(6):2346–2356.

22. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. Journal of 
Research of the National Bureau of Standards. 1952; 49(6):409–436.

23. Jiang Y, Ma D, Seiberlich N, Gulani V, Griswold M. MR fingerprinting using fast imaging with 
steady state precession (FISP) with spiral readout. Magnetic Resonance in Medicine. 2015; 74(6):
1621–1631. [PubMed: 25491018] 

24. Wansapura JP, Holland SK, Dunn RS, Ball WS. NMR relaxation times in the human brain at 3.0 
Tesla. Journal of Magnetic Resonance Imaging. 1999; 9(4):531–538. [PubMed: 10232510] 

25. Fessler JA, Sutton BP. Nonuniform fast Fourier transforms using min-max interpolation. IEEE 
Transactions on Signal Processing. 2003; 51(2):560–574.

26. Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. 
Magnetic Resonance in Medicine. 2000; 43(5):682–690. [PubMed: 10800033] 

27. Badve C, Yu A, Dastmalchian S, Rogers M, Ma D, Jiang Y, Margevicius S, Pahwa S, Lu Z, 
Schluchter M, et al. MR fingerprinting of adult brain tumors: Initial experience. American Journal 
of Neuroradiology. 2016

28. Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. 
SIAM Journal on Imaging Sciences. 2009; 2(1):183–202.

29. Hansen PC. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review. 1992; 
34(4):561–580.

30. Zhao B, Setsompop K, Ye H, Cauley SF, Wald LL. Maximum likelihood reconstruction for 
magnetic resonance fingeprinting. IEEE transactions on medical imaging. 2016; 35(8):1812–1823. 
[PubMed: 26915119] 

McGivney et al. Page 15

Magn Reson Med. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



31. Calvetti D, Somersalo E. Hypermodels in the Bayesian imaging framework. Inverse Problems. 
2008; 24(3):34013.

32. Hastie, T., Tibshirani, R., Friedman, J. The Elements of Statistical Learning: Data Mining, 
Inference, and Prediction. Second. New York: Springer; 2009. 

33. Comaniciu D, Meer P. Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE 
Transactions on Pattern Analysis and Machine Intelligence. 2002; 24(5):603–619.

McGivney et al. Page 16

Magn Reson Med. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
(a) A schematic of a voxel with slowly or non-exchanging components, with distinct 

boundaries. This is the type of voxel we propose to study in this work. (b) A diffuse, well-

mixed voxel of fast-exchanging components. The white circle represents the diffusion 

mixing distance in both cases.
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Figure 2. 
Two normal distributions are plotted in (a), both centered at 0, but with different variances, 

as noted. In (b) is shown a probability density function of the Gamma distribution with 

shape parameter α = 1.75 and scale parameter β = 0.1.
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Figure 3. 
The residuals per voxel corresponding to MRF matching and the Bayesian algorithm for the 

fully sampled, in vivo data set. Four different ROIs were examined, two regions with 

presumably pure tissues (pure white matter (a) and pure CSF (b)), and two regions with 

assumed partial volume (white matter/gray matter (c) and gray matter/CSF (d)). Note that in 

regions of partial volume, the Bayesian algorithm produces smaller residuals, as shown in 

(c) and (d).
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Figure 4. 
The MRF T1 map (units in ms) with the three voxels highlighted which are analyzed. The 

blue marker corresponds to gray matter/CSF partial volume, yellow to white matter/gray 

matter partial volume, and red to pure white matter.
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Figure 5. 
Results from analyzing the three voxels highlighted in Figure 4. The top row (plots (a)-(c)) 

show the results from the Bayesian algorithm using 110 iterations. The middle and bottom 

rows show results using FISTA, with 5,000 iterations (plots (d)-(f)) and 15,000 iterations 

(plots (g)-(i)). In each scatterplot is also plotted the MRF result, shown as a square.
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Figure 6. 
Voxel-wise algorithm results from the patient, diagnosed with a GBM. Panel (a) shows the 

result from a pure white matter voxel, (b) from a pure gray matter voxel and (c) from a pure 

CSF voxel. Panels (d) and (e) show Bayesian MRF results from two voxels which 

potentially exhibit partial volume. In (d) is a mix of white matter and gray matter, and in (e) 

is a mix of gray matter and CSF.
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Figure 7. 
Voxel-wise Bayesian MRF results for the patient, with locations indicated on the T1 map 

(units in ms) in (a). In (b) is the result from within the tumor (indicated in yellow in (a)), and 

in (c), (d), and (e) are results from the peritumoral region (indicated in blue in (a)).
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