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Summary

Identifying reliable drug response biomarkers is a significant challenge in cancer research. We 

present CARE, a computational method focused on targeted therapies, to infer genome-wide 

transcriptomic signatures of drug efficacy from cell line compound screens. CARE outputs 

genome-scale scores to measure how the drug target gene interacts with other genes to affect the 

inhibitor efficacy in the compound screens. Such statistical interactions between drug targets and 

other genes were not considered in previous studies but are critical in identifying predictive 

biomarkers. When evaluated using transcriptome data from clinical studies, CARE can predict the 

therapy outcome better than signatures from other computational methods and genomics 

experiments. Moreover, the CARE signatures for the PLX4720 BRAF inhibitor are associated 

with an anti-PD1 clinical response, suggesting a common efficacy signature between a targeted 

therapy and immunotherapy. When searching for genes related to lapatinib resistance, CARE 

identified PRKD3 as the top candidate. PRKD3 inhibition, by both siRNA and compounds, 
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significantly sensitized breast cancer cells to lapatinib. Thus, CARE should enable large-scale 

inference of response biomarkers and drug combinations for targeted therapies using compound 

screen data.

eTOC blurb

Data from cell line compound screens could derive clinically predictive biomarkers for targeted 

cancer therapies by testing how drug target genes interact with other genes to affect drug efficacy.
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Introduction

Despite the rapid development of cancer treatment methods, many issues such as drug 

resistance and severe side effects are still limiting the effectiveness of most anticancer drugs 

(Holohan et al., 2013; Widakowich et al., 2007). Predictive biomarkers of clinical benefits 

are valuable components to assist personalized treatment decisions (Issaq et al., 2011). In an 

ideal scenario, a genomics biomarker could analyze the DNA sequences or gene expression 

profiles of a patient’s tumor and make a reliable prediction regarding therapy response to an 

anticancer drug. However, despite a few successful biomarkers from clinical genomics 

studies (Trifiletti et al., 2017), finding reliable prognostic biomarkers is still an open research 

area for most anticancer drugs in most cancer types (Mabert et al., 2014).

Many approaches have been adopted to identify gene biomarkers and regulators of response 

and resistance to anticancer therapies from clinical genomics data. For example, post-

treatment tumors that are resistant to drugs could be profiled for recurrent genomic and 

transcriptomic alterations, with pre-treatment sensitive tumors as the reference (Hugo et al., 

2015). When associated with patient therapy and clinical outcome, the gene expression or 
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mutation profiles of pre-treatment tumors could also provide insight on prognostic 

biomarkers (Filipits et al., 2011; Guarneri et al., 2015; van ‘t Veer et al., 2002). The ideal 

dataset from which to build predictive biomarkers would be systematic drug sensitivities and 

tumor molecular profiles (e.g., mutation, expression) across a large cohort of patients with 

clinical information. However, these data incur significant efforts and expenses and have 

limitations on the number of drugs tested.

A faster and cheaper alternative to profile clinical samples is to use cell lines as experimental 

systems. Genomic profiling and screening technologies, together with immortalized cell line 

models, are important experimental strategies to investigate the efficacy of therapeutic 

compounds. For example, molecular profiling of drug-resistant cell lines derived from 

chronic treatment of sensitive cell lines is widely used to identify cell-intrinsic gene 

signatures of drug resistance (McDermott et al., 2014; Nazarian et al., 2010). Genome-wide 

screens using clustered regularly interspaced short palindromic repeats (CRISPR) have been 

developed to investigate the impact of gene knockout on drug efficacy in cell line and mouse 

models (Manguso et al., 2017; Shalem et al., 2014). Additionally, CRISPR activation and 

open reading frame (ORF) screens can induce gene expression and reveal the associations 

between gene activation and drug resistance (Johannessen et al., 2013; Konermann et al., 

2015).

With the rapid advance of automation technology, high-throughput compound screening is 

rapidly becoming a rich source of information about the mechanisms of drug response and 

resistance (Hu and Zhang, 2016). Early efforts in NCI60 cell lines correlated gene 

expression and drug activity patterns across a panel of 59 cancer cell lines to explore 

mechanisms of drug resistance (Scherf et al., 2000; Shoemaker, 2006). Several new 

consortiums have conducted both molecular profiling and drug efficacy measurements on 

hundreds of cancer cell lines. The Cancer Cell Line Encyclopedia (CCLE), Genomics of 

Drug Sensitivity in Cancer (GDSC), and Cancer Therapeutics Response Portal (CTRP) 

projects screened 24, 250, and 545 compounds, respectively, across almost 1000 cell lines 

(Barretina et al., 2012; Iorio et al., 2016; Seashore-Ludlow et al., 2015). These compound 

screen projects used statistical approaches such as Elastic Net and ANOVA to identify drug 

efficacy signatures by testing the associations between gene mutation or expression status 

and drug efficacy across cell lines. Several studies also explored machine-learning 

approaches that incorporate high-dimensional nonlinear relationships to analyze compound 

screens (Costello et al., 2014). A limitation of these previous studies is that they applied the 

same analysis procedures to all types of compounds without distinguishing between targeted 

therapies on specific oncogenes and chemotherapies with general cytotoxicity. Since 

different drug types may follow distinct mechanisms of action, it is likely that customized 

approaches may achieve better predictive performance depending on the specific drug 

categories. Additionally, the clinical relevance of cell line models has been continuously 

questioned (Gillet et al., 2011; Gillet et al., 2013). It remains to be systematically tested 

whether the biomarkers identified from cell line data have sufficient relevance to the patient 

clinical response.

In this study, we use large-scale compound screening data to identify biomarkers that predict 

the clinical response to targeted therapies. We focused on targeted therapies and built a 
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framework, Computational Analysis of REsistance (CARE). Different from previous 

methods analyzing compound screens, CARE evaluates how drug targets interact with other 

genes to affect drug efficacy by testing the interaction effects in multivariate models. Such 

interaction effects between drug targets and other genes were not considered in previous 

studies but are critical in identifying predictive biomarkers for targeted therapies. 

Additionally, CARE scores each gene in the genome and uses the correlation between the 

CARE scores and tumor expression to predict drug response and is therefore robust against 

noise on individual genes. In the following sections, we will introduce the algorithmic 

design of CARE and demonstrate its performance in predicting clinical outcomes of targeted 

cancer therapies. We will also show the better performance of our approach by systematic 

method comparisons and experimentally validate new synergistic drug combinations 

predicted by CARE. The source code and results of our study are available at http://

care.dfci.harvard.edu.

Results

CARE identifies robust genome-wide signatures of targeted therapy efficacy

Compound screens on cancer cell lines, which measure the growth inhibition of drugs across 

many cell lines with diverse molecular characteristics, contain abundant information about 

factors determining drug efficacy (Hu and Zhang, 2016). We observed that many known 

biomarkers of targeted therapy efficacy had significant interaction associations with the drug 

target genes in the compound screening data. For example, CCLE screens show that the 

BRAF V600E mutation correlates with increased cell line sensitivity to the BRAF inhibitor 

PLX4720 (Barretina et al., 2012). However, this association between drug target and drug 

efficacy (gaps between the BRAF V600E mutant and other cell lines in Figure 1A) 

decreases with increased EGFR expression. This observation is consistent with the 

knowledge that EGFR activation promotes resistance to BRAF inhibitors (Sun et al., 2014). 

In contrast, the increased expression of LEF1, a gene known to sensitize tumor cells to 

BRAF inhibitors (Hugo et al., 2015), is associated with increased PLX4720 inhibition of 

BRAF mutant cells in CCLE screens (Figure 1A). In statistics, an interaction between two 

variables happens if the effect of one variable (e.g., BRAF mutation’s effect on PLX4720 

efficacy) depends on the other variable (e.g., EGFR or LEF1 expression). These observations 

on known targeted therapy biomarkers motivated us to develop a statistical method, 

Computational Analysis of REsistance (CARE), to systematically identify genes with 

similar behaviors.

To evaluate how genes impact targeted therapy efficacy, CARE examines how the expression 

or mutation state of a gene P interacts with the drug target gene status T to influence the 

drug inhibition efficacy in a multivariate linear model (Figure 1B). An interaction term is 

created as the product between the statuses of candidate gene P and drug target T and 

evaluated toward drug inhibition outcome through multivariate regression. A negative 

interaction coefficient “c” indicates activation of gene P to be associated with a decreased 

correlation between drug target and drug inhibition efficacy and thus with drug resistance 

(Figure 1B). In contrast, a positive coefficient “c” indicates activation of P to be associated 
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with an increased correlation between drug target status and inhibition efficacy and thus with 

drug sensitivity.

The overall effect of gene P on drug efficacy is computed as a conditional effect when the 

drug target T is active, combining both interaction and base coefficients in a linear model 

(Figure 1C, STAR methods) (Brambor et al., 2006). To estimate the statistical significance 

of the conditional effect, CARE computes a t-value (coefficient/standard deviation) using the 

ordinary least square method (Figure 1C) (Freedman, 2009). For example, CARE correctly 

identified EGFR as a resistant gene for the BRAF inhibitor, as indicated by a negative 

CARE score (Table 1), and LEF1 as having a sensitizing role for the BRAF inhibitor, as 

shown by a positive CARE score (Table 2). CARE also identified AXL to be a resistant gene 

for lapatinib (a dual ERBB2 and EGFR inhibitor) through the negative CARE scores with 

ERBB2 as lapatinib target (Table S1), which is consistent with previous knowledge (Liu et 

al., 2009). Finally, instead of selecting specific genes, CARE outputs a vector with one score 

for every human gene (Figure 1C). This score vector allows us to identify potential 

biomarker genes, whose expression or mutation status has significant associations with drug 

efficacy. When predicting whether a tumor will respond to the drug, we calculate the 

genome-wide Pearson correlation between the tumor expression profile and CARE score 

(Figure 1D), which provides a robust estimation and avoids noise from individual genes.

To systematically identify gene signatures associated with response and resistance to 

different targeted therapies, we applied CARE to three large-scale compound screen 

datasets. The CCLE (Barretina et al., 2012), GDSC (Iorio et al., 2016) and CTRP (Seashore-

Ludlow et al., 2015) projects screened numerous compounds across hundreds 

(approximately 500 to 1000) of cancer cell lines (Figure S1A and Table S2). For each 

compound with annotated target genes, we first used a forward selection algorithm to ensure 

that the status (e.g., expression, mutation) of the annotated drug target gene has sufficient 

correlation with drug efficacy (Jiang et al., 2015) (STAR methods). There are 17, 118 and 

190 compounds passing the selection criteria in the CCLE, GDSC and CTRP cohorts, 

respectively. The response measurements of these targeted therapies are reasonably 

consistent across different datasets (Figure S1B, C).

We applied CARE to identify genes associated with drug efficacy for many compounds 

across the three cohorts and focused on druggable genes with significant negative CARE 

scores for visualization (Figure 2). For example, AXL, a druggable kinase implicated as a 

resistance driver for many targeted therapies (Liu et al., 2009; Zhang et al., 2012), has 

significant negative CARE scores for multiple compounds screened in three cohorts (Figure 

2A, B). Another example is that SRC has negative CARE scores on most drugs (Figure 2A, 

C), which corroborates previous findings that SRC activation promotes resistance towards 

several targeted therapies (Wilson et al., 2014; Zhao et al., 2017). In contrast, CSK, a 

negative regulator of SRC (Okada et al., 1991), has significant positive CARE scores for 

many compounds (Figure 2C), suggesting that loss of CSK may promote drug resistance 

towards many targeted therapies. Notably, the interaction test in Figure 1B can evaluate both 

expression and mutation of gene P on drug efficacy. For example, the significant negative 

CARE scores of KRAS mutations in many compound screens (Figure S2) support the role 

of KRAS mutations in promoting drug resistance (Misale et al., 2012; Sameen et al., 2016).
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CARE outperforms other genomic signatures in predicting the clinical outcome of targeted 
therapies

Encouraged by the consistent results of previous studies, we systematically tested the 

clinical utility of CARE by evaluating the accuracy of CARE scores in predicting the patient 

clinical outcome of targeted therapies. To this end, we used the expression profiles of pre-

treatment tumors from 12 melanoma patients that had a BRAF V600E mutation and were 

treated with vemurafenib, each with progression-free survival (PFS) information (Hugo et 

al., 2015). Patients are predicted to be responders if their tumor expression profiles are 

positively correlated with CARE scores of PLX4720, a chemical analog of vemurafenib 

(Bollag et al., 2012), and non-responders if the profiles are negatively correlated (Figure 

1D). The correlations between patient tumor expression profile and CARE scores were 

significantly associated with the PFS time, verifying CARE’s predictive power in clinical 

samples (Figure 3A).

To compare CARE with other experimental methods conducted on cell lines, we collected 

the gene scores associated with drug efficacy derived from CRISPR knockout, CRISPRa, 

shRNA, ORF screens, and expression profiles of drug-resistant cell lines (Table S3A). For 

each signature, we stratified the patients according to the correlation between tumor gene 

expression values and cell line gene scores (such as differential expression or screen 

selection level) published in these experiments. Then, we predicted positively correlated 

patients as the responders and negatively correlated patient as the nonresponders. As an 

evaluation standard to test prediction accuracy, we defined patients with the top and bottom 

50% PFS as the responders and non-responders, respectively. The prediction accuracy 

metrics are highest for CARE, followed by CRISPRa/CRISPR knockout screens and other 

experimental methods (Figure 3B). When evaluated with an alternative association metric 

computed by the Cox-PH model, CARE also demonstrated the highest association with PFS 

outcome among all methods (Figure S3A).

To further investigate the clinical utility of CARE, we next tested another drug, lapatinib, on 

HER2+ breast cancer. The CHER-LOB clinical trial released complete pathological 

response statuses of patients together with their gene expression profiles (Guarneri et al., 

2015). We computed the Pearson correlation between gene expression values and CARE 

scores for lapatinib from the CCLE cohort and found that responders have significantly 

higher correlations with the CARE scores than non-responders (Figure 3C, one-tailed rank-

sum test p-value = 0.047). We also collected gene signatures profiled by many experimental 

methods (Table S3B) and used the other signatures to correlate with patient gene expression 

profiles to predict response. When evaluating the fraction of patients with correctly predicted 

response status, we found CARE prediction to give the highest accuracy over other 

signatures (Figure 3D).

The CARE signature for the PLX4720 BRAF inhibitor, computed from cell line screens, is 

also indicative of the clinical response to anti-PD1 immune therapy in melanoma (Figure 

3E). The accuracy metric of CARE is even higher than several known biomarkers of anti-

PD1 response (Figure 3F) (Hugo et al., 2016; Nishino et al., 2017), as well as a gene 

signature from an in vivo CRISPR screen (Table S3C) (Manguso et al., 2017). The clinical 

outcome of melanoma patients was known to be associated with the cytolytic activity 
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(CYT), defined as the sum of GZMA, GZMB, and PRF1 expression in a bulk tumor as an 

infiltration estimation of cytolytic lymphocytes (Rooney et al., 2015). Among TCGA 

melanoma tumors, a higher CYT level predicts better patient overall survival but only in 

patients predicted to be responders by the CARE PLX4720 signature (Figure 3G). Thus, the 

cell-autonomous gene signature of CARE is associated with both immunotherapy response 

and tumor immune evasion. To explore the possible mechanisms, we applied gene set 

enrichment analysis on the PLX4720 CARE signature and found epithelial-to-mesenchymal 

transition (EMT) to be the most enriched category (Figure 3H). EMT was a known driver 

process in drug resistance and tumor immune evasion (Dongre et al., 2017; Shibue and 

Weinberg, 2017) and was implicated in resistance to anti-PD1 therapy (Hugo et al., 2016). 

We explored the prediction performance of other compound CARE signatures on the anti-

PD1 response. In all screen cohorts, CARE signatures more correlated with the EMT 

signature show the better predictive power of anti-PD1 response (Figure S3B). Therefore, 

the CARE signature has predictive power on immune resistance through enrichment of 

EMT, a common resistance mechanism between targeted therapies and immunotherapies.

One limitation of our evaluation of clinical prediction accuracy on targeted therapies is that 

published studies only profiled a small number of patients. For example, there are only 12, 

25, and 31 patients with complete clinical information and pre-treatment transcriptome for 

vemurafenib (Hugo et al., 2015), pembrolizumab (Hugo et al., 2016), and lapatinib 

(Guarneri et al., 2015), respectively. In contrast, there are published studies with data for 

hundreds of patients undergoing chemotherapy treatment. Even though the focus of our 

study is targeted therapy, we can also apply CARE to chemotherapies with known targets. 

For example, TUBB is the target gene of paclitaxel by the CCLE annotation (Barretina et al., 

2012). There are three independent studies on paclitaxel treatment that include 193, 115 and 

92 patients, respectively (Figure 3I) (Hatzis et al., 2011; Miyake et al., 2012; Popovici et al., 

2010). We used the paclitaxel CARE scores, computed from CCLE data, to predict therapy 

response in the clinical cohorts and achieved approximately 70% accuracy (Figure S3C), a 

performance better than other genomics signatures (Figure 3J and Table S3D).

We also examined how well the paclitaxel response signatures derived from one clinical 

cohort predict responses in another cohort compared to the CARE signature derived from 

cell line compound screens. To this end, we computed associations between gene expression 

levels and therapy response using logistic regression in each clinical cohort. Then, we used 

the computed gene associations to predict responses in another clinical cohort and calculated 

the average accuracy among all six pairwise combinations across three paclitaxel studies. 

The CARE signature, although derived from cell line compound screens, achieved 

comparable performance with signatures derived from independent clinical cohorts 

(“Clinical” in Figure 3J).

CARE is more robust than other computational methods in finding biomarkers

Previously, several computational methods were utilized by different studies to analyze 

compound screen data. Therefore, we compared CARE with other computational methods in 

predicting gene signatures of drug efficacy using the evaluation standards from both cell 

models and clinical studies. These methods include Correlation, Elastic Net, support vector 
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regression (SVR), and the GDSC tool that uses the ANOVA test to identify response 

biomarkers (Iorio et al., 2016). Correlation refers to the Pearson correlation between the 

gene expression or mutation status and drug inhibition outcome. ANOVA estimates the 

difference among group means and variations of drug response according to the gene status. 

Elastic Net, which applies penalties to constrain the regression coefficients, is a popular 

method used in previous compound screen projects to identify gene alterations associated 

with compound efficacy (Barretina et al., 2012; Garnett et al., 2012). SVR is similar to the 

support vector machine (SVM) (Smola and Scholkopf, 2004), but the response variable 

modeled is continuous in SVR instead of categorical as in SVM. Both Elastic Net and SVR 

use regression coefficients on each gene as associations with drug efficacy.

To set up the first evaluation standard, we collected several differential gene expression 

profiles between drug-resistant cell lines derived from chronic drug treatment and their 

parental cell lines. For PLX4720 and lapatinib screened in all three cohorts, we collected 

expression profiles from several studies (Bailey et al., 2014; Giles et al., 2013; Liu et al., 

2009; Nazarian et al., 2010; Zhang et al., 2012). We defined the positive set in evaluation 

standard as the upregulated genes in a resistant cell line compared to its parental line and the 

negative set as the down-regulated genes. We then compared the computational methods 

using a receiver operating characteristic (ROC) curve (Figure 4A and Figure S4A, B) in 

which a reliable prediction should curve toward the upper left corner. Elastic Net predicted a 

small number of genes and missed most efficacy-associated genes in the evaluation standard 

(Figure S4C, D and Table S4A) (Barretina et al., 2012; Garnett et al., 2012). Although 

GDSC, Correlation, and SVR all have better performance than Elastic Net, CARE 

outperformed them all (Figure 4A and Figure S4A, B). We also tested the performance of 

different model variations. The current form of CARE score combined both interaction and 

base coefficients (Figure 1C). Alternatively, we can compute a t-value for only the 

interaction coefficient (“c” in Figure 1B, C) or the base coefficient (“b” in Figure 1B, C) 

without an interaction term in the linear model. Similarly, for other statistical methods, we 

also fitted model variations considering the combination, interaction, and base effects (STAR 

methods). On average, the combination form of CARE score outperformed all the other 

variations (Figure 4B).

To set up the second evaluation standard of comparison, we utilized the metrics for 

predicting clinical response to targeted therapies (Figure 3B, D, F, J) and compared the drug 

efficacy signatures predicted from different computational methods (Figure 4C). Among all 

targeted therapies, CARE achieved robust prediction performance based on various accuracy 

metrics (Figure 4C). Thus, based on the comparisons above with evaluation standards from 

both cell-line models and clinical studies, CARE outperformed other computational 

approaches in predicting gene signatures of drug response and resistance from compound 

screening data.

For all the comparisons above, we only focused on drugs with high correlation between drug 

target status and drug efficacy. We further tested the CARE performance for drugs whose 

efficacy has low correlation with gene status of annotated targets, since the target gene status 

may not be the feature most correlated with drug efficacy. For example, the Pearson 

correlations between topotecan effectiveness and TOP1 expression levels are 0.099 and 
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0.105 in the CCLE and CTRP data, respectively, which all rank below 70% among all gene 

feature correlations. Using a ROC curve, we found that the CARE statistics and Pearson 

correlation achieved similar performance and that the interaction-only statistic has the worst 

prediction performance (Figure S4E, F). Thus, CARE may not have better performance than 

correlation when the annotated target gene does not correlate well with drug efficacy.

CARE predicts synergistic drug targets in treating HER2+ breast cancer cells

Finally, we evaluated whether CARE can identify synergistic drug targets to enhance the 

effectiveness of targeted therapies through combination medicine. We focused on the gene 

signatures for the ERBB2 inhibitor lapatinib, an orally active drug for HER2+ breast cancer 

and other solid tumors (Geyer et al., 2006; Janjigian, 2016). To this end, we selected genes 

with significantly negative CARE scores, indicating that high gene expression levels 

correlate with lapatinib resistance. We further selected genes upregulated in lapatinib-

resistant cell lines (Bailey et al., 2014; Liu et al., 2009) and negatively associated with 

patient response in the CHER-LOB trial (Guarneri et al., 2015). Among the 47 genes 

meeting these criteria, only PRKD3 and AKT3 have compound inhibitors available (Table 

S5A). AKT3 has been reported to promote resistance to anti-HER2 therapy in breast cancer 

(Moody et al., 2015). PRKD3 was predicted by CARE to have a stronger association with 

the clinical outcome than the known lapatinib resistance drivers AKT3 and the previously 

discussed AXL (Figure S5A) and yet has never been reported to promote lapatinib 

resistance. Thus, we decided to validate PRKD3 experimentally.

We first knocked down PRKD3 using a pooled mixture of 30 different siRNAs targeting 

PRKD3 to reduce off-target effects and observed significantly increased lapatinib sensitivity 

in the HER2+ breast cancer cell line SKBR3 (Figure 5A, B). Encouraged by this result, we 

searched publicly available inhibitors and found three pan-PRKD kinase family (PRKD1, 
PRKD2, and PRKD3) inhibitors, KBNB14270, CRT0066101, and CID2011756. Using the 

Bliss independence model (Bliss, 1939) to evaluate the synergy between two compounds, we 

tested the effect of each PRKD inhibitor in combination with lapatinib. The Bliss 

independence model assumes no drug interaction and defines the co-treatment additive 

inhibition as IA + IB – IA * IB, where IA and IB represent the inhibition by compound A and 

B alone, respectively. The drug combination is synergistic if the measured co-treatment 

inhibition is higher than the expected additive effect and antagonistic if the measured 

inhibition is lower than the additive effect. At varying lapatinib doses, the inhibition effect of 

co-treatment with 4 μM PRKD inhibitor KBNB14270 is consistently better than the additive 

effect, indicating a consistent synergy between KBNB14270 and lapatinib (Figure 5C and 

Figure S5B). We also observed a similar synergy for CRT0066101 (Figure S5B, C). We next 

tested the drug synergy by varying the dose of different PRKD inhibitors. KBNB14270 and 

CRT0066101 consistently showed positive synergy with lapatinib (Figure 5D, E), and 

CID2011756 showed synergy at low lapatinib doses (Figure S5D). Besides lapatinib, 

trastuzumab is another targeted therapy used in HER2+ breast cancer. We also observed 

significant synergy between PRKD inhibitors and trastuzumab on the SKBR3 cell line 

(Figure S5C, D). Thus, our results suggest PRKD inhibitors as potentially synergistic 

therapies with anti-HER2 treatment in breast cancers.
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During the gene prioritization process for lapatinib resistance, we only explored those genes 

with consistently high CARE scores across all three screen cohorts. However, some genes 

prioritized without this stringent threshold may still have very significant CARE scores in a 

subset of cohorts. For example, SERPINE1 has very significant CARE scores in CCLE and 

CTRP cohorts, but not GDSC, therefore not included in our previous prioritization result 

(Table S5B). While other genes may not have consistently significant CARE scores (Table 

S5B), which indicates that their association with drug resistance may not be valid across a 

broad range of cell lines in the compound screens.

Discussion

We developed a computational method, CARE, to systematically identify genes associated 

with response and resistance to targeted therapies based on compound screens. Comparisons 

based on multiple clinical datasets demonstrated the superior performance of CARE over 

other computational and experimental methods. Notably, we predicted PRKD3 as a potential 

regulator of anti-HER2 resistance and validated it as a promising target to increase lapatinib 

and trastuzumab efficacy through combinatorial treatment with PRKD inhibitors. Further 

experiments on animal models are needed to increase the clinical potential for these drug 

combinations.

CARE outperformed the gene signatures from CRISPR screens in predicting the patient 

clinical outcome (Figure 3B, F). One possible explanation is that the quality of CRISPR 

screens awaits further improvement at this early stage of technology development, as 

indicated by the low agreement between replicates (Figure S3D). Another possibility is that 

CARE analysis is based on drug sensitivity measurements in many cell lines with diverse 

characteristics, whereas current CRISPR/CRISPRa (or shRNA) screens on drug treatment 

were only available in individual cell lines.

For standard drugs in clinics, the data from drug-resistant cell models and human clinical 

studies could help to identify the response biomarker genes independently from CARE 

signatures. However, the molecular profiles of drug-resistant models are typically available 

on the scale of one or two cell lines. Additionally, most drug clinical studies only profiled a 

small number of patients (e.g., 12 patients for vemurafenib, 32 for lapatinib). In contrast, the 

CARE signature is trained using the genomics and pharmacological data from 

approximately 1,000 cell lines with distinct characteristics; thus, it is generalized from a 

broad genetic background. Second, for most compounds that are not used in clinics, the 

molecular profiles of drug-resistant cell lines and clinical response do not exist. However, 

CARE signatures would still be available to understand potential drug resistance 

mechanisms for these compounds.

A limitation of CARE is that some driver mutations of drug resistance may not exist in 

sufficient frequency in the screened cell lines. For example, there is only one CCLE cell line 

harboring the EGFR T790M mutation, the dominant mechanism of resistance to EGFR 
inhibitors (Holohan et al., 2013). As a result, CARE cannot make statistical inferences on 

this mutation. Meanwhile, although current compound screening projects have tested almost 

1000 cell lines, the number of cell lines in each cancer type is still limited (Figure S4G). 
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CARE has better performance in pan-cancer analysis than lineagespecific analysis due to the 

sample size limitation in each cancer lineage (Figure S4H, I). Another limitation is that 

CARE currently utilizes only cell line data that describe cell autonomous behavior. 

However, the efficacy of many targeted therapies not only involves direct cytotoxic effects 

but also relies on the activation of tumor-targeting immune responses (Galluzzi et al., 2015). 

Thus, future computational methods should model the impact of the tumor 

microenvironment in predicting therapy response.

Despite these limitations, CARE has demonstrated reliable performance in inferring gene 

biomarkers to predict the efficacy of targeted therapy, as well as synergistic drug 

combinations. Recent years have seen the advances in high-throughput technologies and 

increased data volumes for cancer drug research (Chen and Butte, 2016). We foresee that 

CARE will provide future assistance in the development of anticancer drug biomarkers and 

combination therapies.

STAR Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Xiaole Shirley Liu (xsliu@jimmy.harvard.edu). All cell lines, 

chemicals, and reagents can be attained directly from the original supplier.

Experimental Model and Subject Details

The SKBR3 is a female breast cancer cell line of HER2+ subtype purchased from ATCC. 

All models are regularly tested for being free of mycoplasma, and their identities are 

verified.

Method Details

Pharmacological screen data collection—Compound inhibition, gene expression, 

and mutation profiles were available from the websites of CCLE (Barretina et al., 2012), 

GDSC (previously named CGP) (Iorio et al., 2016) and CTRP (Seashore-Ludlow et al., 

2015) with data version until 07/10/2016. All compound names are converted to the standard 

names in PubChem database (Kim et al., 2016). The CARE framework uses a sigmoid 

function to fit drug inhibition values at different doses into a response curve, and compute 

the drug inhibition as the area under the dose-response curve, ranging from 0% to 100%. 

The source code of response curve fitting is released as program “nls_logsig” (Key 

Resources Table).

Clinical data collection—The gene expression profiles of pre-treatment tumors and 

patient clinical information were collected for vemurafenib in melanoma (Hugo et al., 2015), 

lapatinib in HER2+ breast cancer (Guarneri et al., 2015), pembrolizumab in melanoma 

(Hugo et al., 2016), and paclitaxel in breast cancer (Hatzis et al., 2011; Miyake et al., 2012; 

Popovici et al., 2010). In each dataset, the expression value of each gene is normalized by 

subtracting the mean value across all samples. Only genes with top 50% expression variance 

in each study were considered in response prediction. In the pembrolizumab study, 28 
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patients were profiled in the original study (Hugo et al., 2016). However, one patient is 

profiled on-treatment, one patient has duplicated profiles, and one patient does not have 

survival information. Therefore, only the pre-treatment expression profiles of 25 patients 

with complete clinical information are included in further analysis.

Selection of drug target gene statuses—For each compound, we used the drug target 

gene annotation provided by each screen projects. Among annotated targets, we ran a 

forward feature selection algorithm RABIT (Jiang et al., 2015) to minimize the Mallow’s Cp 

and make sure that included target gene status can jointly predict the drug efficacy without 

redundancy. Mallow’s Cp estimates the prediction precision of a linear model with drug 

target features as covariates and drug efficacy as the response (Mallows, 1973). The stepwise 

selection procedure stops at the minimum Mallow’s Cp value (James et al., 2013). Our 

analysis only included reliable drug target gene statuses with positive coefficients in the final 

linear model. There are 17, 190, and 118 compounds with reliable targets selected in the 

CCLE, CTRP, and GDSC cohorts, respectively.

The drug target selection process above may not select the primary drug target status. For 

example, our procedure selected EGFR gene expression for erlotinib and gefitinib through 

high correlation with drug efficacy (Figure S1D), but EGFR mutation is known as the 

primary drug target status. The reason is that the cell line collection screened in three 

projects have a very low frequency of EGFR mutation. The most common EGFR activating 

mutations are in-frame deletions of exon 19 and L858R point mutation in exon 21, which 

account for ~90% of all EGFR mutations in lung cancer (Ladanyi and Pao, 2008). Among 

the CCLE cell lines screened by both CCLE and CTRP project, only five cell lines harbor 

these mutations (Figure S1E upper). In the COSMIC cell collection screened by GDSC 

project, only four cell lines harbor these mutations (Figure S1E bottom). In both CCLE and 

COSMIC cohorts, only one cell line has T790M mutation that drives EGFR inhibitor 

resistance (Figure S1E). Among about 1000 cancer cell lines in each collection, less than 

five cell lines in total cannot lead to any reliable statistical inference. We only included 

mutation variables with more than 10% frequency among tested cell lines. Thus, we 

excluded EGFR mutation in our analysis and used the expression as alternative target status. 

Consistent with the results from cell screens, several clinical studies also reported that EGFR 
gene level as a strong predictor of erlotinib and gefitinib efficacy (Cappuzzo et al., 2005; 

Haas-Kogan et al., 2005; Jazieh et al., 2013; Tsao et al., 2005).

For CDK4/6 inhibitor palbociclib, we noticed that the status of RB1, but not CDK4/6, is 

used as the patient selection criterion in palbociclib clinical trials (O’Leary et al., 2016). 

Indeed, the correlations between RB1 expression and palbociclib efficacy rank above 98% 

among all gene correlations in both CCLE and GDSC screens (Figure S1F). Thus, in our 

current analysis, we included RB1 as the target.

Interaction test in multivariate linear regression—For each targeted therapy, the 

drug efficacy associations of all genes are tested by an interaction test in linear regression 

(Figure 1B). Variable T and P represent the statuses of the drug target gene and a candidate 

gene in the test, respectively. For gene mutation status, a value of zero on variable T or P 

indicates an absence of mutation; and a value of one indicates a presence of the mutation. 
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For gene expression status, our analysis normalized all values to zero mean and one standard 

deviation. Thus, a value of zero on variable T or P represents the average expression level of 

a gene across all cell lines; and a value of one represents one standard deviation higher than 

average. We solve a linear model “Inhibition = a*T + b*P + c*T*P + Intercept + ε” using 

the ordinary least square method (OLS) (Freedman, 2009). Since we have selected 

compounds whose inhibition efficacy positively correlates with the drug target status T, the 

coefficient “a” is always positive. The slope between drug target status and drug inhibition 

efficacy is “ a + cP” (Figure 1B). If the coefficient “c” is negative, increasing P will decrease 

the slope. In contrast, if the coefficient “c” is positive, increasing P will increase the slope.

To estimate the overall association between gene P and drug inhibition efficacy, we 

computed the sum of coefficients “b + c” (Figure 1C), defined as the conditional effect 

(Brambor et al., 2006). The linear model of CARE has the form “Inhibition = a T + b P + c 

T P + Intercept + ε”. The covariates T and P represent gene statuses. For mutation status, 

value “0” represents the absence of mutation, and value “1” represents the presence of the 

mutation. For expression status, we have transformed the values for each gene to zero-mean 

and one standard deviation. Thus, value “0” represents the average expression level among 

all cell lines, and value “1” represents the expression level of one standard deviation higher 

than average. The association between drug inhibition response and candidate gene P when 

target gene T is activated could be represented as “Inhibition = a + b P + c P + Intercept + ε | 

T = 1”. Thus, “b + c” represents the association between drug inhibition and candidate gene 

P when drug target is activated (i.e., T = 1).

For coefficient sum b + c, the t-value is calculated following the procedure of general linear 

hypothesis testing (Figure 1C) (Hothorn et al., 2008). If a linear model has the form y = X β 
+ ε, following OLS conditions, we could estimate coefficient β and its covariance matrix Σ 
as β̂ and Σ̂. For any linear combinations of parameters cβ (c is a linear vector), we can 

estimate it as cβ̂ and its covariance matrix as c′Σ̂ c (Freedman, 2009). Under the OLS 

assumptions, the t-statistics cβ
c′∑c

 follows student t-distribution with n-p-1 as the degree of 

freedom (Hothorn et al., 2008). In the hypothesis test, the null hypothesis is cβ = 0 and 

alternative hypothesis is cβ ≠ 0. In our CARE method, we use the linear combination of two 

coefficients b and c as a special case of t-statistics described above. CARE computes a two-

sided p-value for the t-statistics through the student t-test. For all p-values of tested genes in 

each screen profile, the Benjamini Hochberg procedure can convert p-values to false 

discovery rates (FDR) with 0.05 as result selection threshold.

Interaction test for compounds with multiple drug targets—Certain drugs may 

have multiple annotated drug targets (e.g., Lapatinib targets both ERBB2 and EGFR). For 

such cases, we solve a single linear model with all covariates: 

Inhibition = ∑1
Nai ∗ T i + b ∗ P + ∑1

Nci ∗ T i ∗ P + Intercept + ε, where N is the number of drug 

targets. Then, for each target gene Ti, CARE computes the t-value as 
b + ci

s . e .(b + ci)
 (Table S1). 

For lapatinib, the CHER-LOB trial only considered the ERBB2 level in patient selection. 

Thus, we used the CARE scores associated with ERBB2 to predict therapy response.
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Difference between CARE and other regression, correlation, and ANOVA 
methods—Most computational approaches tested in this study involved computing 

products among different variables. However, the products among these methods are 

different. The product “T*P” in CARE is a covariate for testing the interaction effects “c” in 

linear model “Inhibition = a*T + b*P + c*T*P” (Figure 1B). After computing “T*P”, we 

still need to use the ordinary least square approach to calculate all coefficients (e.g., b, c) as 

the final output (Freedman, 2009). In contrast, for correlation, the product of normalized 

variables “Inhibition * P” is directly the final output. ANOVA is different from correlation in 

that ANOVA is testing the difference among group variations associated with categorical 

variables. We used the ANOVA implemented in the GDSC package (Iorio et al., 2016), 

which requires the gene expression level of P as discrete values of either high or low with a 

cutoff on the average value among all patients. In contrast, both correlation and CARE work 

on continuous variables without any cut-off threshold.

Annotation of druggable genes—For all genes with drug score larger than 5 in the 

Pfizer OASIS database (Fernandez-Banet et al., 2016), we further searched their gene name 

on Selleck website (http://www.selleckchem.com), and only keep genes with inhibitors 

commercially available.

Experimental validation on PRKD3 as synergistic target of anti-HER2 
therapies—The siRNA pool targeting PRKD3 and non-target control siRNAs were 

purchased from the siTools Biotech company (http://www.sitoolsbiotech.com). The antibody 

to PRKD3 was from Cell Signaling Technology (D57E6, 1:500 dilution). The antibody to 

ACTB was from Sigma Aldrich (A1978, 1:5000 dilution). Secondary antibody HRP anti-

mouse was from Cell Signaling Technology (#7076S, 1:2500). HRP anti-rabbit was from 

Cell Signaling Technology (#7074S, 1:2500). Lapatinib was from SelleckChem, and 

trastuzumab was from Dana-Farber Pharmacy store. All PRKD inhibitors (KBNB14270, 

CRT0066101, and CID2011756) were purchased from Sigma Aldrich.

The SKBR3 cell line (ATCC, Mycoplasma tested free) was cultured in Mccoy 5A medium 

(Fisher Scientific) with 10% FBS. On day 1, siRNA pools (siTools Biotech) targeting 

PRKD3 and control were reverse transfected at a concentration of 20nM with Lipofectamine 

RNAiMax (Invitrogen), and seeded in 96 well plates at 10,000 cells per well. We examined 

the knockdown efficiency at 24 hours with qPCR and 72 hours with western blot. ACTB is 

the control gene for both qPCR and western blot. On day 2, the cell line was treated with 

lapatinib with ten concentrations, starting from 5uM with a dilution factor of two. After 

three days, we used the Cell Titer Blue assay (Promega) to test the cell viability.

In the drug co-treatment experiments, different dose combinations of PRKD inhibitors and 

lapatinib or trastuzumab are seeded together with the SKBR3 cell at 10,000 cells per well. 

The inhibition effects are measured after three days using Cell Titer Blue assay.

Quantification and Statistical Analysis

Gene biomarkers from different computational methods—We trained each 

statistical model on the full range of screen data. The coefficient or statistical metric 

associated with each gene feature is the genome-wide biomarker to predict drug efficacy. 
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Specifically, the CARE biomarker is the genome-scale score vector of t-values computed 

from interaction test (Figure 1C). For correlation, the biomarker is the genome-scale vector 

of Pearson correlation values between molecular gene status and drug inhibition values 

across cell lines. The ANOVA analysis was implemented in the GDSC software package 

(Iorio et al., 2016), and the biomarker is the vector of delta values comparing the difference 

of drug response by gene mutation status, or discrete status of gene expression.

For support vector regression (SVR), we trained linear epsilon-SVM using Python model 

scikit-learn. The input matrix X is composed of gene expression and mutation status. The 

response Y consists of drug inhibition values across cell lines. For CCLE screen, the 

dimension of X matrix is 18,293 (gene variables of expression and mutation) × 493 (cell 

lines). For CTRP screen, the dimension of X matrix is 18,293 × 821. For GDSC screen, the 

dimension of X matrix is 31657 × 962. For each compound, the SVM training is done 

together with ten-fold cross validation (CV) with the high dimensional X matrix. Using the 

linear kernel, we tuned the cost parameter among 1, 10, 100, 1000, and selected an optimal 

value with best CV R2 score. The biomarker from the linear SVM consists of the 

coefficients of all genes.

For elastic net, we trained one linear model for each compound, using ten-fold cross 

validation by R glmnet package with the same SVR input (Friedman et al., 2010). The 

parameter “alpha” controls the combination between the L1 penalty of lasso and the L2 

penalty of ridge regression. We explored alpha values from 0 to 1 with 0.1 as the step and 

took the value with the best CV R2 score. The biomarker from elastic net consists of the 

coefficients of all genes.

Gene biomarkers from different genomics experiments—The gene biomarker 

from each genetic screen (CRISPR, CRISPRa, shRNA, siRNA, and ORF) consist of all gene 

log-fold-change values that test the difference of median guide RNA frequency between 

drug treatment and control conditions. The biomarker from each chronic cell line experiment 

consists of the gene differential expression t-values computed by Limma between the drug 

resistant cell line and parental sensitive line (Ritchie et al., 2015). For clinical studies (Hatzis 

et al., 2011; Miyake et al., 2012; Popovici et al., 2010), we tested the association between 

gene expression values and patient clinical response with logistic regression, and the 

biomarker comes from the t-values of gene coefficients.

Clinical response prediction through genome-scale biomarkers—For each 

genome-scale biomarker, the Pearson correlation between gene expression values and 

biomarker gene scores predicts the treatment response for each patient in a clinical study 

(Figure 1D). Positively correlated patients are responders, and negatively correlated patients 

are nonresponders. For each clinical study, we ranked all human genes according to the 

standard deviation of expression values across patients and only used the top 50% genes in a 

correlation analysis. Certain genomic screen studies did not release their data (Table S3) 

(Eichhorn et al., 2008; Moody et al., 2015). For these studies, we extracted the top gene hits 

reported in the publication and computed the average gene expression value over these top 

gene hits as therapy response prediction.
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Comparison of methods for finding genes associated with drug efficacy—As 

the evaluation standard of gene signatures associated with response and resistance to 

targeted therapy, we utilized gene expression data from drug resistant cell lines derived from 

chronic treatment on sensitive cell lines. For microarray data, we used Limma to extract the 

differential expressed genes between drug resistant cell line and parental sensitive cell line 

(Ritchie et al., 2015). The evaluation standard positive set consists of the upregulated genes 

selected by Limma, and the evaluation standard negative set consists of those down-

regulated genes.

For BRAF inhibitor, we used the data from a previous study that derived drug resistant cell 

lines from chronic drug treatment and compared the gene expression profiles between drug 

resistant cell lines and their parental lines (Nazarian et al., 2010). Among three drug resistant 

cell lines, only M229-R5 and M238-R1 (but not M249-R4) have more than ten differential 

upregulated genes with default Limma parameters. We used the intersection of differential 

expressed genes between M229-R5 and M238-R1 as the evaluation standard set for BRAF 
inhibitor. Comparing to the union, the overlap of differentially expressed genes could give a 

more consistent result in a third drug resistant cell line SKMel28 (Figure S4J, K) (Hugo et 

al., 2015). Many previously known genes involved in anti-BRAF resistance are differentially 

expressed in the M229-R5 and M238-R1 cell lines (Table S4B, C).

For lapatinib, we found microarray data of drug resistant cell lines derived from BT474 (Liu 

et al., 2009) and SKBR3 (Bailey et al., 2014), and used the overlap of differentially 

expressed genes between these two cell lines as evaluation standard. For topotecan, we 

found microarray data of drug resistant cell line derived from A2780 (Januchowski et al., 

2014), and used the overlap of differentially expressed genes between two independent 

resistant clones as the evaluation standard.

Based on the evaluation standard defined above, we used receiver operating characteristic 

(ROC) curve to compare computational methods in predicting drug efficacy gene scores 

from compound screen data (Figure 4A). The ROC curve plots the true positive rate against 

the false positive rate at various thresholds of gene scores. If a method makes random 

predictions, the ROC curve will stay on diagonal. If a method makes perfect predictions, the 

ROC curve will stay on upper left corner. The area under ROC curve (AUC) can measure the 

overall performance of a method (Figure 4B).

Data and Software Availability

The open source CARE package is available under GNU Public License v3 on our website: 

http://care.dfci.harvard.edu/download/. The source code for our Bliss synergy analysis is 

also available on the download page. Users can query our analysis results with drug or gene 

names on our website (http://care.dfci.harvard.edu). Also, all of our processed input data, 

analysis output data, and an example script to repeat our major results are available at http://

care.dfci.harvard.edu/download/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• CARE predicts clinical efficacy of targeted therapies using compound screen 

data

• Interaction testing in multivariate models is the key methodology of CARE

• Common response signatures exist between targeted therapies and 

immunotherapies

• PRKD3 inhibition synergizes with lapatinib in HER2-positive breast cancer 

cells
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Figure 1. Inference of genome-scale gene signatures for targeted therapy efficacy
(A) Association between BRAF mutation and inhibitor efficacy conditioned on other gene 

variables. All CCLE cell lines were divided into three categories ranked by EGFR or LEF1 
expression (Low: below 25%, Mid: between 25% and 75%, High: above 75%). In each 

category, the PLX4720 inhibition values are shown for cell lines with a BRAF V600E 

mutation and others without the mutation, with the median value as a thick bar in the box-

plot. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). 

Whiskers on the top and bottom represent the maximum and minimum data points within 

1.5 times the inter-quartile range.

(B) Interaction test in multivariate regression. Variables T and P represent the statuses of 

drug target and candidate gene in the test, respectively. The coefficient of product covariate 

(T*P) in regression represents the interaction effect between T and P on drug inhibition 

outcome. The slopes between drug target status and drug inhibition efficacy are shown by 

arrows, with red and black colors indicating the direction of change when variable P 

increases.

(C) CARE score definition. The effect of variable P on drug inhibition efficacy is computed 

as a t-value conditioned on drug target status T as one. The standard error (s.e.) is estimated 

through the coefficient covariance.

(D) CARE framework of clinical response prediction. For each targeted therapy, CARE will 

first calculate a genome-wide vector of scores with one value per gene using compound 

screen data. To predict drug responses, CARE computes Pearson correlations between the 

tumor gene expression profiles and CARE scores on genome-scale, with positively 

correlated patients labeled as responders and negatively correlated ones labeled as non-

responders.

Figure 360: Available as Movie S1. See also Figure S1 and Table S2.
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Figure 2. CARE scores for genes associated with resistance to multiple drugs
(A) CARE scores of druggable genes associated with resistance to more than one 

compound. To uniformly compare scores across different cohorts, we normalized all CARE 

scores within each cohort to zero mean and unit variation.

(B) Statistically significant CARE scores of AXL for compounds analyzed in each cohort. 

The median value in each group is shown as a thick bar in the box-plot. The bottom and top 

of the boxes are the 25th and 75th percentiles (interquartile range). Whiskers on the top and 

bottom represent the maximum and minimum data points within the range represented by 

1.5 times the inter-quartile range.

(C) Statistically significant CARE scores for SRC and its inhibitor CSK for compounds 

analyzed in each cohort. All values are shown in the same way as panel B.

See also Figure S2.
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Figure 3. CARE can reliably predict clinical outcome of targeted therapies
(A) CARE prediction results on the anti-BRAF clinical outcome. For 12 patients treated 

with vemurafenib (Hugo et al., 2015), CARE computed the Pearson correlations between 

PLX4720 CARE scores and tumor gene expression profiles. The progression-free survival 

(PFS) was compared between positively and negatively correlated patients by the Kaplan-

Meier curves, with p-values from the two-sided Wald test in Cox-PH regression.

(B) Performance comparison on predicting anti-BRAF vemurafenib response. For each gene 

signature (Table S3A), the response was predicted for patients by correlating between tumor 

expression profiles and signature gene scores. The prediction accuracy metrics were 

compared. AUC: area under ROC curve.

(C) CARE prediction results on the anti-HER2 clinical outcome. For 32 patients treated with 

lapatinib (Guarneri et al., 2015), the patient-wise correlations with CARE signature were 

shown according to the clinical response status, with the p-value computed by one-sided 

Wilcoxon rank-sum test.

(D) Performance comparison on predicting anti-HER2 lapatinib response among several 

signatures (Table S3B) as panel B.

(E) Prediction results on the anti-PD1 clinical outcome using the anti-BRAF CARE scores. 

For 25 patients treated with pembrolizumab (Hugo et al., 2016), the patient-wise correlations 

with PLX4720 CARE signature were shown according to the response status, with the p-

value computed by one-sided Wilcoxon rank-sum test.

(F) Performance comparison on predicting anti-PD1 pembrolizumab response. PDL1: 
CD274 expression; CD8: expression sum of CD8A and CD8B; BRCA2: BRCA2 mutation 
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status; Mutation: non-synonymous mutation load; CRISPR: anti-PD1 resistance signature 

determined by in-vivo CRISPR screen (Table S3C).

(G) Association between CARE signature and tumor immune evasion. CARE predicted all 

TCGA melanoma patients as either responders or non-responders using the PLX4720 

signature computed from CCLE data. In each category, the overall survival (OS) was shown 

for patients with positive and negative values of immune cytolytic activity (CYT, computed 

as expression sum of GZMA, GZMB, and PRF1). The p-values were computed by two-

sided Wald test in Cox-PH regression.

(H) Gene set enrichment analysis for the PLX4720 CARE signature. The epithelial-to-

mesenchymal transition (EMT) was the highest enrichment term. All CARE gene scores are 

shown in ascending order in the bottom. The genes with EMT function are labeled with 

black bars in the middle. The enrichment score of EMT signature at each score rank is 

shown on the top. NES: normalized enrichment score. P-value: permutation test p-value with 

1000 shuffles.

(I) CARE prediction results on the paclitaxel response. For paclitaxel, we identified three 

studies with both tumor gene expression data and pathologic complete response (pCR) 

status. There are 193, 115 and 92 patients in the studies of Pusztai, Noguchi, and Symmans, 

respectively. The correlation between patient expression profiles and CARE scores of 

paclitaxel was shown according to the response status. The two-sided rank-sum p-values, 

testing the correlation difference between responders and non-responders, are 7.25e-4, 

4.95e-5, and 2.25e-2 for the Pusztai, Noguchi, and Symmans studies, respectively.

(J) Performance comparison on predicting paclitaxel response among signatures (Table S3D) 

as panel B, with accuracy metrics averaged among three cohorts in panel I.

See also Figure S3 and Table S3.
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Figure 4. CARE outperforms other computational methods in finding drug efficacy biomarkers
(A) Performance comparison on predicting transcriptome signatures of drug resistant cell 

lines. Receiver operating characteristics (ROC) curves were used to compare different 

computational methods for their performance in predicting gene expression signatures of 

PLX4720 and lapatinib resistant cell lines.

(B) Performance comparison among model variations. For each method, we computed 

several variations of scores and compared their performance in predicting drug resistance 

associated genes as panel A. The mean of the area under ROC curve (AUC) across three 

screen cohorts are compared among all methods with standard deviations as error bars. 

Combination: the association calculated for the sum of both interaction and base 

coefficients. Interaction: only the interaction coefficient. Partial: only the coefficient of each 

gene P in a model without interactions.

(C) Performance comparison on predicting clinical outcome. For each method, the response 

was predicted for patients through the correlation between patient gene expression values 

and the result scores from each model. The accuracy metrics are compared in the same way 

as Figure 3B.

See also Figure S4 and Table S4.
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Figure 5. Inhibition of PRKD3 increases lapatinib sensitivity
(A) The siRNA pool knockdown efficiency against PRKD3 measured by qPCR and western 

blot (WB). (NC: negative control siRNA of scrambled sequences)

(B) The inhibition effects on SKBR3 growth from both PRKD3 knock-down and negative 

control conditions on a series of lapatinib doses by twofold dilution from 5 μM. Each 

inhibition fraction is the median value from three replicate experiments, with standard 

deviations as the error bars.

(C) The inhibition effects on SKBR3 growth from lapatinib mono-treatment and co-

treatment with PRKD inhibitor KBNB14270 in 4 μM. The additive effect of co-treatment is 

estimated from the Bliss independence model. Each inhibition fraction is the median value 

from three replicate experiments, with standard deviations as the error bars.

(D) The synergy scores (the difference between co-treatment and Bliss additive inhibition) 

for dose combinations between lapatinib (Lap) and KBNB14270 (KBNB). Each score is the 

median value from three replicate experiments.

(E) The synergy scores for combinations between lapatinib and CRT0066101 (CRT).

See also Figure S5 and Table S5.
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Table 1
Negative interaction between BRAF mutation and EGFR

The interaction between BRAF mutation and EGFR gene expression is evaluated by linear regression with 

PLX4720 efficacy as the outcome. The t-value is defined as regression coefficient divided by the standard 

error, and the p-value is calculated by the two-sided Student’s t-test.

See also Table S1.

Coef Stderr t-value p-value

BRAF.V600E 0.16504 0.00972 16.984 5.03E-51

EGFR −0.00117 0.00248 −0.473 6.37E-01

EGFR*BRAF.V600E −0.04905 0.01042 −4.706 3.31E-06

CARE score −0.05023 0.01012 −4.962 9.72E-07
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Table 2
Positive interaction between BRAF mutation and LEF1

The interaction between BRAF mutation and LEF1 gene expression is evaluated by linear regression with 

PLX4720 efficacy as the outcome. The t-value is defined as regression coefficient divided by the standard 

error, and the p-value is calculated by the two-sided Student’s t-test.

See also Table S1.

Coef Stderr t-value p-value

BRAF.V600E 0.16107 0.0107 15.06 2.90E-42

LEF1 0.00282 0.00264 1.07 2.86E-01

LEF1*BRAF.V600E 0.02849 0.00793 3.59 3.62E-04

CARE score 0.03131 0.00748 4.19 3.37E-05
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-PRKD3 Cell Signaling Technology Cat# 5655S; RRID: AB_10695917

Mouse monoclonal anti-ACTB Sigma-Aldrich Cat# A1978; RRID: AB_476692

HRP-linked anti-mouse IgG Cell Signaling Technology Cat# 7076S; RRID: AB_330924

HRP-linked anti-rabbit IgG Cell Signaling Technology Cat# 7074S; RRID: AB_2099233

Trastuzumab Dana Farber Pharmacy CAS: 180288-69-1

Chemicals, Peptides, and Recombinant Proteins

Lapatinib Selleck Chemicals Cat# S2111; CAS: 231277-92-2

KBNB14270 Sigma-Aldrich Cat# SML0525; CAS: 1233533-04-4

CRT0066101 Sigma-Aldrich Cat# SML1507; CAS: 956123-34-5

CID2011756 Sigma-Aldrich Cat# SML0369; CAS: 638156-11-3

Critical Commercial Assays

Cell Titer-Blue Cell Viability Assay Promega Cat# G8081

Experimental Models: Cell Lines

SKBR3 ATCC HTB-30

Oligonucleotides

siRNA pool targeting PRKD3 siTOOLs Biotech siPOOL-5 Kit - 23683

siRNA pool negative control siTOOLs Biotech siPOOL-5 Kit – negative control

qPCR Primer: PRKD3: Forward: 
CTTTCAGCTTTAGCCACAGTAG

This paper N/A

qPCR Primer: PRKD3: Reverse: 
AGAGCATCTCACCACAGTAATC

This paper N/A

qPCR Primer: ACTB: Forward: 
GACCCAGATCATGTTTGAGACC

This paper N/A

qPCR Primer: ACTB: Reverse: 
CCAGAGGCGTACAGGGATAG

This paper N/A

Software and Algorithms

CARE This paper http://care.dfci.harvard.edu/download

nls_logsig This paper http://care.dfci.harvard.edu/download

Limma Bioconductor http://bioconductor.org/packages/limma

glmnet CRAN http://cran.r-project.org/web/packages/glmnet

scikit-learn Anaconda http://scikit-learn.org/stable/

RABIT (Jiang et al., 2015) http://rabit.dfci.harvard.edu/download

GSL scientific library GNU http://www.gnu.org/software/gsl/

Other

CCLE compound screen data (Barretina et al., 2012) https://portals.broadinstitute.org/ccle

GDSC compound screen data (Iorio et al., 2016) http://www.cancerrxgene.org/downloads

CTRP compound screen data (Seashore-Ludlow et al., 2015) https://portals.broadinstitute.org/ctrp
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