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Abstract

Purpose—To develop a general phase regularized image reconstruction method, with 

applications to partial Fourier imaging, water-fat imaging and flow imaging.

Theory and Methods—The problem of enforcing phase constraints in reconstruction was 

studied under a regularized inverse problem framework. A general phase regularized 

reconstruction algorithm was proposed to enable various joint reconstruction of partial Fourier 

imaging, water-fat imaging and flow imaging, along with parallel imaging (PI) and compressed 

sensing (CS). Since phase regularized reconstruction is inherently non-convex and sensitive to 

phase wraps in the initial solution, a reconstruction technique, named phase cycling, was proposed 

to render the overall algorithm invariant to phase wraps. The proposed method was applied to 

retrospectively under-sampled in vivo datasets and compared with state of the art reconstruction 

methods.

Results—Phase cycling reconstructions showed reduction of artifacts compared to 

reconstructions without phase cycling and achieved similar performances as state of the art results 

in partial Fourier, water-fat and divergence-free regularized flow reconstruction. Joint 

reconstruction of partial Fourier + water-fat imaging + PI + CS, and partial Fourier + divergence-

free regularized flow imaging + PI + CS were demonstrated.

Conclusion—The proposed phase cycling reconstruction provides an alternative way to perform 

phase regularized reconstruction, without the need to perform phase unwrapping. It is robust to the 

choice of initial solutions and encourages the joint reconstruction of phase imaging applications.

Introduction

Phase variations in MRI can be attributed to a number of factors, including field 

inhomogeneity, chemical shift, fluid flow, and magnetic susceptibility. These phase 

structures are often the bases of many useful MRI applications: Image phase from B0 

inhomogenity is used for calibration and shimming. Others provide important physiological 

information in clinical imaging methods, such as chemical shift imaging, phase contrast 

imaging, and susceptibility imaging.
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Phase structures in MRI provide opportunities in reconstruction to resolve undersampling 

artifacts or to extract additional information. For example, in partial Fourier imaging, 

smoothness of the phase images is exploited to reduce acquisition time by factors close to 

two. In water-fat imaging, chemical shift induced phase shifts are used to separate water and 

fat images, while smoothness in B0 field inhomogeneity is exploited to prevent water-fat 

swaps. These methods have either reduced acquisition time as in the case of partial Fourier 

imaging, or provided more accurate diagnostic information as in the case of water-fat 

imaging.

In this paper, we study the problem of exploiting these phase structures in a regularized 

inverse problem formulation. An inverse problem formulation allows us to easily incorporate 

parallel imaging (1,2) and compressed sensing (3) and utilize various phase regularizations 

for different applications. Our first contribution is to present a unified reconstruction 

framework for phase regularized reconstruction problems. In particular, using the same 

framework, we demonstrate the joint reconstruction of partial Fourier and water-fat imaging, 

along with parallel imaging (PI) and compressed sensing (CS), and the joint reconstruction 

of partial Fourier and divergence-free regularized flow imaging, along with PI + CS.

Since phase regularized image reconstructions are inherently non-convex and are sensitive to 

phase wraps in the initial solution, we propose a reconstruction technique, named phase 

cycling, that enables phase regularized reconstruction to be robust to phase wraps. The 

proposed phase cycling technique is inspired by cycle spinning in wavelet denoising (4) and 

phase cycling in balanced steady state free precession. Instead of unwrapping phase before 

or during the reconstruction, the proposed phase cycling makes the reconstruction invariant 

to phase wraps by cycling different initial phase solutions during the reconstruction. Our key 

difference with existing works is that the proposed phase cycling does not solve for the 

absolute phase in reconstruction, but rather averages out the effects of phase wraps in 

reconstruction. We provide experimental results showing its robustness to phase wraps in 

initial solutions.

Related Works

Reconstruction methods utilizing phase structures were proposed for water-fat 

reconstruction (5–13), B0 field map estimation (14), partial Fourier reconstruction (15–18) 

and divergence-free regularized 4D flow reconstruction (19–21). In addition, Reeder et al. 

(22) demonstrated the feasibility of jointly performing homodyne reconstruction and water-

fat decomposition. Johnson et al. (23) presented results in jointly reconstructing water-fat 

and flow images.

A closely related line of work is the separate magnitude and phase reconstruction method 

(24–27). In particular, Fessler and Noll (24) proposed using alternating minimization for 

separate magnitude and phase reconstruction, but their method remained sensitive to phase 

wraps in initial solution. Zibetti et al. (25) and Zhao et al. (26) achieved robustness to phase 

wraps in initial solution by designing a regularization function that resembles the finite 

difference penalty, and is periodic in the phase. The regularization function proposed by 

Zhao et al. differs from the one proposed by Zibetti et al. in that it is edge-preserving using 

the Huber loss function. One limitation of these methods is that they do not support general 
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magnitude and phase operators, or arbitrary phase regularization. In particular, they cannot 

be applied to water-fat image reconstruction and flow image reconstruction with general 

velocity encoding, or regularization functions other than finite difference. This restriction to 

finite difference penalty can lead to well-known staircase artifacts as shown in the Results 

section. In contrast, our proposed method can be applied to general phase imaging methods 

and supports arbitrary phase regularization as long as its proximal operator can be computed. 

This allows us to enforce application dependent regularization, such as wavelet sparsity 

penalty and divergence-free constraint for flow imaging.

Theory

Forward Model and Applications

In this section, we describe the forward models for partial Fourier imaging, water-fat 

imaging and flow imaging. We then show that these phase imaging methods can be 

described using a general forward model and hence can be combined within the same 

framework. For example, in the experimental sections, we combine partial Fourier with 

water-fat imaging, and partial Fourier with divergence-free regularized flow imaging, under 

the same framework. Figure 1 provides illustrations of the forward models of these 

applications.

Partial Fourier Imaging—In partial Fourier imaging, a contiguous portion of k-space is 

not observed and the k-space data is observed through the partial Fourier operator F and 

sensitivity operator S. Let m be the magnitude images and p be the phase images, our 

forward model is given by:

y = FS (m · eip) + η (1)

where · is the element-wise multiplication operator, i denotes −1, eip denotes the element-

wise exponential operator of the vector ip, η is a complex, white Gaussian noise vector, and 

y represents the acquired k-space data.

Traditional partial k-space reconstruction methods assume smoothness of the phase. 

Therefore, in our formulation, we directly impose smoothness constraint on the phase image 

p. Sparsity of the magnitude image can also be exploited for compressed sensing 

applications.

Water-fat Imaging—In water-fat imaging, we are interested in reconstructing water and 

fat images with different chemical shift induced off-resonance, but the same B0 

inhomogeneity induced off-resonance. In order to resolve these images, k-space 

measurements are acquired over multiple echo times.

Concretely, let E be the number of echo times, mwater and mfat be the water and fat 

magnitude images respectively, pwater and pfat be the water and fat phase images 

respectively, Δf be the frequency difference between water and fat under the single-peak 
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model, and pfield be the B0 field inhomogenity. We denote Fe as the Fourier sampling 

operator for each echo time te. Our forward model is given by:

ye = FeS((mwatere
ipwater + mfate

ipfate
ite2πΔ f

)e
itepfield) + ηe   for e = 1, …, E (2)

We note that the water and fat images have independent phase images pwater and pfat, which 

are often implicitly captured in existing water-fat separation methods by representing the 

magnitude images as complex images. These phase images can be attributed to RF pulse 

with spectral variation and B1 field inhomogeneity. We explicitly represent these phase 

images because they can be regularized as spatially smooth when partial Fourier imaging is 

incorporated (22).

In order to separate the components, the first-order field inhomogeneity pfield is regularized 

to be spatially smooth. In addition, sparsity constraints can be imposed on magnitude images 

for compressed sensing applications.

Flow Imaging—In three-dimensional phase contrast imaging, we are interested in 

reconstructing phase images with three-dimensional velocity information. Concretely, we 

define p = (pbg, px, py, pz)⊤ to be the background phase image and velocity images along 

three spatial dimensions (x, y, z) respectively. The background phase includes the B0 field 

inhomogeneity, and chemical shift induced phase. We also let V be the number of velocity 

encodes, and Pυ be the velocity encoding vector for velocity encode υ. For example, the four 

point balanced velocity encoding (28) vectors, ignoring scaling, have the form:

P1 = ( + 1, − 1, − 1, − 1)

P2 = ( + 1, + 1, + 1, − 1) (3)

P3 = ( + 1, + 1, − 1, + 1)

P4 = ( + 1, − 1, + 1, + 1)

Then, our forward model is given by:

yυ = FυS(m · e
iPυp

) + ηυ   for υ = 1, …, V (4)

Since blood flow is incompressible and hence divergence-free, the velocity images px, py, pz 

can be constrained to be divergence-free to provide more accurate flow rates (19–21). 
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Smoothness constraint can also be imposed on the background phase image to improve flow 

accuracy.

General Forward Model—With the right representations shown in Appendix A, the 

above phase imaging applications can all be described using the following unified forward 

model:

y = A(Mm · eiPp) + η (5)

where y is the acquired k-space measurements, m contains the magnitude images, p contains 

the phase images, η is a white Gaussian noise vector, A is the forward operator for the 

complex images, M is the forward operator for the magnitude image, P is the forward 

operator for the phase image and · is the point-wise multiplication operator. We note that 

both m and p are real-valued.

Objective function

To reconstruct the desired magnitude images m and phase images p, we consider the 

following regularized least squares function:

1
2‖y − A(Mm · eiPp)‖2

2

Data consistency  f (m, p)

+ gm(m) + gp(p)
Regularization g(m, p)

(6)

where gm and gp are regularization functions for magnitude and phase respectively. For 

notation, we split our objective function into a data consistency term f(m, p) and a 

regularization term g(m, p).

We note that our objective function is non-convex regardless of the application-dependent 

linear operators A, M, and P, because the exponential term has periodic saddle points in the 

data consistency function with respect to p. In addition, the forward model is bi-linear in the 

magnitude and complex exponential variables.

Algorithm

Since the phase regularized reconstruction problem is non-convex in general, finding the 

global minimum is difficult. In fact, finding a local minimum is also difficult with 

conventional gradient-based iterative methods as saddle points have zero gradients. Instead 

we aim for a monotonically descending iterative algorithm to ensure the reconstructed result 

reduces the objective function. In particular, we perform alternating minimization with 

respect to the magnitude and phase images separately and use the proximal gradient method 

(29, 30) for each sub-problem, which is guaranteed to descend with respect to the objective 

function in each iteration. Since the objective function is reduced in each iteration as long as 

the gradient is non-zero, the algorithm eventually converges to a stationary point with zero 

gradient, which can be either a local minimum or a saddle point, assuming the initialization 

is not exactly at a local maximum. A high level illustration is shown in Figure 2.
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Concretely, applying proximal gradient descent on our objective function Eq. (6), we 

perform a gradient descent step with respect to the data consistency function f(m, p) and a 

proximal operation with respect to the regularization function g(m, p). Then, we obtain the 

following update step for magnitude images m with fixed phase images p at iteration n:

mn + 1 = 𝒫αngm
(mn − αn∇m f (mn, p)) (7)

and the following update step for phase images p with fixed magnitude images m at iteration 

n:

pn + 1 = 𝒫αngp
(pn − αn∇p f (m, pn)) (8)

where 𝒫g(x) = argminz
1
2‖z − x‖2

2 + g(z) denotes the proximal operator for the function g, and 

αn is the step-size for iteration n. Note that implicitly, we require the regularization 

functions to have simple proximal operators that can be evaluated efficiently, which is true 

for most commonly used regularization functions. Examples of proximal operators include 

wavelet soft-thresholding for wavelet ℓ1 norm, weighting for ℓ2 norm and projection for any 

indicator function for convex sets. We refer the reader to the manuscript of Parikh and Boyd 

(30) for an overview.

Using the CR calculus (31), we can derive exact expressions for the gradient terms. 

Substituting the gradient terms, the update steps (7, 8) at iteration n can be explicitly written 

as:

rn = A∗(y − A(Mmn · eiPp)) (9)

mn + 1 = 𝒫αngm
(mn + αnRe(M∗(e−iPp · rn)))

and

rn = A∗(y − A(Mm · e
iPpn)) (10)

pn + 1 = 𝒫αngp
(pn − αnIm (P∗(Mm · e

−iPpn · rn)))

where rn can be interpreted as the residual complex image at iteration n.
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Phase Cycling

While the above algorithm converges to a stationary point, this stationary point is very 

sensitive to the phase wraps in the initial solution in practice. This is because phase wraps 

are highly discontinuous and are artifacts from the initialization method. Phase 

regularization in each iteration penalizes these discontinuities, causing errors to accumulate 

at the same position over iterations, and can result in significant artifacts in the resulting 

solution. Figure 3 shows an example of applying smoothing regularization on the phase 

image by soft-thresholding its Daubechies wavelet coefficients. While the general noise level 

is reduced, the phase wraps are also falsely smoothened, causing errors around it, as pointed 

by the red arrows. These errors accumulate over iterations and cause significant artifacts 

near phase wraps in the reconstructed image, as pointed out by the yellow arrow in Figure 4. 

The supporting videos S1 and S2 show the development of the reconstruction results over 

iterations without and with phase cycling for the experiment in Figure 4, demonstrating the 

convergence behavior described above.

To mitigate these artifacts from regularizing phase wraps, we propose a reconstruction 

technique, called phase cycling, to make our reconstruction invariant to phase wraps in the 

initial solution. Our key observation is that even though it is difficult to reliably unwrap 

phase, the position of these phase wraps can easily be shifted to a different spatial location 

by adding a constant global phase. Hence, artifacts caused by phase regularization can also 

be shifted spatially to a different location. Our phase cycling method simply proposes to 

shift the phase wraps randomly over iterations, illustrated in Figure 5, to prevent significant 

error accumulation at the same spatial location. Then over iterations, the artifacts are 

effectively averaged spatially.

Concretely, let  be the set of phase wraps generated from the initial solution. Then for each 

iteration n, we randomly draw a phase wrap wn from  with equal probability, and propose 

the following phase cycled update for phase images p with fixed magnitude images m at 

iteration n:

pn + 1 = 𝒫αngp
(pn + wn − αn∇p f (m, pn)) − wn (11)

A pseudocode of the proposed algorithm with phase cycling is included in Appendix B.

Finally, we note that the phase cycled update steps can be viewed as an inexact proximal 

gradient method applied on the following robust objective function:

1
2‖y − A(Mm · eiPp)‖2

2 + gm(m) + 1
|𝒲| ∑

w ∈ 𝒲
gp(p + w) (12)

where the phase regularization function is averaged over phase wraps. We refer the reader to 

Appendix C for more details.
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Methods

The proposed method was evaluated on partial Fourier imaging, water-fat imaging and flow 

imaging applications. Parallel imaging was incorporated in each application. Sensitivity 

maps were estimated using ESPIRiT (32), an auto-calibrating parallel imaging method, 

using the Berkeley Advanced Reconstruction Toolbox (BART) (33). All reconstruction 

methods were implemented in MATLAB (MathWorks, Natick, MA), and run on a laptop 

with a 2.4 GHz Intel Core i7 with 4 multi-cores, and 8GB memory. Unless specified 

otherwise, the magnitude image was regularized with the ℓ1 norm on the Daubechies 4 

wavelet transform for the proposed method. The number of outer iteration was set to be 100, 

and the number of inner iteration for both magnitude and phase was set to be 10. The 

regularization parameters were selected by first fixing the magnitude regularization 

parameter, and optimizing the phase regularization parameter over a grid of parameters with 

respect to mean squared error. And then fixing the phase regularization parameter, and 

optimizing the magnitude regularization parameter similarly. The step-size for the 

magnitude update was chosen to be 1
λmax(A∗A)λmax(M∗M)

, and the step-size for the phase 

update was chosen to be 1
λmax(A∗A)λmax(P∗P)max(|Mm|2)

, where λmax denotes the maximum 

eigenvalue. In our experiements, since the trajectories were Cartesian, the sensitivity maps 

were normalized, and the structure of the magnitude operators M were simple, the maximum 

eigenvalues were calculated analytically.

Partial Fourier Imaging

A fully-sampled dataset from a human knee was acquired on a 3T GE Discovery MR 750 

scanner (GE Healthcare, Waukesha, WI) and 8-channel knee coil, with a 3D FSE CUBE 

sequence, TE/TR = 25/1550 ms, 40 echo train length, image size 320 × 320 × 256, and 

spatial resolution of 0.5 × 0.5 × 0.6 mm3 as described in Epperson et al. (34) and is available 

online at http://www.mridata.org/. Another fully-sampled dataset from a human brain was 

acquired on 1.5T GE Signa scanner (GE Healthcare, Waukesha, WI) with a 8-channel head 

coil, 3D GRE sequence, TE/TR = 5.2 ms / 12.2 ms, image size of 256 × 256 × 230 and 

spatial resolution of 1 mm. 2D slices were extracted along the readout direction for the 

experiments. Image masks for displaying the phase images were created by thresholding the 

bottom 10% of the magnitude images.

A partial Fourier factor of 5/8 was retrospectively applied on both datasets. The brain dataset 

was further retrospectively under-sampled by 4 with a variable density Poisson-disk pattern 

and a 24 × 24 calibration region. The proposed method with and without phase cycling were 

applied on the under-sampled datasets and compared. ℓ1 regularization was imposed on the 

Daubechies 6 wavelet domain for the phase image. The homodyne method from Bydder et 

al. (17) with ℓ1 regularization on the wavelet domain was applied and compared. The method 

was chosen for comparison because it was shown to be robust to errors in the phase estimate 

as it penalizes the imaginary component instead of enforcing the image to be strictly real. 

The original formulation included only ℓ2 regularization on the real and imaginary 

components separately. To enable a fair comparison using similar image sparsity models, we 
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modified the method to impose ℓ1 wavelet regularization on the real and imaginary 

components separately to exploit wavelet sparsity, which achieved strictly smaller mean 

squared error than the original method. The number of iterations was set to be 1000. The 

regularization parameters were set similarly to how the magnitude and phase regularization 

parameters were selected.

Besides visual comparison, the quality of the reconstructed magnitude images was evaluated 

using the peak signal-to-noise ratio (PSNR). Given a reference image xref, and a 

reconstructed image xrec, PSNR is defined as:

PSNR(xref, xrec) = 20 log10
max(xref)

‖xref − xrec‖2
(13)

For our proposed method, the magnitude image and phase image were initialized from the 

zero-filled reconstructed image, that is m = |A⊤y| and p = ∠(A⊤y).

Water-Fat Imaging

Fully sampled water-fat datasets were obtained from the ISMRM Water-Fat workshop 

toolbox (available online at http://www.ismrm.org/workshops/FatWater12/data.htm). In 

particular, an axial slice of the liver with 8-channel coil array dataset was used, which also 

appeared in the paper of Sharma et al. (9). The dataset was acquired on a 3T Signa EXCITE 

HDx system (GE Healthcare, Waukesha, WI), using a GE-investigational IDEAL 3D 

spoiled-gradient-echo sequence at three TE points with TE = [2.184, 2.978, 3.772] ms, BW 
= ±125 kHz, flip angle of 5 degrees and a 256 × 256 sampling matrix. Image masks for 

displaying the phase images were created by thresholding the bottom 10% of the root-sum-

of-squared of the magnitude images.

The liver dataset was retrospectively under-sampled by 4 with a variable density Poisson-

Disk sampling pattern. Our proposed method was applied and compared with algorithm of 

Sharma et al. (9) both for the fully-sampled and under-sampled datasets. The 

implementation in the Water-Fat workshop toolbox was used with modification to impose 

the same wavelet transforms as the proposed method, and the default parameters were used.

An axial slice of the thigh dataset from the ISMRM Water-Fat workshop toolbox was also 

used, with the same parameters. The dataset was retrospectively under-sampled by 4 with a 

variable density Poisson Disk sampling pattern and an additional 9/16 partial Fourier factor. 

Our proposed method was applied and compared with the result of applying the algorithm of 

Sharma et al. on the fully-sampled dataset. An ℓ1 regularization on the Daubechies-4 wavelet 

transform of the image phase was applied.

For our proposed method, the field map was initialized as zero images, the magnitude 

images were initialized as (mwater, mfat)⊤ = |M⊤A⊤y|, and the phase images (pwater, pfat)⊤ 

were extracted from ∠(M⊤A⊤y).

Ong et al. Page 9

Magn Reson Med. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ismrm.org/workshops/FatWater12/data.htm


Divergence-free Regularized Flow Imaging

Four 4D flow datasets of pediatric patients with tetrahedral flow encoding were acquired 

with 20 cardiac phases, 140 slices and an average spatial resolution of 1.2 × 1.2 × 1.5mm3. 

The 4D flow acquisitions were performed on a 1.5T Signa Scanner (GE Healthcare, 

Waukesha, WI) with an 8 channel array using a spoiled gradient-echo-based sequence. The 

acquisitions were prospectively under-sampled by an average factor of 3.82 with variable 

density Poisson-disk undersampling. The flip angle was 15 degrees and average TR/TE was 

4.94/1.91 ms. The performance of the proposed method was compared with ℓ1-ESPIRiT 

(32), a PI + CS algorithm. Volumetric eddy-current correction was performed on velocity 

data. Segmentations for flow calculations were done manually on the aorta (AA) and 

pulmonary trunk (PT). Net flow rate and regurgitant fraction were calculated for each 

segmentation. Since the datasets did not contain phase wraps in the region of interest, phase 

unwrapping was not performed. Image masks for displaying the phase images were created 

by thresholding the bottom 20% of the magnitude images. One of the ℓ1 ESPIRiT 

reconstruction results was further processed with divergence-free wavelet denoising (35) to 

compare with the proposed method.

Another flow dataset of pediatric patient, with randomized flow encode undersampling using 

the VDRad sampling pattern (36) and a partial readout factor of 0.7, was acquired with 20 

cardiac phase. The proposed method was applied and compared to ℓ1-ESPIRiT.

For our proposed method, an ℓ1 regularization on the divergence-free wavelet transform (35) 

of the flow images was used to impose divergence-free constraint and an ℓ1 regularization on 

the Daubechies 4 wavelet coefficients of the background phase was used to impose 

smoothness. The flow images were initialized as zero images and the background phase 

image pbg was extracted from the first velocity encode of ∠(A⊤y).

Results

In the spirit of reproducible research, we provide a software package in MATLAB to 

reproduce most of the results described in this paper. The software package can be 

downloaded from: https://github.com/mikgroup/phase_cycling.git

Partial Fourier Imaging

Supporting Figure S1 shows the partial Fourier reconstruction results combined with PI on 

the knee dataset. The figure compares the proposed reconstruction with and without phase 

cycling along with the homodyne reconstruction method described in Bydder et al. (17). For 

the reconstruction without phase cycling, significant artifacts near the phase wraps can be 

seen in the magnitude image, as pointed by the yellow arrow. The proposed reconstruction 

with phase cycling also performs comparably with the state-of-the-art and did not display 

significant artifacts. In terms of PSNR, the method of Bydder et al. resulted in 34.55 dB, the 

proposed method without phase cycling resulted in 32.83 dB, and the proposed method with 

phase cycling resulted in 34.93 dB. One instance of our Matlab implementation of the 

proposed method took 4 minutes and 6 seconds.
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Figure 4 shows the partial Fourier reconstruction results combined with PI and CS on the 

brain dataset with the proposed method. The figure compares the proposed reconstruction 

with and without phase cycling. Again, without phase cycling, significant artifacts can be 

seen in the magnitude image near phase wraps in the initial solution, pointed by the yellow 

arrow. Reconstruction with phase cycling does not display these artifacts. Figure 6 shows the 

results for the method of Bydder et al. and Zhao et al. As pointed out by the red arrows, the 

method of Bydder et al. shows higher error in the magnitude image compared to proposed 

method with phase cycling in these regions. The method of Zhao et al. shows higher 

magnitude image error in general, and displays staircase artifacts in the phase image, which 

are common in total variation regularized images, as pointed by the yellow arrow. In terms 

of PSNR, the method of Bydder et al. resulted in 33.64 dB, the method of Zhao et al. 

resulted in 30.62 dB, the proposed method without phase cycling resulted in 30.35 dB, and 

the proposed method with phase cycling resulted in 34.91 dB. One instance of our Matlab 

implementation of the proposed method took 1 minute and 53 seconds.

Water-Fat Imaging

Supporting Figure S2 shows the water-fat reconstruction results on the liver dataset, 

combined with PI and CS for the under-sampled case. For the fully sampled case, the water 

and fat images from the proposed method with phase cycling are comparable with the state-

of-the-art water-fat reconstruction result using the method of Sharma et al. (9). 

Reconstruction from under-sampled data with the proposed method also results in similar 

image quality as the fully-sampled data and is consistent with the result shown in Sharma et 

al. (9). One instance of our Matlab implementation of the proposed method took 8 minutes 

and 27 seconds.

Figure 7 shows the water-fat reconstruction results on the thigh dataset, combined with 

partial Fourier, PI and CS. Our proposed method produces similar water and fat images on a 

partial Fourier dataset, as the fully-sampled reconstruction using the method of Sharma et al. 

(9). This demonstrates the feasibility of performing joint partial Fourier and water fat image 

reconstruction along with PI and CS using the proposed method. One instance of our Matlab 

implementation of the proposed method took 8 minutes and 23 seconds.

Divergence-free Regularized Flow Imaging

Figure 8 shows the net flow rates calculated for four patient data. Both ℓ1-ESPIRiT 

reconstruction and the proposed reconstruction resulted in similar flow rates. Maximum 

difference in regurgitant fractions was 2%. The comparison showed that in these four cases, 

our proposed method provided comparable measurements to those obtained from ℓ1-

ESPIRiT, which were shown to correlate with 2D phase contrast flow rates (37). A 

representative velocity image and speed map are shown in Figure 9. Visually, the proposed 

method reduces incoherent artifacts and noise compared to the other results, especially in 

regions pointed by the red arrows where there should be no fluid flow.

Figure 10 shows the result of reconstructing a partial readout 4D flow dataset with 

randomized velocity encoding. The reconstructed magnitude image has significantly reduced 

blurring from partial readout, compared to the ℓ1-ESPIRiT result. We also note that the 
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velocity images are not masked and that velocities in low magnitude regions are naturally 

suppressed with the proposed reconstruction. One instance of our Matlab implementation of 

the proposed method took on the order of three hours.

Discussion

In this work, we describe a unified framework and algorithm for phase regularized 

reconstructions. By presenting various phase regularized image reconstructions within the 

same framework, we are able to combine these phase sensitive imaging methods to improve 

the reconstructed results: Our result in partial Fourier + water-fat imaging + PI + CS shows 

the ability to further accelerate water-fat imaging with PI + CS by combining it with partial 

Fourier, while achieving comparable image quality as the fully sampled images. Our result 

in divergence-free flow + partial Fourier + PI + CS also shows the ability to achieve 

improvements in apparent image resolution over standard PI + CS reconstruction. The 

proposed framework shows promise and encourages the use of joint application of phase 

sensitive imaging techniques.

One advantage of our proposed method is that more appropriate phase regularization can be 

enforced for each application. In particular, we compared our proposed method with the 

methods of Bydder et al., and Zhao et al. for partial Fourier imaging. The method of Bydder 

et al. requires imposing regularization on the image imaginary component, which does not 

necessarily correlate with regularization of the phase image. The method of Zhao et al., on 

the other hand, only supports finite difference penalties, which can result in staircase 

artifacts, shown in Figure 6. Our proposed method can impose a more general class of phase 

regularization, and in the case of partial Fourier imaging, the proposed method with 

Daubechies-6 wavelet sparsity constraint on the phase image resulted in the highest PSNR 

among the compared methods. We note that the severity of the artifact in the reconstruction 

without phase cycling for the brain dataset is much stronger than for the knee dataset 

because a higher regularization was needed to obtain lower reconstruction mean squared 

error. This is because the brain dataset was further under-sampled for CS. Larger 

regularization led to larger thresholding errors around the phase wraps and hence more 

significant artifacts in the resulting reconstructed images. For water-fat imaging, we 

compared our proposed method with the method of Sharma et al., and achieved similar 

image quality for both fully-sampled and undersampled datasets. With phase cycling, our 

proposed method can be extended to include partial Fourier imaging in a straightforward 

way. Since the method of Sharma et al. solves for the absolute phase, it is unclear whether 

their proposed restricted subspace model can be extended to enforce smoothness of water 

and fat phase images, which often contain phase wraps, and more effort is needed to 

investigate such extension. Finally, through comparing the proposed method on divergence-

free flow imaging and ℓ1-ESPIRiT with divergence-free wavelet denoising, we have shown 

the advantage of joint PI + CS reconstruction utilizing phase structure over separate 

application of PI + CS reconstruction followed by phase image denoising.

Further improvement in these applications can be obtained by incorporating additional 

system information. For example, multi-peak model can be used in water-fat image 

reconstruction by extending the forward model to become:
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ye = FeS mwatere
ipwater + mfate

ipfat ∑
j = 1

J
a je

ite2πΔ f j e
itepfield + ηe   for e = 1, …, E (14)

where J, aj and Δfj are the number of fat peaks, the relative amplitude for the jth peak, and 

the frequency difference between the jth fat peak and water respectively. Temporal 

constraints can also be added in 4D flow reconstruction to improve the result. One example 

would be separately enforcing group sparsity on the Daubechies wavelet coefficients of the 

magnitude images over time, and divergence-free wavelet coefficients of velocity phase 

images over time, via the group ℓ1 norm.

Similar to other iterative methods, our proposed method requires parameter selections for 

the regularization functions. One disadvantage of our proposed method over standard PI + 

CS methods is that we have two parameters to tune for, and thus requires more effort in 

selecting these parameters. On the other hand, since phase values are bounded between π 
and −π, we found that the phase regularization parameter often translates fairly well 

between experiments with similar settings. That is, a fixed phase regularization parameter 

results in similar smoothness for different scans with similar undersampling factor and noise 

level.

Since we aim for the joint reconstruction of phase images, phase unwrapping becomes a 

difficult task. The proposed phase cycling provides an alternative and complementary way of 

regularizing phases during reconstruction, without the need for phase unwrapping. In cases 

when the absolute phase is needed, for example in flow imaging with low velocity encodes, 

phase unwrapping can be performed on the phase regularized reconstructed images, which 

has the potential to improve phase unwrapping performance due to the reduced artifacts.

Finally, we note that the proposed method with phase cycling still requires a good phase 

initialization, as the overall objective is non-convex. Our proposed phase cycling only 

enables the ability to regularize phase without phase unwrapping. In particular, if the initial 

phase estimate is randomly initialized, then the resulting reconstruction will be much worse 

than the one with a good initialization. Finding a good phase initialization for all phase 

imaging methods remains an open problem. Phase initialization for our proposed method is 

still manually chosen depending on the application, as described in the Methods section. In 

our experiments, we found that often either initializing as the phase of the zero-filled 

reconstructed image, or simply a zero-valued phase image provides good initialization for 

our proposed method. We note that a better initial solution using existing PI + CS methods, 

such as ℓ1-ESPIRiT, can potentially result in a more accurate solution for our proposed 

method. In our experiments, we found that zero-filled images as starting solutions have 

already provided adequate starting points with much lower computational cost, and 

initializing with ℓ1-ESPIRiT did not provide noticeable improvements. However, for more 

aggressively accelerated scans, we expect a better initialization can improve the 

reconstructed result.
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Conclusion

The proposed phase cycling reconstruction provides an alternative way to perform phase 

regularized reconstruction, without the need of performing phase unwrapping. The proposed 

method showed reduction of artifacts compared to reconstructions without phase cycling. 

The advantage of supporting arbitrary regularization functions, and general magnitude and 

phase linear models was demonstrated by comparing with other state-of-the-art methods. 

Joint reconstruction of partial Fourier + water-fat imaging + PI + CS, and partial Fourier + 

divergence-free regularized flow imaging + PI + CS were demonstrated. The proposed 

method unifies reconstruction of phase sensitive imaging methods and encourages their joint 

application.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

A Phase imaging representation under the general forward model

We first consider representing partial Fourier imaging under the general forward model. Let 

us define I to be the identity operator with input and output size equal to the image spatial 

size. We also define the magnitude, phase and complex linear operators to be M = I, P = I, 
and A = FS. Then partial Fourier imaging forward model can be represented as y = A(Mm · 

eiPp) + η.

Next, to represent water-fat imaging under the general forward model, let us define the 

magnitude images m to be (mwater, mfat)⊤, and phase images to be (pwater, pfat, pfield)⊤. We 

also define the magnitude operator M, phase operator P, and the complex operator A to be:

M =

I 0
0 I

⋮
I 0
0 I

P =

I 0 t1
0 I t1

⋮
I 0 tE
0 I tE

A =
F1S F1Se

jt12πΔ f
… 0 0
⋱

0 0 … FES FESe
jtE2πΔ f

(15)

where the 2 × 2 identity block in M is repeated E times. Then the water-fat imaging forward 

model Eq. (2) can be represented as y = A(Mm · eiPp) + η.

Finally we consider representing flow imaging under the general forward model. For 

concreteness, we consider the four point balanced velocity encoding as an example. Recall 
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that we define p = (pbg, px, py, pz)⊤. Let us define the magnitude operator M, phase operator 

P, and the complex operator A to be:

M =

I
I
I
I

P =

I −I −I −I
I +I +I −I
I +I −I +I
I −I +I +I

A =

F1S 0 0 0
0 F2S 0 0
0 0 F3S 0
0 0 0 F4S

(16)

Then the flow imaging forward model Eq. (4) can be represented as y = A(Mm · eiPp) + η.

B Pseudocode for phase regularized reconstruction with phase cycling

Algorithm 1 summarizes the proposed reconstruction method with phase cycling.

C Phase Cycling as an Inexact Proximal Gradient Method

In this section, we show that our proposed phase-cycling is an instance of the inexact 

proximal splitting method described in Sra’s paper (38). Following its result, the proposed 

phase cycling converges to an inexact stationary point.

Concretely, the inexact proximal splitting method in Sra’s paper considers the following 

minimization problem:

minimize
p

f (p) + g(p) (17)

Algorithm 1

Pseudocode for phase regularized reconstruction with phase cycling

Input:

y - observed k-space

m0 - initial magnitude images

p0 - initial phase images

A - complex linear operator

M - magnitude linear operator

P - phase linear operator

 - set of phase wraps

N - number of outer iterations

K - number of inner iterations for magnitude and phase update

Output:

mN - reconstructed magnitude images

pN - reconstructed phase images

Function:

Ong et al. Page 15

Magn Reson Med. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



   αm = 1
λmax(A∗A)λmax(M∗M)

  for n = 0, …, N − 1 do

    // Update m with fixed pn

    mn,0 = mn

    for k = 0, …, K − 1 do

      rn,k = A* (y − A(Mmn,k · eiPpn))

      mn,k+1 = αmgm (mn,k + αmRe(M*(e−iPpn · rn,k)))

    end for

    mn+1 = mn,K

    // Update p with fixed mn+1

    pn,0 = pn

     αn = 1
λmax(A∗A)λmax(P∗P)max(|Mmn + 1|2)

    for k = 0, …, K − 1 do

      Randomly draw wn,k ∈ 

      rn,k = A*(y − A(Mmn+1 · eiPpn,k))

      pn,k+1 = αngp (pn,k + wn,k + αnIm (P*(Mmn+1 · e−iPpn,k · rn,k))) − wn,k

    end for

    pn+1 = pn,K

  end for

and utilizes the following update steps:

pn + 1 = 𝒫αng(pn − αn∇ f (pn) + αnen) (18)

where en is the error at iteration n. The results in Sra’s paper (38) show that the algorithm 

converges to a solution that is close to a nearby stationary point, with distance proportional 

to the iteration error en. To translate this result to phase cycling, we need to express the error 

in the proximal operation as additive error.

In the context of phase cycling, our objective function consists of 

f (p) = 1
2‖y − A(Mm · eiPp)‖2

2
 and g(p) = 1

|𝒲| ∑w ∈ 𝒲gp(p + w). Let us define the regularization 

function error at iteration n to be εn(p) = gp(p + wn) − 1
|𝒲| ∑w ∈ 𝒲gp(p + w), then the 

proposed phase cycling update step can be written as:

pn + 1 = 𝒫αng + αnεn
(pn − αn∇ f (pn)) (19)
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Now, we recall that the proximal operator is defined as 𝒫g(x) = minimize
z

1
2‖z − x‖2

2 + g(z). 

Then using the first-order optimality condition, we obtain that z* = g(x) if and only if z* = 

x − ∇g(z*), where ∇g(z*) is a subgradient of g(z*). Hence, we can rewrite equation (19) as,

pn + 1 = pn − αn∇ f (pn) − αn∇g(pn + 1) − αn∇εn(pn + 1)
= 𝒫αng(pn − αn∇ f (pn) − αn∇εn(pn + 1))

(20)

Hence, the proposed phase cycling can be viewed as an inexact proximal gradient method 

with error in each iteration as en = ∇ε(pn+1) and converges to a point close to a stationary 

point. We note that this error is often bounded in practice. For example, if we consider the ℓ1 

wavelet penalty g(p) = λ‖Ψp‖1, then the gradient of g(p) is bounded by λ, and hence the 

error en is bounded.
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Figure 1. 
Illustration of forward models y = A(Mm · ejPp) for partial Fourier imaging, water fat 

imaging and flow imaging.
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Figure 2. 
Conceptual illustration of the proposed algorithm. The overall algorithm alternates between 

magnitude update and phase update. Each sub-problem is solved using proximal gradient 

descent.
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Figure 3. 
An example of applying smoothing regularization on the phase image by soft-thresholding 

its Daubechies wavelet coefficients. While the general noise level is reduced, the phase 

wraps are also falsely smoothened, causing errors around it, as pointed by the red arrow. 

These errors accumulate over iterations and cause significant artifacts near phase wraps as 

shown in Figure 4.
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Figure 4. 
Partial Fourier + PI + CS reconstruction results on a brain dataset for the proposed method. 

Similar to Supplementary Figure S1, without phase cycling, significant artifacts can be seen 

in the magnitude image near phase wraps in the initial solution, as pointed by the yellow 

arrow.
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Figure 5. 
Conceptual illustration of the proposed phase cycling reconstruction technique. Phase 

cycling achieves robustness towards phase wraps by spreading the artifacts caused by 

regularizing phase wraps spatially. Phase cycling is performed in the inner iterations of the 

phase update, that is, the K loop as described in Appendix B.
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Figure 6. 
Partial Fourier + PI + CS reconstruction comparison results on the same brain dataset in 

Figure 4. The method of Bydder et al. shows higher error in the magnitude image compared 

to proposed method with phase cycling in regions pointed out by the red arrows. The method 

of Zhao et al. shows higher magnitude image error in general, and displays staircase artifacts 

in the phase image, which are common in total variation regularized images, as pointed by 

the yellow arrow.
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Figure 7. 
Water-fat + partial Fourier + PI + CS reconstruction result on a thigh dataset. Our proposed 

method produces similar water and fat images on a undersampled partial Fourier dataset 

compared to the fully-sampled reconstruction using the method from Sharma et al.
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Figure 8. 
Net flow rates across 4 studies for the proposed method compared with ℓ1-ESPIRiT, 

calculated across segmentations of aorta (AA) and pulmonary trunk (PT). Both ℓ1-ESPIRiT 

reconstruction and proposed reconstruction result in similar flow rates.
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Figure 9. 
Divergence-free wavelet regularized flow imaging + PI + CS reconstruction result on a 4D 

flow dataset, compared with ℓ1-ESPIRiT and ℓ1-ESPIRiT followed by divergence-free 

wavelet denoising. Visually, the proposed method reduces incoherent artifacts and noise 

compared to the other results, especially in regions pointed by the red arrows where there 

should be no fluid flow.
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Figure 10. 
Divergence-free wavelet regularized flow imaging + PI + CS reconstruction results on a 4D 

flow dataset. The reconstructed magnitude image has significantly reduced blurring from 

partial readout, compared to the ℓ1-ESPIRiT result.
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