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Abstract

Purpose of review—The goal of this review is to identify cumulative modeling methods used to 

evaluate combined effects of exposures to environmental chemicals and social stressors. The 

specific review question is: What are the existing quantitative methods used to examine the 

cumulative impacts of exposures to environmental chemical and social stressors on health?

Recent findings—There has been an increase in literature that evaluates combined effects of 

exposures to environmental chemicals and social stressors on health using regression models; very 

few studies applied other data mining and machine learning techniques to this problem.

§Corresponding author.
*These authors contributed equally to this work.
Hongtai Huang1, 2§, PhD, MSE.

550 16th. Street, 7341, San Francisco, CA 94158. Hongtai. Huang@ucsf.edu
Aolin Wang1, 2, PhD.
550 16th. Street, 7338, San Francisco, CA 94158. Aolin.Wang@ucsf.edu
Rachel Morello-Frosch1, 3, PhD, MPH.
128B Giannini Hall, Berkeley, CA 94720. rmf@berkeley.edu
Juleen Lam1, PhD, MS, MHS.
550 16th. Street, 7336, San Francisco, CA 94158. Juleen.Lam@ucsf.edu
Marina Sirota2, 4, PhD.
550 16th. Street, 4761, San Francisco, CA 94158. Marina.Sirota@ucsf.edu
Amy Padula1*, PhD, MSc.
550 16th. Street, 7333, San Francisco, CA 94158. Amy.Padula@ucsf.edu
Tracey J. Woodruff1*, PhD, MPH.
550 16th. Street, 7330, San Francisco, CA 94158. Tracey.Woodruff@ucsf.edu

Compliance with Ethical Standards

Conflict of Interest
Hongtai Huang, Aolin Wang, Rachel Morello-Frosch, Juleen Lam, Marina Sirota, Amy Padula, and Tracey J. Woodruff declare that 
they have no conflict of interest.

Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.

HHS Public Access
Author manuscript
Curr Environ Health Rep. Author manuscript; available in PMC 2019 March 01.

Published in final edited form as:
Curr Environ Health Rep. 2018 March ; 5(1): 88–99. doi:10.1007/s40572-018-0180-5.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Summary—The majority of studies we identified used regression models to evaluate combined 

effects of multiple environmental and social stressors. With proper study design and appropriate 

modeling assumptions, additional data mining methods may be useful to examine combined 

effects of environmental and social stressors.
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Introduction

Individuals are exposed to multiple environmental chemicals (both natural and synthetic) via 

different environmental media such as air, water and soil [1]. For instance, studies find that 

U.S. pregnant women are exposed to multiple chemicals including polychlorinated 

biphenyls (PCBs), organochlorine pesticides, perfluoroalkyl and polyfluoroalkyl substances 

(PFAS), phenols, polybrominated diphenyl ethers (PBDEs), phthalates, polycyclic aromatic 

hydrocarbons (PAHs), and perchlorate [2]. Human biomonitoring – measuring the 

concentration of chemicals in body fluids (blood, urine, and breast milk) or tissues (hair, 

nails, fat, and bone) – is often used to assess chemical burden as it provides evaluation of the 

internal doses reflective of exposures via multiple pathways [3]. Since 2000, the U.S. Center 

for Disease Control and Prevention (CDC) has been biomonitoring about 300 chemicals, 

using the National Health and Nutrition Examination Survey (NHANES). These chemicals 

include metals, pesticides, PCBs, PBDEs, PFAS, volatile organic compounds (VOCs), 

tobacco smoke, PAH metabolites, phthalate and metabolites, among many others [4]. Certain 

classes are frequently measured simultaneously and in a single matrix (maternal urine or 

maternal serum): non-persistent phenols and phthalates are often examined in urine while 

persistent chemicals such as PFAS, PBDEs, PCBs and organochlorine pesticides are 

commonly measured in serum. Multiple chemical exposures can result in higher risks than 

exposures to individual pollutants. The NAS concluded that ‘combinations of phthalates and 

of other antiandrogens generate combined effect at doses that when administered alone do 

not have significant effects’ and recommend that risk assessment should account for 

cumulative risk to chemicals that affect the same adverse health endpoint [5].

The concept of cumulative impacts, the focus of this review, refers to potential adverse 

human health effects resulting from combined exposures to multiple environmental and 

social stressors [6–8]. ‘Cumulative risk’ aims to quantify to the extent possible ‘combined 

risks from aggregate exposures to multiple [environmental] agents or stressors’ [1]. 

Statistical methods used to characterize and model the combined and potential interactive 

effects of multiple environmental hazard and social stressor exposures are referred to as 

cumulative risk and impact modeling.

Recognizing the public health impacts of exposure to multiple environmental chemicals, an 

increasing number of studies have assessed the cumulative impact of exposures to chemical 

mixtures or multiple air pollutants simultaneously. Dose-addition based methods including 

relative potency factors and toxic equivalency factors have been used to examine the 
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cumulative risk of chemicals from a single class such as organophosphate pesticides [9], 

PCBs [10], and phthalates [11].

In addition to environmental chemical pollutants, non-chemical stressors – particularly 

psychological and social stressors (e.g. such as poverty, lack of social support and chronic 

discrimination due to race/ethnicity) – can independently influence health and have been 

considered in cumulative risk and cumulative impact studies [12]. Psychological stress and 

socioeconomic factors in recent years have been identified as critical non-chemical stressors 

that could increase the adverse health effects of chemical exposures. For example, 

biomarkers of chronic stress response, such as ‘allostatic load’, were found to amplify the 

risk of increased blood pressure associated with lead exposure in adults [13]. Urban children 

exposed to violence had higher risks of developing asthma in the presence of traffic-related 

air pollution [14]. Social stressors, measured by indicators such as poverty and race/

ethnicity, have been often included as one of the key effect modifiers in environmental health 

research to address disparities [15–22]. Social stressors such as educational attainment level 

and population density were examined previously as well [20]. To evaluate cumulative 

health risks from both chemical and non-chemical stressors, U.S. EPA proposed a 

framework guidance for cumulative risk assessment in 2003 [1] and subsequently provided a 

technical resource document in 2007 [23], acknowledging the challenges of incorporating 

non-chemical stressors in risk assessment. Although it is known that humans are exposed to 

multiple chemical and social stressors which are likely to cumulatively impact health, 

cumulative risk and impact modeling methods have not yet been fully developed to evaluate 

the joint exposures.

Overall, the main categories of established approaches used to evaluate aspects of 

cumulative impacts of multiple stressors are either quantitative or semi-quantitative methods, 

including biomonitoring, health risk assessment, ecological risk assessment, health impact 

assessment, burden of disease, and mapping of cumulative impacts [24]. The majority of the 

established approaches involve elements of quantitative analysis, but these vary to a large 

degree [24]. For example, when little or no mechanistic data are available, the hazard index 

was used to assess the cumulative non-cancer risks for chemicals that have an established 

chronic reference dose or reference concentration [25]. More established modeling methods 

have been applied in recent years to attempt to address cumulative impacts. Air dispersion 

and exposure models were employed to examine cumulative diesel particulate matter 

emission in Southern California for five traffic/mobile sources comparing four 

environmental goals including impact, efficiency, quality and justice [26]. To account for 

non-chemical stressors in the process of exposure and dose estimates, the Average Daily 

Dose model [27], was linked to multiple social indicators and applied to examine dose 

estimates on both the U.S. nationwide census tract-level and community-wise local scale 

[28]. In addition, association rule mining [29], an unsupervised machine learning method, 

was also utilized to evaluate associations between social factors and environmental chemical 

concentrations relevant to cumulative impacts in the U.S. [30].

To our knowledge, no review has yet been performed to identify the statistical models used 

to evaluate the combined effects of multiple factors of environmental chemical and social 

stressors. A review of cumulative risk and impact modeling techniques can fill this scientific 
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gap and provide useful modeling reference for future cumulative risk and impact studies. 

This review identifies and evaluates the types of statistical models used to quantify the 

cumulative effects of multiple environmental and social stressors to provide modeling 

suggestions. The purpose of this review is not to provide a framework for modeling selection 

in designing a scientific study, but to summarize what modeling techniques have been 

considered after research questions, study design and data were determined. Many factors 

including research questions, study design and data availability are important in model 

selection. However, there are often multiple choices for statistical modeling and there may 

be opportunities to bring in new types of models into the field to evaluate cumulative risk 

and impacts. This review was conducted from this perspective.

Methods

Given the diversity of chemical and non-chemical factors involved in cumulative impacts 

and their various possible combinations and relevant health effects, different studies used a 

variety of statistical approaches to model and evaluate the health effects from multiple 

stressors. The two major categories of statistical models are supervised and unsupervised 

modeling methods. The former predefines response and explanatory variables, and evaluates 

their statistical relationships, while the latter has no such predetermined condition but 

instead examines and identifies potential associations or hidden statistical structure among 

different input variables. Supervised methods include both regression models (e.g. Cox’s 

regression model [31]) and classification models (e.g. Classification and Regression Trees 

[32]). Unsupervised approaches encompass cluster analysis [33] and association rule mining 

or frequent itemset mining.

In this study, we review the statistical models used in studies whose primary objective was to 

analyze chemical and non-chemical stressors collectively. Many exposure studies have 

varying interpretations of the concept of ‘environment’— for instance, characterizing 

exposures in the home, work, or neighborhood environments. Similar to the definition 

presented in a previous review [34], the universe of exogenous chemical exposures in this 

review is referred to ‘those that are generally addressed by U.S. EPA, and include 

manufactured chemicals and chemical byproducts (e.g. air pollution)’ [34] except smoking. 

In this review, we did not evaluate studies that were specific to home or work environments. 

Also, no restriction was imposed upon our search based on the type of data used.

We also utilized searching terms related to environmental justice to broadly capture articles 

that evaluated the health effects of multiple chemical and non-chemical stressors in a 

cumulative manner, in that many environmental justice studies emphasized the combined 

effects of multiple stressors. However, environmental justice is not the main focus of this 

review.

We searched articles published 2012/01/01 – 2017/06/21 in English and indexed in PubMed 

with the following four groups of searching terms and identified articles that had to meet 

each of the four criteria:

• #1 (cumulative, multiple, aggregated, joint, combined) AND (risk, impact, 

exposure)
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• #2 (Environmental) AND (justice, injustice, equality, inequality, equity, inequity, 

disparity)

• #3 Environmental/Chemical exposure*

• #4 Non-chemical stressors*

*Search terms for #3 and #4 were adopted from protocols developed by [34] that evaluated 

the combined effects of prenatal-exposure to both chemicals and psychological stress on 

fetal growth.

Inclusion criteria

I. Original peer-reviewed research articles that evaluate both environmental and 

social stressors, and analyzed their health effects (excluding home or work 

environment)

II. Human subject studies

III. Articles published during 2012/01/01 and 2017/06/21

IV. Articles that included quantitative method information

One reviewer (HH) was responsible for screening and identifying relevant studies.

Results

HH identified 376 articles with full text availability and found 79 eligible articles based on 

initial title and abstract screening. After full-text review of these eligible articles, HH 

identified 31 relevant articles. The excluded 345 references consisted of: 1) articles that did 

not involve both social stressors and environmental/chemical exposures (n=241); 2) studies 

that did not analyze health effects of multiple stressors (n=69); 3) non-original research 

articles (n=24); 4) articles that did not use quantitative methods (n=9); and 5) studies that 

were not based on human subjects (n=2).

Supervised methods were divided into regression and classification (Figure 1). Currently, 

most of the modeling techniques utilized to examine cumulative impact are supervised 

regression models. We considered commonly used regression methods such as multivariable 

linear/non-linear regression and logistic regression models as simple regression techniques. 

Other regression models, such as generalized linear model (GLM), multilevel model and 

spatial regression model, were classified as complex regression techniques. None of the 

studies identified in this review used supervised classification models.

As shown in Table 1, among the 31 articles identified [35–70], 10 studies [37, 42, 43, 46, 52, 

55, 61, 66, 68, 69] used multivariable linear/non-linear regression models to evaluate the 

combined effects of multiple chemical and non-chemical stressors, and 7 studies [36, 38, 40, 

45, 47, 59, 68] used logistic regression models. In addition, we found 5 studies [49, 56, 57, 

63, 67] that used hierarchical/multilevel regression models. All studies used supervised 

techniques, specifically regression models, but several of them also used unsupervised 

methods such as hierarchical cluster analysis, factor analysis and principal component 

analysis (PCA), in addition to regression models. Air pollutants were the environmental 
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chemical exposure most often modeled: 20 out of the 31 studies evaluated air pollutants [35, 

38, 40, 42, 43, 45, 49–53, 56, 58, 60–64, 66, 69], especially the criteria pollutants such as 

particulate matter (PM) and nitrogen dioxide (NO2). For instance, the joint effects of 

exposure to PM2.5 and O3 and socioeconomic status measures upon pregnancy outcomes 

including low birth weight, preterm birth and small for gestational age were evaluated based 

on a linear or logistic mixed regression model [49]. Other chemical exposures evaluated 

cumulatively include industrial cadmium [55], lead [46], zinc [67], Bisphenol A (BPA) [47] 

and PAH [68]. Socioeconomic factors, especially race/ethnicity and income level, were 

among the most frequent non-chemical stressors modeled. As to the health endpoints 

evaluated, mortality rate and cancer risks followed by pregnancy outcomes were considered 

more frequently than others (7 and 5 out of 31) (Table 1).

We evaluated in more detail the statistical modeling technique and combination of exposures 

and outcomes identified in Table 1 to provide examples of model selection given different 

stressors focused (Table 2). We found that some complex regression-based modeling 

approaches have been used to evaluate the joint effects of multiple stressors. For example, 

the combined effects of exposure to arsenic contamination in drinking water and health 

intervention programs on child mortality from acute lower respiratory infections were 

modeled by a zero-inflated negative binomial regression [54]. Both simple regression and 

Bayesian sparse spatial multilevel models were utilized to evaluate the relationship between 

lead exposure and both gonorrhea and chlamydia, accounting for other non-chemical 

stressors such as index of concentrated disadvantage [57]. Negative binomial regression 

models were used to examine associations between mortality and environmental factors 

including air pollution and drinking water quality with consideration to socioeconomic 

deprivation [62].

Discussion

Our review provided a summary of statistical modeling methods considered in studies to 

quantify potential combined effects of multiple environmental and social stressors. It was 

not our intent to provide a framework for modeling selection in designing a scientific study, 

which is beyond the scope of our review. The selection of modeling technique involves 

consideration of many important factors, including the research question(s), study design, 

and data availability. The combination of these factors may lead an investigator to choose 

one method over another.

For example, to answer respiratory health inequalities questions concerning relationships 

between respiratory health situations across different cities and their medical amenities, 

socioeconomic and physical features (e.g. air pollution), Aschan-Leygonie et al. analyzed 

health data describing hospitalizations of chronic obstructive pulmonary disease and a large 

set of different indicator variables of both social and environmental stressors using linear 

correlations and multiple linear regression models in an ecological case study [37]. They 

found that socioeconomic features may be the major drivers for inequities of respiratory 

health status in urban units and concluded that better understanding of ‘differences among 

cities in their entirety’ is essential to develop effective urban policies. Multiple linear 

regression models were an appropriate choice to answer the research questions of interest 
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given their study design and data availability. However, if the intent of the study was not to 

understand risk factors for a specific type of disease or outcome, but instead to identify all 

the possible associations among the variables with different combination to provide 

guidance for further analysis, then the association rule mining method could have been more 

useful in that setting, assuming the modeling assumptions were met and data requirements 

satisfied.

We found that a large number of more complex statistical models, supervised or 

unsupervised, have been utilized in other scientific domains but less commonly applied in 

cumulative impact studies. A relevant example is the Random Forest model [71] that is a 

supervised classification tool widely employed in various applications such as compound 

classification and quantitative structure-activity relationship (QSAR) modeling for 

predicting categorical biological activity [72], land-cover classification [73] and gene 

selection and classification [74], but was not used to understand the joint effects of multiple 

stressors. When multiple exposures including social stressors were considered, Random 

Forest model can be rather useful to determine variable importance and potentially separate 

those of more importance from a larger set of variables. Another supervised technique 

example is neural network ensembles [75], which serves as the foundation of deep learning 

[76] and has also been extensively employed in numerous scientific disciplines [77–81], but 

not been used in cumulative impact studies. Provided that there are known associations 

between certain health outcome and multiple stressors, this type of models can be very 

powerful in predicting occurrences of the health outcome of interest within the context of 

examining multiple exposures.

Models Comparison

Simple Regression vs. Complex Regression—The advantages of simple regression 

models include: 1. straightforward model execution; 2. easy interpretation of model 

techniques; 3. model outputs accessible and understandable to a larger group of audiences, 

which can be conducive to risk communication and community engagement. For example, 

Vishnevetsky et al. evaluated cumulative effects of low socioeconomic status and PAH air 

pollution exposure in children. They found that children with socioeconomic disadvantages 

as measured by recurrent material hardship and high level of prenatal exposure to PAH had 

5.81 point lower full scale intellectual quotient (IQ) score than those experienced material 

hardship but with low PAH exposure. The same significant association was not observed 

within the low material hardship group [68]. The numeric construct of the findings is 

informative and understandable to public audiences and will benefit future community-based 

risk assessment and communication.

One of the challenges of using simple regression models is that normal or multi-normal 

distribution assumptions may not always hold for environmental exposures or social factors. 

Although in some cases log-normal transformation of response variables can address this 

problem, it cannot be used to account for data that has other types of distributions, such as 

negative binomial distribution, Poisson distribution and gamma distribution.

Complex regression models have the following benefits: 1. higher level of flexibility 

regarding distribution assumptions made; 2. the ability to account for inherent data issues 
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(e.g. spatial autocorrelation); 3. potentially better predictive power. For instance, GLM 

allows flexibility regarding data distribution assumption which is the advantage of this kind 

of modeling [33], but similar to other supervised methods, it also requires specification of 

both response and explanatory variables.

When modeling the joint effects of multiple environmental chemical and social stressors, 

using multivariable linear regression or logistic regression models may not be appropriate, 

especially if the social stressors are based on placed-based measurement and these can be 

spatially autocorrelated which can introduce biased estimates. In these cases, more complex 

regression modeling method such as spatial error regression models [82] can be useful in 

addressing such issue, because they do not assume independent and identically distributed 

errors at the census tract level, but rather allow errors distributed by a spatial autoregressive 

process. This type of model can account for residual spatial autocorrelation when units of 

observation are located proximally, and thus non-independently, in space. For example, 

simultaneous autoregressive models were utilized to examine the health impacts of NO2 and 

several community-level social stressors such as violent crime and physical disorder, 

crowding and poor access to resources across New York communities, accounting for spatial 

relationship between air pollution and social stressors [64].

Simple regression models such as multivariable linear or logistic regression models are 

special cases of GLM. In this review, we distinguish between multivariable linear or logistic 

regression and other uses of GLM models beyond linear/logistic regression models. 

Multilevel/hierarchical modeling [83] is another example of a modeling approach that 

permits examination of the effects of stimulus variables upon response variable on the local 

versus global scale, accounting for variance among variables at different levels, but it 

requires a sufficient sample size for unbiased estimation [84]. In this review, we found that 

multi-level models were a popular option for modeling cumulative effects of various 

stressors that have nested effects and frequently considered in longitudinal studies. For 

example, association between PM2.5 and O3, socioeconomic factors and birth outcomes 

were modeled using North Carolina birth data from 2002 to 2006 and multi-level models in 

which census tract was specified as a random effect to account for neighborhood-level 

correlation [49].

Although unsupervised methods such as PCA was employed occasionally, coupled with 

other supervised techniques (e.g. generalized estimating equations, zero-inflated negative 

binomial regression), other complex unsupervised machine learning methods have not yet 

been explored. In recent years, association rule mining modeling was used to identify and 

prioritize relations between environmental stressors and negative human health effects [85] 

and discern prevalent chemical combinations in the U.S. population [86]. Provided that 

population-based health outcome information is available on a small geographic unit such as 

census tract and can be linked to social and environmental data, this unsupervised model can 

also be applied to evaluate the synergistic health impacts of multiple chemical and non-

chemical stressors in the future.

It should be acknowledged that using complex data mining techniques are not necessarily 

always a better option. For example, more complex modeling methods may have higher data 
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input requirement such as larger sample size to have enough statistical power for generating 

reliable results. However, with proper study design and data availability, outputs from certain 

data mining techniques can be useful to address certain research questions, provided proper 

assumptions are met.

Bayesian vs. Non-Bayesian—We also found that several studies adopted a Bayesian 

approach to examine combined effects of multiple stressors. The advantage of Bayesian 

methods is that they can incorporate qualitative information or a priori knowledge to 

improve model fitting and predictions. Incorporating feedback from local residents or 

experts is a critical component in local scale cumulative risk assessment, and Bayesian 

statistical models could play a key role in connecting qualitative information to quantitative 

calculation. However, both the amount of non-quantitative data needed to integrate into the 

model and the degree to which information will be applied are subjective, which may 

potentially introduce bias. Non-Bayesian approaches predominantly utilize quantitative 

information without qualitative inputs, and therefore could avoid subjective bias embedded 

in qualitative data. However, these approaches have less flexibility in integrating non-

quantitative information such as expert opinions that could be potentially useful in situations 

where quantitative data alone are not sufficient for conclusive analysis.

Current and Emerging Exposures

More than two thirds of the studies identified focused on air pollutants, which is largely 

driven by data availability and response to policies developed as part of implementation of 

the Clean Air Act and subsequent regulations. Importantly, spatial studies, such as those that 

use air pollution, make it feasible to analyze place-based exposures to environmental 

exposure and social stressors because these data can be accessed via publicly available data 

sources, such as the National Air Toxics Assessment database (https://www.epa.gov/

national-air-toxics-assessment/2011-nata-assessment-results). This facilitates data analysis 

with a larger geographic and population scope, which provides sufficient power to observe 

signals for multiple types of groups, each of which themselves may be relatively small. 

There were fewer studies that used biomonitoring data, in part because this type of data is 

less available, though more is being generated with investments from the research 

community and government. Thus, studies that characterize individual-level exposures to 

both multiple environmental chemicals (using targeted and non-targeted approaches) and 

social stressors (biomarkers of chronic stress response, perceptual and place-based stressors) 

are also becoming more viable.

There exist many emerging exposures that warrant researchers’ and policy-makers’ attention 

such as heat exposure [87], multimedia screen light exposure [88], nanomaterial exposure 

[89], chemicals not bio-monitored previously [4, 90] and poor access to resources [64]. 

Analyses based on place-based measures allow researchers to take advantage of data sets 

that are likely to have wide variability in exposures to chemical and non-chemical stressors, 

and facilitate research with a wide geographic scope. However, it can narrow the scope of 

the kinds of exposures that one can analyze due to constraints of data availability. This 

makes it more challenging to evaluate these emerging exposures. Provided relevant data sets 

are available, future research can build upon the methods and findings from spatial studies 
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and apply them to evaluating combined effects of some of these emerging exposures with 

known pollutants, to better characterize the effects of multiple chemical exposures that 

individuals experience [90] along with social stressors.

Limitations

There are several limitations of this review that warrant further consideration. First, this 

review mainly focused on the modeling aspects of research studies and less so regarding 

specific research questions evaluated, study design and data available. However, due to the 

high degree of dimensions regarding different possible research settings that may call for use 

of distinct modeling methods, covering all the combinations of different research questions, 

study designs and data, and then proposing modeling suggestions accordingly is beyond 

scope of this review. As a starting point towards promoting use of appropriate statistical 

methods in examining cumulative risk, we focus on the modeling perspective. Therefore, 

this manuscript reviews statistical models used to examine the combined effects of both 

environmental chemical and social stressors in recent studies. Lastly, although our intent was 

to focus on studies whose primary objective was to investigate cumulative exposure, our title 

and abstract searching mechanism might have missed studies that found no positive results 

regarding the combined effects of multiple environmental chemical and social stressors. 

Such negative findings would be important in a systematic review and meta– analysis. 

However, it should be recognized that this review is not a systematic review and no 

quantitative synthesis was performed across different studies. Therefore, we may have 

potentially excluded references containing other useful data mining techniques not 

mentioned in this review, but we estimate that the negative consequence is not substantial.

Regression models have been often applied to evaluate the potential adverse human health 

effects from combined exposures to multiple environmental chemical and social stressors. 

With proper study design and appropriate modeling assumptions, additional data mining 

methods may be useful in the evaluation of cumulative health impacts of multiple chemical 

exposures and social stressors.

Conclusion

The importance of understanding joint effects of environmental chemical and social stressors 

has been recognized. There is growing literature to evaluate the combined effects of multiple 

stressors on health with the majority of them using regression models. With increasing 

knowledge in exposure science and the advent of more quantitative tools in the era of ‘big 

data’, we recommend that additional data mining techniques are considered in certain 

appropriate research settings and potentially incorporated in the analytical procedure to 

better characterize chemical and non-chemical stressors for risk assessment to identify 

potential health risks and to provide public health protection, particularly to the vulnerable 

and susceptible populations.
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Figure 1. 
Different Types of Existing Statistical Models. Most of the current models used to capture 

the combined effects of multiple chemical/non-chemical stressors in the field of cumulative 

impact studies are regression models (highlighted in gray shadows).
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