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Abstract: The main parameters of magnetoelastic resonators in the detection of chemical (i.e., salts,
gases, etc.) or biological (i.e., bacteria, phages, etc.) agents are the sensitivity S (or external agent
change magnitude per Hz change in the resonance frequency) and the quality factor Q of the
resonance. We present an extensive study on the experimental determination of the Q factor in
such magnetoelastic resonant platforms, using three different strategies: (a) analyzing the real and
imaginary components of the susceptibility at resonance; (b) numerical fitting of the modulus of
the susceptibility; (c) using an exact mathematical expression for the real part of the susceptibility.
Q values obtained by the three methods are analyzed and discussed, aiming to establish the most
adequate one to accurately determine the quality factor of the magnetoelastic resonance.
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1. Introduction

Magnetoelastic resonators used as sensing devices present advantages like allowing remote “query
and answer” [1,2] as well as low cost and low power consumption [3]. Due to these reasons, chemical
and many other parameters can be detected: aqueous chemicals including pH [1], salt, and glucose
concentrations [3], as well as inorganic salt depositions [4], gas humidity [5], gases such as carbon
dioxide [6], or toxic volatile organic compounds (VOCs) such as benzene or hexane, among others [7].
In recent years, they have become a hot topic as novel wireless biosensors for bacteria, potentially
lethal for humans, such as Salmonella [8,9], Bacillus anthracis [9], or Escherichia coli [10]. Such detection
will be achieved if the surface of the magnetoelastic resonator is coated with an appropriate smart
functionalized film that interacts with the target of interest.

The detection process in such sensors is based on the shift of the magnetoelastic resonance (MER)
frequency under the action of an external agent, easily seen when measuring the magnetic susceptibility
versus the frequency of the applied magnetic field. In the case of biological agents, the adhesion of
different bacteria to the resonators causes an increase in the total mass, which leads to a decrease in the
MER (see Figure 1).
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Figure 1. Principle of detection of biological targets using magnetoelastic resonators. The adhesion of 
the bacteria to the materials leads to an increase in the total mass of the system, which is detected as 
a shift (always decreasing) in the measured magnetoelastic resonance frequency. 

Among the magnetoelastic materials to be used as biological sensors, Fe-based amorphous 
ferromagnetic alloys in the form of a ribbon are among the most suitable, mainly due to their high 
magnetoelastic coupling coefficient (݇), high saturation magnetostriction (ߣௌ), and high saturation 
magnetization (ܯௌ) [11]. 

The good performance of a magnetoelastic sensing device is mainly determined by two 
parameters: sensitivity and quality factor. The sensitivity is related to the lowest detectable frequency 
change. This depends on the experimental system, but also on the sharpness of the resonance, which 
in turns depends on the ܳ factor. In some cases, the determination of ܳ can be more sensitive than 
that of the resonance frequency for detecting small changes in mass. With ݉ and ݂ the unloaded 
mass and corresponding MER frequency of a magnetoelastic resonator, respectively, its sensitivity to 
a change in mass due to an external target is given by the relationship: ܵ = − ݉ߜ݂ߜ = ݂2݉, (1) 

where ݂ߜ represents the resonance frequency shift caused by the presence of an external agent that 
causes a change of mass ݉ߜ, mass change of the MER film. Thus, a high sensitivity value means a 
large ݂ߜ shift for a given mass change. The linearity expressed by Equation (1) is valid for small mass 
changes compared to the initial MER film mass. Nevertheless, it is just an approximation of a more 
general expression [12] and is still subject to revision and discussion by the authors [13,14]. 

Concerning the quality factor ܳ, it has been already experimentally observed that damping 
strongly affects both resonant frequency and magnetoelastic resonance curve shape (see, for  
example, [15–17]). A high ܳ value means a sharp resonance frequency and, consequently, a well-
defined ݂ resonance frequency. From the measured susceptibility curve around the magnetoelastic 
resonance, the ܳ	quality factor can be estimated as the resonance curve full bandwidth ∆݂ signal (or 
full width at half maximum power) relative to its susceptibility maximum frequency ݂, that is: ܳ = ݂∆݂, (2) 

which is a dimensionless number [18,19]. This classical empirical first approximation can lead to 
errors as high as 20% in the correct ܳ value determination, as previously noted by Kaczkowski [20]. 
Therefore, in biological detection based on the magnetoelastic resonance frequency shift, accurate 
determination of the ܳ quality factor beyond the empirical expression Equation (2) turns out to be a 
key parameter. 

In the present work, we present an extensive study of the determination of the ܳ factor in 
magnetoelastic resonant platforms. To do this, strips ( ܮ = 4	cm ) of Fe-rich ݁ܨସܥଵܵ݅.ܤଵଶ.ସ 
composition homemade metallic glass have been used. Determination of the ܳ quality factor value 
has been performed in three different ways: (a) analyzing the full susceptibility curve around the 
resonance (real and imaginary components); (b) numerical fitting of the magnitude (modulus) of the 

Figure 1. Principle of detection of biological targets using magnetoelastic resonators. The adhesion of
the bacteria to the materials leads to an increase in the total mass of the system, which is detected as
a shift (always decreasing) in the measured magnetoelastic resonance frequency.

Among the magnetoelastic materials to be used as biological sensors, Fe-based amorphous
ferromagnetic alloys in the form of a ribbon are among the most suitable, mainly due to their high
magnetoelastic coupling coefficient (k), high saturation magnetostriction (λS), and high saturation
magnetization (MS) [11].

The good performance of a magnetoelastic sensing device is mainly determined by
two parameters: sensitivity and quality factor. The sensitivity is related to the lowest detectable
frequency change. This depends on the experimental system, but also on the sharpness of the resonance,
which in turns depends on the Q factor. In some cases, the determination of Q can be more sensitive
than that of the resonance frequency for detecting small changes in mass. With m0 and f0 the unloaded
mass and corresponding MER frequency of a magnetoelastic resonator, respectively, its sensitivity to
a change in mass due to an external target is given by the relationship:

S = − δ f
δm

=
f0

2m0
, (1)

where δ f represents the resonance frequency shift caused by the presence of an external agent that
causes a change of mass δm, mass change of the MER film. Thus, a high sensitivity value means
a large δ f shift for a given mass change. The linearity expressed by Equation (1) is valid for small mass
changes compared to the initial MER film mass. Nevertheless, it is just an approximation of a more
general expression [12] and is still subject to revision and discussion by the authors [13,14].

Concerning the quality factor Q, it has been already experimentally observed that damping strongly
affects both resonant frequency and magnetoelastic resonance curve shape (see, for example, [15–17]).
A high Q value means a sharp resonance frequency and, consequently, a well-defined fr resonance
frequency. From the measured susceptibility curve around the magnetoelastic resonance, the Q quality
factor can be estimated as the resonance curve full bandwidth ∆ f signal (or full width at half maximum
power) relative to its susceptibility maximum frequency fr, that is:

Q0 =
fr

∆ f
, (2)

which is a dimensionless number [18,19]. This classical empirical first approximation can lead to errors
as high as 20% in the correct Q value determination, as previously noted by Kaczkowski [20]. Therefore,
in biological detection based on the magnetoelastic resonance frequency shift, accurate determination of
the Q quality factor beyond the empirical expression Equation (2) turns out to be a key parameter.

In the present work, we present an extensive study of the determination of the Q factor in
magnetoelastic resonant platforms. To do this, strips (L = 4 cm) of Fe-rich Fe64Co17Si6.6B12.4

composition homemade metallic glass have been used. Determination of the Q quality factor value
has been performed in three different ways: (a) analyzing the full susceptibility curve around the
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resonance (real and imaginary components); (b) numerical fitting of the magnitude (modulus) of the
susceptibility; and (c) using an exact mathematical expression for the Q value arising from analysis of
the real part of the susceptibility curve at the resonance.

2. Experimental

2.1. Material: Magnetic and Magnetostrictive Characterization

In the present study, Fe-based Fe64Co17Si6.6B12.4 composition homemade metallic glass ribbons
were used. They were prepared by the single roller quenching method in the form of a long
ribbon. Equal length strips (L = 4 cm) were cut to perform all the magnetic and magnetoelastic
characterizations. Room-temperature hysteresis loops were measured by a classical induction method,
obtaining a saturation magnetization (given as internal magnetic induction in Tesla) of µo MS ≈ 1.6 T
and a magnetic susceptibility χ ≈ 15, 000. A magnetostriction value of λS ≈ 22 ppm was measured
using strain gauges connected to an electronic Wheatstone bridge. Figure 2 shows the obtained
hysteresis loop and magnetostriction curves.
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Figure 2. Fe64Co17Si6.6B12.4 composition metallic glass magnetic characterization: (a) hysteresis loop
and (b) magnetostriction curve.

2.2. Magnetoelastic Characterization

The metallic glasses of the present study show excellent coupling between magnetic and elastic
properties, that is, the applied mechanical stress and the magnetic field generating equivalent effects
in the magnetization and deformation of the materials. A direct consequence of the magnetoelastic
coupling is the dependence of the elastic constants of magnetostrictive materials on the external
magnetic field H, in particular the dependence of the longitudinal Young’s modulus on H, known
as the ∆E effect (∆E = 1− E(H)/ES, with ES being the Young’s modulus measured at magnetic
saturation (a detailed mathematical formula can be found in [21]).

This ∆E effect is easy to measure experimentally through the change in mechanical resonance as
a function of the field. The resonance can be excited by an alternating field and detected by the changes in
magnetic susceptibility. For this purpose, we used a home-mounted, computer-controlled magnetoelastic
resonance detection apparatus [22,23] that automatically changes the DC external applied magnetic field
Hdc, also known as bias field, and sweeps the frequency of the AC magnetic field Hac in order to drive
the sample to magnetoelastic resonance at a given bias. This is the so-called resonance–antiresonance
detection method. We use an HP 3589A Spectrum Analyzer in order to quickly measure the magnitude
(χ) of the susceptibility curve at the magnetoelastic resonance and store the resonant frequency fr at the
maximum and antiresonance frequency fa at the minimum signals, together with the signal amplitude at
the resonance. Besides the susceptibility χ, we also measure its real (χ′) and imaginary (χ′′) components
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separately with the help of a Signal Recovery 7280 Lock-in Amplifier. In these measurements, we extract
the frequencies f ′M and f ′m, at the maximum and the minimum signal of the χ′, respectively, and to the
frequency f ′′M at maximum χ′′.

All these measured frequencies and in particular the resonance ( fr) vary with the bias field Hdc, and so
does the Young’s modulus, determined as E(H) =

[
2L f 2

r (H)
]2

ρ [24], where L and ρ are the length and
density, respectively, of the sample. Other useful magnetoelastic parameters that can be determined from

these measurements are the magnetoelastic coupling coefficient (k =

√
(π2/8)

(
1− ( fr/ fa)

2
)

) [25] and the

quality factor of the resonance Q. All such quantities are a function of the applied external magnetic field.
Figure 3 shows the typical external applied magnetic field dependence of Young’s modulus

E(H) and magnetoelastic coupling coefficient k(H) for our magnetostrictive material. It can be seen
that there is a minimum in the E(H) curve that happens at a value of the applied external magnetic
corresponding to Hk or effective anisotropy field of the sample. In the same field, the maximum of
k(H) and minimum of Q(H) occur. This is an expected behavior since in fact the k value is high
when the difference between fr and fa is also high, that is, the resonance curve is broad, and so its
corresponding Q value (quality of the resonance curve) is poor. While the maximum of the coupling
value k guarantees the best sensitivity S of a magnetoelastic resonator working as a biological or
chemical sensor [13], the simultaneous occurrence of the worst Q value jeopardizes the accurate
determination of the magnetoelastic resonance frequency. Bearing this in mind, we will study the
Q factor under external bias field conditions for poor (k = 0.065 at 16 Oe), medium (k = 0.176 at
0.6 Oe), and good (k = 0.282 at 2 Oe) magnetoelastic coupling, aiming to establish the most adequate
method (analysis of the real and imaginary part of the susceptibility, numerical fitting of modulus of the
susceptibility, and analytical calculations) to determine the quality factor of a magnetoelastic resonance.
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3. Results: Determination of the Q Quality Factor Value

3.1. Full Susceptibility Curve Analysis at Resonance

Figure 4 shows the magnetic susceptibility modulus (χ) curves for our Fe64Co17Si6.6B12.4

(L = 4 cm) composition metallic glass, measured around the magnetoelastic resonance frequency
for all the applied magnetic field cases under study. In these measurements, the frequency step
between consecutive points was 10 Hz.
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Figure 4. Susceptibility modulus (χ) measured for the Fe64Co17Si6.6B12.4 (L = 4 cm) composition
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From these susceptibility modulus (χ) curves, we can directly extract the resonance ( fr) and
antiresonance ( fa) frequencies and so estimate the magnetoelastic coupling coefficient k and the quality
factor Q, from Equation (2), as Table 1 summarizes. As mentioned before, however, the values of Q0

are quite inaccurate.

Table 1. Resonance and antiresonance frequencies for Fe64Co17Si6.6B12.4 and calculated k and Q0 values
determined directly from the experimental data (this last one obtained using Equation (2)).

H (Oe) fr (Hz) fa (Hz) ∆f k Q0

0.6 53, 260 53, 940 160 0.176 333
2 52, 496 54, 280 184 0.282 285
16 56, 380 56, 476 32 0.065 1762

However, a careful measurement of those magnetoelastic resonance curves, using a Lock-in
Amplifier, allows us to record the susceptibility real and imaginary parts (χ′ and χ′′ , respectively ) as
Figure 5 shows.

With the measured frequencies corresponding to maximum and minimum values of χ′ ( f ′M and
f ′m, respectively, see Figure 5a), we can use the first approximated expression often used to give an
accurate value of this Q quality factor [20]:

Q1 ≈
fr

f ′m − f ′M
. (3)
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Table 2 summarizes the experimentally obtained frequency data for maximum and minimum
values of χ′ ( f ′M and f ′m, respectively) and calculated Q1 values from Equation (3), as well as the
relative difference between Q0 and Q1.
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Figure 5. (a) Real, χ′, and (b) imaginary, χ′′, parts of the magnetic susceptibility for the
Fe64Co17Si6.6B12.4 (L = 4 cm) metallic glass ribbon, for the three bias magnetic field cases under study.

Table 2. Frequencies for the maximum and minimum of χ′ ( f ′M and f ′m, respectively), calculated Q1

values (using Equation (3)) and relative error between Q0 and Q1.

H (Oe) f′M (Hz) f′m (Hz) Q1 Relative Difference (%) (Q0, Q1)

0.6 53, 212 53, 396 290 13
2 52, 456 52, 672 243 15
16 56, 372 56, 412 1410 20

It must be noted that to separately obtain the real and imaginary parts of the susceptibility is
a quite difficult and time-consuming experimental task. Therefore, a method to obtain Q based only on
the magnitude or modulus of the susceptibility is highly desirable, though it demands more complex
numerical treatment afterwards.

3.2. Numerical Fitting of the Magnitude of the Susceptibility Curve

In 1978 Savage et al. [25] derived the following expression for the susceptibility around the
magnetoelastic resonance in a free-standing cylinder-shaped sample:

χ(ω) = χ0

1− 8k2

π2 ∑
n

1
n2 ×

1

1− ω2
n

ω2 + iQ−1 ωn
ω

, (4)

where k is the magnetoelastic coupling coefficient, ωn = 2π fn is the frequency of the nth harmonic
of the excited fundamental mode (n = 1), Q−1 is a phenomenological damping coefficient, and χ0 is
the magnetic susceptibility measured at a frequency far below the resonance [26]. Equation (4) also
applies to rectangular section ribbons with a proper choice of the k factor. Figure 6 shows an example
of the calculated magnetic susceptibility, up to the fifth harmonic, by using Equation (4).

A different approach to estimate Q of a magnetoelastic resonance curve is the numerical
fitting of the modulus or magnitude of the experimental susceptibility around its first resonant
mode (n = 1) by using Equation (4). Thus, we proceed to perform numerical fittings using
Mathematica© software (v.11.0), following two different strategies: (a) by using the measured
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fr, fa, χ0 values as fixed parameters and (b) by leaving these parameters to vary around the
experimentally obtained ones. In both cases, our goal is to search for the optimum Q value that
minimizes the L2 norm between the fit and experimental data. We define such a norm (also called

residual) as: R = 1
N ∑

i=1,N

(
χexp,i−χ f it,i

χmax

)2
, where χmax = max

(
χmax,exp, χmax, f it

)
and N is the number

of experimental points. In our measurements, N = 397, 691 and 639 for H = 0.6, 2 and 16 Oe,
respectively. With such a definition, 0 ≤ R ≤ 1, and a value of R close to 0 means very good fitting.
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the fifth harmonic, using Equation (4).

3.2.1. Numerical Fitting of the Susceptibility Curve Using Fixed Parameters

Figure 7 shows the measured magnetoelastic resonance curve at H = 2 Oe and the fitted one when
procedure a) is used. The only free parameter was the quality factor Q with an initial value of Q0 = 285.
The sweep range for Q was 50–380, and the optimum fitting was found for Q f it1 = 178 (see Figure 7 inset).
For all the fits performed, the frequency step between consecutive points will be 1 Hz. The fit of Figure 7 is
the best one obtained by following the a procedure. It looks satisfactory, but can still be improved.
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Table 3 summarizes the results obtained for the three different magnetic field cases. While all obtained
Q f it1 values are lower than the previous Q0 ones, it is noticeable that the worst fit corresponds to the
applied magnetic field, where magnetoelastic coupling is maximum but quality factor is minimum.

Table 3. Q values from the fitting of the χ susceptibility modulus, using fixed experimental parameters
(procedure a).

H (Oe) fr (Hz) fa (Hz) Qfit1 R

0.6 53, 260 53, 940 208 0.0041
2 52, 496 54, 280 178 0.0039
16 56, 380 56, 476 1067 0.00031

3.2.2. Numerical Fitting of the Susceptibility by Leaving All Parameters Free

Figure 8 shows the measured magnetoelastic resonance curve at H = 2 Oe and the fitted one
when this second procedure is used: all parameters were left free in a range around the starting guess
given by the experimental values appearing in Table 1. In this case we swept the Q value in the range
50–440, finding the best fit for Q f it2 = 229, for the case of applied magnetic field H = 2 Oe (see Figure 8
inset). Now the fit has greatly improved, as the norm values are much lower, especially for the curve
with the highest Q value curve (at H = 16 Oe) (see Table 4).

Sensors 2018, 18, x FOR PEER REVIEW  8 of 12 

 

Table 3. ܳ  values from the fitting of the χ susceptibility modulus, using fixed experimental 
parameters (procedure a). 	ࡴ	(ࢋࡻ)	 ࢘ࢌ (ࢠࡴ) ࢇࢌ (ࢠࡴ) ࢚ࢌࡽ R0.6 53,260 53,940 208 0.00412 52,496 54,280 178 0.003916 56,380 56,476 1067 0.00031

3.2.2. Numerical Fitting of the Susceptibility by Leaving All Parameters Free 

Figure 8 shows the measured magnetoelastic resonance curve at ܪ = 2	ܱ݁ and the fitted one 
when this second procedure is used: all parameters were left free in a range around the starting guess 
given by the experimental values appearing in Table 1. In this case we swept the ܳ value in the range 50– 440, finding the best fit for ܳ௧ଶ = 229, for the case of applied magnetic field ܪ	 = 	2	ܱ݁ (see 
Figure 8 inset). Now the fit has greatly improved, as the norm values are much lower, especially for 
the curve with the highest ܳ value curve (ܽݐ	ܪ = 16	ܱ݁) (see Table 4). 

 

Figure 8. Measured resonance curve at ܪ = 2	ܱ݁ (black dots) and fitted one (magenta marks). The inset 
shows the residual R change versus ܳ values, all obtained in calculations when using procedure b. 

Table 4 summarizes the results obtained for the three applied magnetic field cases. Again, as 
with the first simulation procedure, all obtained ܳ௧ଶ values are lower than the previous ܳ ones 
and the worst fit corresponds to the applied magnetic field where magnetoelastic coupling is maximal 
but the quality factor is minimal. 

Table 4. Obtained parameters (resonance and antiresonance frequencies and ܳ) from the fitting 
leaving all parameters free (procedure b). ࡴ	࢘ࢌ (ࢋࡻ)	(ࢠࡴ) ࢇࢌ (ࢠࡴ) ࢚ࢌࡽ R0.6 53,301 53,927 283 0.00027 2 52,566 54,296 229 0.00060 16 56,390 56,466 1321 0.000011 

3.3. An Exact Expression for the ܳ Factor 

Starting with Equation (4) and taking into account the shape of the ߯ᇱ(߱) curve, one of us (J.G.) has 
derive an exact analytical expression for the ܳ factor value calculation. Since magnetic susceptibility ߯ 
can be described by Equation (4) as a complex number, ߯ = ߯′ + ݅߯′′, we can separate the real and 
imaginary parts of this complex expression (taking into account only the first harmonic, ݊ = 1) as follows: ߯′߯ = 1 − 8݇ଶߨଶ ߱ଶ(߱ଶ − ߱ଵଶ)(߱ଶ − ߱ଵଶ)ଶ + ቀ߱߱ଵܳ ቁଶ , (5) 

Figure 8. Measured resonance curve at H = 2 Oe (black dots) and fitted one (magenta marks). The inset
shows the residual R change versus Q values, all obtained in calculations when using procedure b.

Table 4 summarizes the results obtained for the three applied magnetic field cases. Again, as with
the first simulation procedure, all obtained Q f it2 values are lower than the previous Q0 ones and the
worst fit corresponds to the applied magnetic field where magnetoelastic coupling is maximal but the
quality factor is minimal.

Table 4. Obtained parameters (resonance and antiresonance frequencies and Q) from the fitting leaving
all parameters free (procedure b).

H (Oe) fr (Hz) fa (Hz) Qfit2 R

0.6 53, 301 53, 927 283 0.00027
2 52, 566 54, 296 229 0.00060
16 56, 390 56, 466 1321 0.000011
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3.3. An Exact Expression for the Q Factor

Starting with Equation (4) and taking into account the shape of the χ′(ω) curve, one of us (J.G.) has
derive an exact analytical expression for the Q factor value calculation. Since magnetic susceptibility χ can
be described by Equation (4) as a complex number, χ = χ′ + iχ′′, we can separate the real and imaginary
parts of this complex expression (taking into account only the first harmonic, n = 1) as follows:

χ′

χ0
= 1− 8k2

π2
ω2(ω2 −ω1

2)
(ω2 −ω1

2)
2 +

(
ωω1

Q

)2 , (5)

and
χ′′

χ0
=

8k2

π2

ω3ω1
Q

(ω2 −ω1
2)

2 +
(

ωω1
Q

)2 . (6)

The real part shows resonance at its maximum: (ω′M) and antiresonance at its minimum: (ω′m)
(see Figure 5a). It is well known that at the local maxima and minima, the derivative vanishes so we
can apply this criteria for the frequencies ω = ω

′
M and = ω′m:

d
dω

(
χ′

χσ

)
= 0 =>

d
dω

ω2(ω2 −ω1
2)

(ω2 −ω1
2)

2 +
(

ωω1
Q

)2 = 0 . (7)

After a short calculation, and taking into account that Q > 0 and single-valued (which means
ωM < ωr < ωm), the Q factor value can be written in the following two ways:

Q =
ωm

2

ωm2 −ω1
2 and Q =

ωM
2

ω1
2 −ωM2 . (8)

Solving these two expressions, first for ωM = ωr and afterwards for Q, we finally get an exact
analytical expression for the Q factor value:

Qcal =
ω2

m + ω2
M

ω2
m −ω2

M
=

1 + u2

1− u2 , (9)

where u = ω′M/ω′m = f ′M/ f ′m. Table 5 summarizes the experimentally measured values for those
frequencies and the subsequently obtained Qcal values.

Table 5. Fe64Co17Si6.6B12.4 experimentally obtained data for resonance and antiresonance frequencies
of the real part of the magnetic susceptibility, and calculated Q values using Equation (9).

H (Oe) f′M (Hz) f′m (Hz) Qcal

0.6 53, 212 53, 396 290
2 52, 456 52, 672 243

16 56, 372 56, 412 1410

4. Discussion

All the Q values obtained by the different calculation procedures explained in this study are
summarized in Table 6, while Table 7 shows the estimated errors (in %, calculated as Error (%) =∣∣∣Q1−Q

Q1

∣∣∣·100) among those obtained Q values. The first thing to notice is that in all cases (or calculation
procedures) the higher the estimated Q value, the higher the error in its determination, and this always
corresponds to the highest applied field. This is a direct consequence of the sharpness of the measured
resonance curves, as well as of its low amplitude (magnetic susceptibility), as can be seen in Figure 5a.
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As predicted previously by other authors [20], this estimated error (if the classical Q0 definition is
used) can be as high as 20%. Surprisingly, the obtained norm of the fitting for this high applied field
case is the lowest, this is, the numerical fits are the best for this case.

Table 6. Q values for all the applied magnetic field cases, obtained by the different procedures shown
in this study.

H (Oe) Q0 =
fr
∆f Q1 ≈

fr

f′m−f′M
Qfit1 Qfit2 Qcal =

f2
m+f2

M
f2
m−f2

M

0.6 333 290 208 283 290
2 285 243 178 229 243
16 1762 1410 1067 1321 1410

Table 7. Comparison and estimated errors of the Q values obtained with the different
calculation procedures.

H (Oe)
Error (%) Respect to Q1or Qcal

Q0 Qfit1 Qfit2

0.6 13 28 2.4
2 15 27 5.7
16 20 24 6.3

We also found that the values obtained for Q1 (the value given by Kaczkowski [20]) and Qcal
(exact analytical expression) are almost equal. While Kaczkowski’s expression was an approximation
obtained graphically from the impedance circle of an electrical circuit, our exact formula comes from
the analysis of the real part of the magnetic susceptibility around the magnetoelastic resonance.

So, if we only have the possibility of measuring or working with the magnetic susceptibility
modulus, numerical fitting of the measured magnetoelastic resonance curve is needed. From the
results of the numerical fittings used (as can be observed in Figures 7 and 8 and Table 7), it is clear that
the second procedure (leaving all parameters fr, fa and χ0 free) leads to a much better result than the
first one, as deduced from the obtained lowest norm values for procedure b. That is, we can affirm that
the Q f it2 value obtained by using fitting procedure b can be considered the best approximation of the
true Q quality factor of the magnetoelastic resonance curve.

On the other hand, if we compare the Q values obtained from numerical fits with the approximated
Q1 value given by Kaczkowski or with the Qcal value, the estimated error when using fitting procedure
a is always higher than 20%, while for fitting (procedure b) the range is only approximately 2–6%.
Thus, Q1 or Qcal can be taken as approximated initial values when performing a numerical fit in order
to get the most accurate Q value of a susceptibility magnetoelastic resonance curve.

It is also noticeable that Q values obtained with fitting (procedure b) are systematically lower than
Q1 or Qcal , but this is a fact that should be expected: Equation (9) gives us the exact quality factor Q of
the real part of the magnetic susceptibility around the frequency at which a magnetoelastic resonance
happens, with this real part being a sharper curve than the corresponding measured susceptibility
modulus. As is already well known, the sharper the curve, the higher the quality factor value. Finally,
from the obtained error values, we can affirm that when using a magnetoelastic resonant platform
for biological or chemical detection purposes, it is convenient to apply a bias field in the range
0 < Hbias < Hk, searching for a compromise between moderate magnetoelastic coupling and low
enough error in Q value determination.

5. Conclusions

We have presented an extensive study of the determination of the Q factor of a magnetoelastic
resonance curve. This type of resonance is of great interest in order to fabricate devices for biological or
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chemical detection purposes. The use of the numerical fitting of the magnetic susceptibility modulus
around that magnetoelastic resonance turns out to be a useful tool to give accurate Q quality factor
values. These differ by up to 20% compared with the Q values determined by following the classical
definition. Comparison with approximated Q value given by Kaczkowski and by the exact analytical
solution obtained from the real part of the measured susceptibility shows, as expected, that in these
two last cases the quality factor value obtained is always slightly higher than that estimated from the
numerical fitting. This is a direct consequence of the fact that, while the numerical fit is performed
over the magnetic susceptibility modulus, Kaczkowski’s and the exact expression for have been
obtained from the real part of that susceptibility curve, which is always sharper than the susceptibility
modulus one.

Future work should aim to obtain an analytical expression for the Q quality factor directly
obtained from the magnetic susceptibility modulus measured around the magnetoelastic resonance.
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