
The PeptideAtlas of the Domestic Laying Hen

James McCord1, Zhi Sun2, Eric W. Deutsch2, Robert L. Moritz2, and David C. Muddiman1,*

1W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North 
Carolina State University, Raleigh, NC 27695

2Institute for Systems Biology, Seattle, WA, 98109

Abstract

Proteomics based biological research is greatly expanded by high quality mass spectrometry 

studies, which are themselves enabled by access to quality mass spectrometry resources, such as 

high-quality curated proteome data repositories. We present a PeptideAtlas for the domestic 

chicken, containing an extensive and robust collection of chicken tissue and plasma samples with 

substantial value for the chicken proteomics community for protein validation and design of 

downstream targeted proteome quantitation. The Chicken PeptideAtlas contains 6,646 canonical 

proteins at a protein FDR of 1.3%, derived from ~100,000 peptides at a peptide level FDR of 

0.1%. The rich collection of readily accessible data is easily mined for the purposes of data 

validation and experimental planning, particularly in the realm of developing proteome 

quantitation workflows. Herein we demonstrate the use of the atlas to mine information on 

common chicken acute phase proteins and biomarkers for cancer detection research, as well as 

their localization and polymorphisms. This wealth of information will support future proteome-

based research using this highly important agricultural organism in pursuit of both chicken and 

human health outcomes.
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INTRODUCTION

The domestic laying hen (Gallus gallus) is the most abundant avian species on the planet1 

and a cornerstone species in food production and classical embryological study.2 This 

importance was underscored by its selection as the first classical “production” organism to 

be fully genome sequenced, in 2004.3 With the establishment of functional genomic tools 

for the chicken, it has officially entered the post-genomic era dominated by proteomic 

studies.4

Mass spectrometry (MS) based proteomics has reached widespread acceptance as a powerful 

tool to study organisms and protein products through multiple stages of disease, 

development, and degradation.5 While the experimental techniques are well developed and 

robust, the application of proteomic methods to non-classical model organisms remains 

nascent. This is particularly true for organisms of predominantly agricultural interest, such 

as chickens, whose investigators frequently lack access to advanced MS resources available 

to human health researchers.6 The result is that only ~10% of the chicken genome is well 

annotated7,8 in spite of the enormous potential power of the chicken as a biological model 

system and its substantive importance as an agricultural product. The chicken was a classic 

model organism for embryological development in the pre-genomic era and the development 

of genetic tools have returned it to the fore.2,9 Further, the hen ovary exhibits many similar 

genetic and physiological traits to humans and is the only non-human animal known to 

spontaneously develop ovarian cancer.10,11

Clearly there is enormous medical and economic potential in proteomics studies involving 

Gallus gallus that is limited by access to MS resources and the incomplete nature of chicken 

proteomic/genomic databases. Successful mass spectrometry experiments are greatly 

enabled by access to publicly available databases of validated data, such as those found in 

PeptideAtlas12 or the ProteomeXchange13 consortium database, PRIDE;14,15 however, these 

databases are currently devoid of substantial information regarding the domestic hen. The 

completion of a reference database for chicken proteomics would substantially advance 

experimental planning and data validation for global and targeted analysis in this model 

system.

PeptideAtlas (http://www.peptideatlas.org) curates and compiles mass spectrometry data 

derived from a variety of experiments through the reprocessing of available MS data using 

the Trans-Proteomic Pipeline (TPP), a freely available open source suite of tools for tandem 

MS experiments.16–18 The resulting proteome builds contain high stringency (<1.5% false 

discovery rate (FDR)) protein-level identifications and peptide observations from numerous 

experiments in a readily accessible interface, one that is particularly well suited to the 

evaluation of candidate peptides for targeted proteomics via SRM or data-independent 

approaches such as DIA.19 More recently, the TPP has also incorporated the iterative 

reSpect algorithm to assess spectral chimeras and identify peptides that would otherwise be 

missed.20 PeptideAtlas contains numerous well studied proteomes and model organisms 

such as Saccharomyces cerevisiae with > 70% proteome coverage,21 and includes classical 

agriculturally important organisms, such as the pig (Sus scrofa domesticus)22 and the co 

(Bos Taurus)23.
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Here we present an initial build of a chicken PeptideAtlas, containing a variety of 

structurally complex ovarian tissue types, as well as diagnostically relevant plasma samples. 

Currently, the chicken PeptideAtlas is directed toward the hen as an ovarian cancer model 

organism, but data from liver tissue and plasma are included as a useful baseline, and 

additional tissue types will be incorporated into later builds. We demonstrate the current 

utility of the atlas through the mining of reported ovarian cancer biomarkers, as well as 

general inflammatory response proteins, and the selection of candidate peptides for 

quantitative SRM analysis.

EXPERIMENTAL PROCEDURES

Sample Collection and Processing

The biological samples included in the chicken PeptideAtlas were collected from two 

cohorts of Bovan’s white leghorn commercial laying hens in the Poultry Science department 

at North Carolina State University. Birds were managed in accordance with the Institute for 

Laboratory Animal Research Guide with all of the husbandry practices being approved by 

and under the oversight of North Carolina State University Institutional Animal Care and 

Use Committee (IACUC). Plasma and tissue from the initial cohort of B-strain hens were 

obtained in a previous study,24 with samples collected from a second cohort of 300 C-strain 

hens similarly. In brief, ~2mL of blood was collected from each bird every four months 

beginning at an age of 26 weeks. The collected blood was centrifuged at 3000 × g at 4 °C 

and the plasma was collected in cryogenic tubes for long term storage at −80 °C. At an age 

of 136 weeks the birds were sacrificed by cervical dislocation and dissected to ascertain 

gross internal pathology. Tissue was collected from all birds presenting neoplastic lesions on 

the ovary, oviduct, duodenum, pancreas, GI tract, and/or liver as well as from a selected 

number of “healthy” birds with no visible distress. Tissues were preserved for proteomic 

study by snap freezing in liquid nitrogen and stored at −80 °C.

Whole tissue samples were lysed using a 1:5 ratio of tissue to buffer containing 50 mM Tris 

pH = 7.8, 8 M urea, 2 M thiourea, 10 mM EDTA, 10 mM DTT, and 0.001 % sodium azide 

and homogenized using an OMNI TIP Homogenizing kit, as described previously.25 A 

subset of liver and ovary tissues were instead subjected to laser microdissection to isolate 

yolk, ovarian stroma, and follicular wall tissue, which were subsequently lysed in a buffer of 

100 mM Tris-HCl, pH 7.5, 100 mM dithiothreitol (DTT), and 4% sodium dodecyl sulfate.26 

Plasma samples were used as collected.

Cell lysates and plasma were processed for LC-MS/MS analyses using either a 1D SDS-

PAGE in-gel digestion protocol24,25 or filter aided sample preparation (FASP)27 as described 

previously26. A subset of the FASP prepared samples were de-glycosylated on-filter using 

peptide-N-glycosidase F (PNGase F) according to a combined glycomics and proteomics 

protocol28.

LC-MS/MS Analyses

Peptide samples were analyzed by LC-MS/MS using one of three sets of conditions:
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1. Separation was performed on a nanoLC-2D (Eksigent Technologies) coupled to 

an LTQ-FT-Ultra with a 7T FT-ICR Mass Analyzer (Thermo Scientific) in a 

vented column configuration29. The column consisted of a 75 μm × 5 cm 

Integrafrit trap and 75 μm × 15cm Picofrit column (New Objective) self-packed 

with 5μm Magic C18AQ stationary phase. Mobile phases A and B consisted of 

98/2/0.2 and 2/98/0.2 water/ACN/formic acid, and the separation was performed 

as a 60 minute gradient from 2–60% B at a flow rate of 350 nL/min. Data was 

collected in Top-8 data-dependent mode over a mass range of 400 – 1600 m/z 
with a full scan resolving power of 100,000 FWHM @ 400 m/z using IT-CID 

and an AGC target of 1e6. Dynamic exclusion windows of 3 minutes were 

applied to each MS/MS precursor mass.

2. Separation was conducted with an EASY nLC II (Thermo Scientific) was 

coupled to a Q Exactive benchtop mass spectrometer (Thermo Scientific). The 

trap and column were arranged in the vented column configuration as in (1), and 

used a mobile phase gradient of 2%–5% B (2 min), 5%–40% B (200 min) at a 

flow rate of 300 nL/min. Parameters for the mass spectrometer were set 

according to optimums derived for proteomics experiments on the Q Exactive.30 

Briefly, data was collected in Top-12 data-dependent MS/MS mode using HCD 

with a full scan mass range of 400 – 1600 m/z, a full scan resolving power of 

70,000 and MS/MS resolving power of 17,500 FWHM @ 200 m/z, and a 

dynamic exclusion window of 30 s. AGC targets were set at 1e6 and 2e5 for full 

scan and MS/MS scan respectively, with complementary maximum injections 

times of 30ms and 250ms.

3. Chromatographic separation was carried out with an EASY nLC-1000 (Thermo 

Scientific) coupled to a Q Exactive HF (Thermo Scientific). A 75 μm × 5cm trap 

was prepared with a frit synthesized as described by Meiring et al.31 and coupled 

to a 75 μm × 30 cm Picofrit emitter (New Objective). Both were self-packed with 

2.6 mm, 100 Å particle size C18 stationary phase (Phenomenex) and assembled 

in the same column setup as in (1) and (2). Peptides were separated by a gradient 

of 2 – 20% B (100 min), 20 – 32% B (30 min) at 300 nL/min. MS parameters 

were independently optimized for proteomics experiments on the Q Exactive HF 

and are reported in Hecht et al.28 The data was collected in Top 20 data-

dependent MS/MS mode using HCD with a 15 s dynamic exclusion window, a 

full scan mass range of 375–1500 m/z and resolving power of 120,000 and 

15,000 FWHM @ 200 m/z for the MS1 and MS2 scans respectively. The full 

scan AGC and injection were set to 1e6 and 30ms for the MS1 scan and 1e5 and 

30ms for the MS2 scans.

Data Processing and PeptideAtlas Assembly

The processing of collected MS data followed the general workflow of Farrah et al.32 with 

the Trans-Proteomic Pipeline18 as the main component (Figure 1).

First, vendor .RAW files were converted to the mzML format33 using the ProteoWizard34 

msConvert tool version 3.0.794. Next, the mzML files were searched using both Comet35 
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and X!Tandem36 with the hrk-score plugin. The chicken search database was compiled as a 

nonredundant union of 24,231 chicken sequences from UniProtKB/TrEMBL, 16,354 

sequences from Ensembl release 82,37 and the cRAP database. For Q Exactive files, parent 

mass errors were set to ± 20 ppm with product ion mass tolerances of ± 20 ppm for X!

Tandem and ± 0.03 Da for Comet. LTQ-FT data used a parent mass error of ± 50 ppm and 

product mass tolerance of ± 0.4 Da for both X!Tandem and Comet. Searching allowed semi-

tryptic peptides and a maximum of two missed cleavages. A static modification of 

carbamidomethyl on C, and a variable modification for oxidation on M, acetylation of 

protein N-termini, and pyro-glu on Q, E, and C were also used. For samples processed with 

deglycosylation, a variable modification of deamidation on N was also searched.

The search results were processed with the TPP 18,38 version 4.8.1 tools. The pepXML17 

output for Comet was used directly, and the TPP tool Tandem2XML was used to convert the 

native X!Tandem output to pepXML. For each experiment, the set of pepXML files from the 

two search outputs were processed together with PeptideProphet.39 The two output files 

were then combined via iProphet.40

The iProphet output was further processed using the reSpect algorithm20 to access spectral 

chimeras. During reSpect searching the precursor mass tolerance was increased to match the 

MS isolation window. For LTQ-FT data the parent mass tolerance was increased to 2.0 Da 

and likewise increased to 1.4 Da for Q Exactive data. The new set of mzML files generated 

by reSpect were searched and processed using the TPP as for the initial files. For Q Exactive 

data, this process was repeated an additional time, for two complete rounds of reSpect in 

total. The spectra used for reSpect were filtered for a minimum iProphet probability ≥ 0.0 

during the initial round, and ≥ 0.5 for the second round of analysis.

Using the PeptideAtlas processing pipeline, all the iProphet results from standard and 

reSpect searches were filtered at a variable probability threshold to maintain a constant FDR 

threshold for each experiment. The filtered data was assessed with the MAYU software41 to 

calculate decoy-based FDRs at the peptide-spectrum match (PSM), distinct peptide, and 

protein levels. All results were collated in the Chicken PeptideAtlas, available at http://

www.peptideatlas.org.

RESULTS & DISCUSSION

Overview of the PeptideAtlas

The chicken PeptideAtlas represents the most extensive collection of publicly accessible 

proteomic data for Gallus gallus, an important economic organism and resource tool. The 

database incorporates data from individual birds in various cancerous disease states, and 

fully samples the reproductive tissue, including differentiated portions of the ovary (i.e. 

small white follicles, ovarian stroma, etc.), which are nearly unexplored (Table 1).26 The 

extensive sampling is enhanced by high resolution MS and MS/MS IT-CID and HCD data 

collected from both LTQ-FT-ICR and Orbitrap instruments, providing the highest quality 

mass spectra in order to support further study of reproduction and cancer biology in hen 

based systems.
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Accessing the PeptideAtlas is accomplished through a readily accessible web GUI, 

providing observation information at both the protein and individual peptide level. Proteins 

and peptides of interest can be accessed using a sequence and/or list of accession number 

derived from Uniprot or Genbank This information can be readily used for comparisons 

between individual proteins contained in a single PeptideAtlas build, across species within 

the broader PeptideAtlas project, or generated from other sources such as KEGG or 

Reactome pathways.42,43

The chicken PeptideAtlas incorporates mass spectral data from over 800 individual 

biological experiments containing over 8 million spectra. The current build includes 5 

million PSMs with an FDR threshold of 0.01% and over one hundred thousand distinct 

peptides at a false-discovery rate of 1%. This translates into 6,646 canonical proteins at a 

protein FDR of 1.3%. A substantial number of additional proteins are at least partially 

distinguishable, meaning that they possess at least one unique, well detected peptide within 

the chicken PeptideAtlas; the total number of observed proteins is 11,370, corresponding to 

47% of Gallus gallus’ 23,997 predicted gene products based on the UniProtKB/TrEMBL 

database. A sizeable fraction of these detected species exist at the single peptide level, which 

is to be expected based on the reproductive system focus of the current datasets. Future 

inclusion of additional sample types is expected to increase the overall gene product 

coverage of the chicken PeptideAtlas.

Chimeric MS/MS reSpect Analysis

One of the basic assumptions of MS/MS data processing is that the fragment ion spectra 

obtained are derived from an individual precursor molecule isolated by MS. In spite of 

continued advancement in MS, precursor isolation windows remain relatively large to the 

achievable mass accuracy of the analyzers. Further, the complexity of whole proteomes 

remains well beyond the separation capacity of current chromatographic systems. The end 

result is that fragment spectra are frequently “chimera” containing peptide fragments from 

multiple precursors. While this is sometimes an intentional byproduct of the acquisition 

method, as in data-independent analyses, the collection of chimera can significantly reduce 

identifications in data-dependent sampling of complex samples due to the algorithmic 

MS/MS interpretation limitations44,45. This build of this initial chicken PeptideAtlas 

incorporates data processed with the newly developed reSpect tool,20 which enables multiple 

processing of complex MS/MS spectra to isolate co-fragmented chimeric peptides and 

increase overall peptide/protein IDs.

Examining the output of the reSpect reveals the effect of its inclusion on the chicken 

PeptideAtlas coverage. New peptide identifications derived from the reSpect output account 

for 825,135/5,125,800 = 16.1% of the total PSMs included in the chicken PeptideAtlas, only 

five specific instances of which corresponded to the identification that would originally have 

been assigned by a standard search. This frequency of spectral chimeras is in concordance 

with previously reported values.45 Within the chimeric group, 653,874 (79.2%) of the 

identifications have precursor masses falling outside the m/z tolerances of the initial search, 

and are therefore unintentional precursor inclusions as the result of wide precursor isolation 

windows. Interestingly, 378,194 (45.8%) of the PSMs were obtained from spectra that were 
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assigned a ≥ 90% probability in the initial search, while a roughly equivalent number, 

387,714 (47.0%), were from spectra whose assignment was given a probability of < 50%. 

Therefore, the chimera spectra seem to be equally likely to be minor components of an 

otherwise identifiable spectrum or major interferents who impinge spectral assignment.

Regardless of the source or intensity of the chimeras, the reSpect step was able to improve 

the depth of PSM and peptide identification by an appreciable margin. For the most part, the 

additional PSMs correspond with peptides that are already included as the primary ID from 

another spectrum. However, 8,976 unique peptides were identified only as the result of 

reSpect processing, corresponding to ~ 8% of the total peptide IDs in the chicken 

PeptideAtlas. The inclusion of additional unique peptide IDs is obviously of significant 

importance given the goal of complete organism coverage, but additional validation of 

already identified peptides is likewise important for increasing the confidence of spectral 

assignment when combining the results of multiple searches in iProphet.40

Ovarian Cancer Biomarkers in the Chicken PeptideAtlas

Ovarian cancer (OVC) is the most lethal of the gynecological cancers, with the single most 

important prognostic marker being clinical stage at diagnosis.46,47 Currently, the vast 

majority of OVC cases present in later stages47,48 and, as consequence, there is substantial 

interest in discovering biomarkers for early stages of the disease.49,50 To this end, the 

domestic fowl has rapidly emerged as a uniquely suited organism for the study of 

spontaneous ovarian cancer.51–54 Throughout the past 75 years, pathological examination of 

the hen has noted that spontaneous ovarian tumor formation occurs in up to 35% of the 

population and presents with the same histopathological subtypes seen in human disease.
55–58 An extensive degree of molecular investigation has identified both human similar 

molecular expression and novel markers using mRNA expression analysis and 

immunohistochemistry (IHC) based assays.59–65 One major limitation of the model is the 

lack of commercially available chicken specific reagents for IHC and Western Blot analysis; 

the use of cross-reactive human antibodies has yielded inconsistent results, especially in the 

case of CA125, the primary prognostic marker for human OVC.66–68 The PeptideAtlas is a 

powerful resource for mining of proteotypic peptides to develop SRM-based methods69 that 

can augment or replace inconsistent mRNA and IHC approaches.70–72 Further, the current 

sample set is an empirical examination of the existence of many biomarkers previously 

unexplored by LC-MS/MS. Several examples of chicken biomarkers will be discussed. An 

extensive, but by no means complete, list of ovarian cancer associated proteins can be found 

in Table 2 and in a previous review by Hawkridge et al.53

Localization of Serine Protease Inhibitors

Serine protease inhibitors (Serpins) are a superfamily of protease inhibiting proteins 

ubiquitous to eukaryotic organisms whose regulatory members share a unique mechanism of 

irreversible “suicide inhibition” of target preoteases.73–75 Because protein homeostasis is 

controlled by proteinases and their inhibitors, this superfamily has attracted attention in the 

field of cancer biology, where tumor progression necessarily requires disruption of 

homeostasis.75,76 Within the family, specific proteins have been identified as prognostic 

biomarkers,77,78 tumor tissue markers,79 and potential diagnostic markers for a range of 
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cancers,80–83 examples of which will be discussed further. Searching the chicken 

PeptideAtlas for proteins that have a description that contains “SERPIN” yields 18 unique 

protein groups from multiple subgroups of the serpin family, including many of interest in 

cancer research.

Serpin class “A” molecules are one of the largest serpin groups in humans, consisting of 

extracellular molecules.75 Five chicken orthologs of this class (E1C7T1, F1NPN5, E1BS56, 

E1C206, and F1NPN4) were identified in the chicken PeptideAtlas with an average 

coverage of 70%. As expected, excreted species are observed in plasma and liver tissue. Two 

of the species however, are also observed in hen reproductive tissues. SERPINA1 (E1C7T1, 

alpha-1-antitrypsin) is the most common serum serpin and its misregulation has been 

associated with endometrial and cervical cancer in humans.84 SERPINA3 (F1NPN5, 

alpha-1-antichymotrypsin) has likewise been associated with the promotion of endometrial 

cancer cells, as well as numerous other cancer types.85 The detection of these potential 

biomarkers in endometrial tissue of the chicken ovary is not unexpected, but cancerous 

associations derived from human studies have not been confirmed in the chicken. This 

relationship is worthy of further MS studies in the chicken model system, with particular 

emphasis on the translation of disease behavior between species.

Serpin class “B” molecules are generally intracellular proteins and similarly to class A are 

frequently associated with regulation and disease;76 the current chicken PeptideAtlas build 

contains three such proteins. SERPINB11 (P01013) is an important regulator of estrogen 

expression in chicken oviductal tissue; it is implicated in both normal oviduct development 

in the chicken and the development of ovarian endometrial cancer.59,79 Peptides from this 

protein were identified with 100% sequence coverage across healthy and cancerous oviduct 

tissues, consistent with its specific role in that tissue type. Interestingly, while identifications 

in plasma or liver tissue are limited to single observations, SERPINB11 peptides can be 

identified at consistent low levels in ovary samples from some healthy individuals, as well as 

in cancerous samples. This is consistent with the low levels of expression seen in RT-PCR 

experiments with developing ovarian follicles79 but the potential for ovarian tumors to 

originate from oviduct or mullerian cell incursion is considered quite high.86 The monitoring 

of cellular migration in the hen reproductive system offers the potential for understanding 

the biological origin and progression of ovarian cancer, which will aid in our understanding, 

detection, and treatment of the disease.

Additional serpins common in specific sample types are associated with multiple disease 

states and biological stress responses. SERPINC1 (F1NLP7, Antithrombin-III) and 

SERPINH1 (P13731, Hsp47) are among the most abundant proteins detected in plasma 

samples within the PeptideAtlas, as befitting their roles in blood. Antithrombin-III is an 

anticoagulant shown to be effective prognostic markers for some cancer types due to the 

systemic response to carcinogenesis,87 but more commonly used as a protein therapeutic.88 

Hsp47 meanwhile, is of interest due to its relationship with thermal regulation and stress.89 

It is therefore apparent that in addition to its use as an ovarian cancer model system, the 

included samples allow for the creation of experiments addressing additional diseases and 

biology of interest in chickens.
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Acute Phase Proteins in the Chicken PeptideAtlas

One of the broadest diagnostic tools for the investigation of systemic response to stressors is 

the acute phase response (APR). The APR is a generalized systematic response of the 

immune system to numerous events, including trauma, inflammation, infection, stress, or 

carcinogenesis, with the goal of restoring organism homeostasis and promoting healing.90 

Acute Phase Proteins (APPs) are hepatic proteins produced as the result of pro-inflammatory 

cytokines during trauma and are a powerful tool for examining immune and stress response.
91 The initial description of APPs involved the changing concentrations of plasma C-reactive 

protein in response to pneumococcal infection92 but has since expanded to encompass 

numerous plasma proteins in both human and non-human animal systems.93,94 Generally, 

the APPs are divided into classes based on whether they increase or decrease in 

concentration in response to the APR, as well as the magnitude of the change. This 

expression can be highly species specific, requiring the development of unique assays and 

the selection of unique assay targets for different study organisms.93

APP profiles in many species have been used as diagnostic tools and as a mechanism to 

understand the biological response to system challenge, such as infection.95 Unsurprisingly, 

various APPs in the chicken (Table 2) have likewise been thoroughly classified by response 

and magnitude.96 Albumin is the only notable negative APP (relative abundance decreasing 

upon immune challenge) in the chicken, but with plasma concentrations approaching 20 

mg/mL it is a trivial target for proteomic analysis.97 The positive APPs range in 

concentration from ng/mL – μg /mL quantities and their responses can be categorized as 

major (≥10-fold abundance increase), moderate (4–10 fold), and minor (≤3 fold).96–98 

Monitoring APPs at these levels has previously relied on enzyme-linked immunoassays 

(ELISA), often using partially cross-reactive murine or human anitbodies.99 This method is 

undesirable for the discovery of avian APPs, due to cost, laboriousness, and frequent lack of 

similarity with more well understood mammalian systems. For example, haptoglobin is an 

very common APP in a wide range of species,91 but it was not until the chicken genome was 

sequenced that it was determined that no homologous protein exists in G. gallus;100 an 

antioxidant protein from gene PIT54 fills the hemoglobin binding role in chickens instead.
100,101 Invaluable information on novel APP proteins, as well as thorough investigation of 

existing APPs will be greatly enhanced by the application of quantitative mass spectrometry 

techniques enabled, in part, by quality peptide and spectral libraries.

The chicken PeptideAtlas contains extensive liver and plasma samples from both healthy 

and diseased chickens, and contains all well-studied APPs in the organism (Table 3). Due to 

the underannoted nature of the chicken proteome, many APPs contain multiple potential 

variants in the global UniProtKB/TrEMBL database that are grouped by the chicken 

PeptideAtlas under the most likely canonical form. The PeptideAtlas can be used to explore 

the existence of one or more protein isoforms, as well as a starting point for the development 

of distinguishing assays.

Hemopexin Polymorphism

Hemopexin is an acute phase serum glycoprotein with enormous binding affinity for free 

heme, and is found across multiple animal families.102 The protein was initially isolated on 
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the basis of its heme-affinity103 and has multifunctional properties in iron-metabolism.104 

However, it has been shown to be APP based on regulated expression in response to 

hormonal stimuli,105 and infection with various pathogens,106–108 which is believed to be its 

primary biological role.104

The chicken PeptideAtlas contains multiple entries for chicken Hemopexin proteins derived 

from multiple sources. The manually annotated UniProtKB/Swiss-Prot database contains 

chicken protein P20057, which is an N-terminal fragment rather than a complete protein,109 

while the UniProtKB/TrEMBL database contains an entry from the chicken genome 

(ENSGALG00000022586 / H9L385) as well as a non-genomic sequence fragment from a 

partial cDNA library (Q90WR3). Mutual alignment of the sequences revealed virtually no 

similarity between the manually determined N-terminal sequence and either of the other 

forms, while H9L385 and Q90WR3 possess 99% sequence similarity within the fragment 

region (Figure S-1 and S-2). The observed peptides within the chicken PeptideAtlas yield 

over 98% sequence coverage for the genetically derived data, while no portion of the 

manually determined sequence could be identified, casting doubt on its veracity. Within the 

two genetic sequences, three polymorphisms can be observed, two of which (p.Arg282Met 

and p.Lys148Arg) are not addressable because the small peptides constitute the unobserved 

2% of the sequence. However, variants of the remaining polymorphism (p.Arg235His) were 

detected with unique peptides. The peptides CSGEPFQAITSDDSGR from H9L385 and 

CSGEPFQAITSDDSGHIYAFR from Q90WR3 (polymorphic site noted) were each 

observed in several hundred quality spectra across experiments, many with nearly full y-ion 

series, lending credence to the existence of the non-genomic protein sequence. 

Disaggregation of the samples to examine individual organisms from a published study24 

reveals that specific chickens can present with either one or both of the sequences. Chickens 

#602, 612, 630, 639, and 666 exhibit peptides from both sequences, while #600, 601, and 

650 exhibit only the unique peptide from H9L385 and #620 exhibits the form from 

Q90WR3, implying both hetero- and homozygosity of the polymorphism occur in the 

population. The chicken PeptideAtlas thus reveals the existence of multiple forms of a 

common chicken APP and provides peptides suitable for quantification of either individual 

polymorphisms or total protein.

Peptide Deglycosylation

N-linked glycosylation is an extremely common post-translational modification consisting 

of potentially diverse oligosaccharide structures linked to asparagine residues at a conserved 

sequence motif (N-X-(S/T), X≠P) and which affects the majority of gene products.110 The 

modification that occurs is a non-template driven process and due to the availability of N-

glycan precursor, the accessibility of the glycosylation site, and the variable transit time of 

proteins, the majority of glycosylation motifs are not modified by sugars; others exhibit 

partial or complete occupancy, which can have significant implications for their biological 

function.111,112

During sample processing for the chicken PeptideAtlas a representative number of samples 

were deglycosylated using the enzyme peptide-N-glycosidase F (PNGase F) to cleave N-

glycans and generate a detectable asparagine deamidation (mass shift: +0.9848 Da). This 
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processing has a two-fold implication on the resulting peptides: increased peptide coverage 

from detection of newly deglycosylated peptides, and identification of potential 

glycosylation sites for future study based on the co-occurrence of the glycosylation motif 

and asparagine deamidation. The latter is usually performed with 18O water to provide 

unambiguous identification of enzymatic deamidation,113 but this is unfeasible for a project 

of this size. Nevertheless, a processing method designed to reduce non-specific deamidation 

combined with high resolution mass spectrometry enables accurate site determination 

sufficient for initiating deeper study.28,114

The protein prothrombin is an important coagulation precursor with multiple known 

glycosylation sites in different species.115 The glycosylation of these sites is important to 

protein function and processing, but different species exhibit different numbers of active 

glycosylation sites.116,117 The protein sequence in the chicken (UniProt Accession: 

F1NXV6) is 607 amino acids long and contains four potential N-glycosylation motifs at 

Asn122, Asn144, Asn161, and Asn403 which are homologous with the four sites observed 

in the human form of the protein (Figure S-3). Specific deamidated versions of each of the 

four potential glycopeptides (GTInYTK, FnASIYPDLTENYCR, NPDnNSEGPWcYTR, 

and nLTTNDILVR) were able to be observed, as well as longer fragments containing miss 

cleavages. Of the tryptic peptides, three of the four were observed only in deglycoslated 

samples, and were observed only in their deamidated forms; this implies that these sites are 

wholly glycosylated and the identification of these peptides is entirely related to the PNGase 

F processing. In contrast, one of the peptides (NPDNNSEGPWCYTR) was observed in both 

deamidated and non-deamidated forms in the deglycosylated samples, as well as being 

identified in the PNGase F free preparations, implying only partial site occupancy. Direct 

comparison of biological samples 6755 and 6798 (Table 1) showed a 70% increase in the 

number of peptide observations as the result of the inclusion of deamidated, and therefore 

deglycosylated, peptides. Homology comparison to humans would predict that the three 

wholly glycosylated sites would be the only occupied sites.115 However, the rigorous 

identification of a partially occupied site could point to a different structural or processing 

role in the chicken than the human, which could be worthy of further study.

CONCLUSION

The initial build of the chicken PeptideAtlas represents over 100,000 high confidence 

peptide identifications from MS/MS spectra corresponding to nearly 50% of the translated 

chicken proteome. The collection is rich in representative proteins of substantial interest in 

future health research in both chicken and human. Herein we have demonstrated the 

coverage of the chicken PeptideAtlas for an expansive number of proteins relevant to the 

chicken as a model for human ovarian cancer, important for investigations of systemic 

inflammatory responses in a veterinary context, and of general biological and agricultural 

interest to the study of the chicken organism. The chicken PeptideAtlas provides a readily 

accessible repository of information on the MS observable chicken proteome, providing a 

basis for proteomic experiments in the assay of known proteins, useful for discovery of 

novel biomarkers, and validation of genomic information at the proteomic level. We have 

demonstrated the use of this information for the isolation of single amino acid 

polymorphisms in inflammatory proteins as well as localization of tissue specific markers at 
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the sample level within the chicken PeptideAtlas. This powerful resource is freely available 

to mine data for efforts such as in biologically driven hypotheses of both human health and 

agricultural interest and for approaches in biomarker discovery for quantitative MS assays.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic workflow of the PeptideAtlas build process.
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