Skip to main content
. 2018 Mar 23;12:110. doi: 10.3389/fnhum.2018.00110

Table 2.

Sleep stage classification results.

Classifier Parameters Classification Accuracy
k-Nearest Neighbors Synchronization Likelihood Relative Wavelet Entropy
k Distance Train (%) Test (%) Train (%) Test (%)
1 Euclidean 100.00 72.55 100.00 89.95
3 Euclidean 85.80 74.86 96.26 90.90
5 Euclidean 83.40 76.22 94.39 91.44
1 Cityblock 100.00 67.93 100.00 88.18
3 Cityblock 84.40 71.33 95.79 89.40
5 Cityblock 80.48 73.10 94.16 89.95
1 Cosine 100.00 73.91 100.00 89.95
3 Cosine 88.66 77.17 96.26 91.85
5 Cosine 85.97 78.26 94.45 91.44
Support Vector Machines Synchronization Likelihood Relative Wavelet Entropy
C Kernel Train (%) Test (%) Train (%) Test (%)
0.1 Linear 73.35 71.74 87.61 85.05
10 Linear 89.42 79.35 99.24 90.22
100 Linear 93.28 76.49 100.00 90.49
0.1 Polynomial, d = 3 53.83 52.72 99.65 91.44
10 Polynomial, d = 3 90.77 80.98 100.00 91.58
100 Polynomial, d = 3 99.59 82.07 100.00 91.58
0.1 Polynomial, d = 5 51.14 51.22 100.00 91.58
10 Polynomial, d = 5 86.44 78.94 100.00 91.58
100 Polynomial, d = 5 98.48 82.34 100.00 91.58
0.1 Gaussian, σSL = 1.95 σRWE = 0.25 71.65 67.53 80.30 78.13
10 Gaussian, σSL = 1.95 σRWE = 0.25 100.00 86.82 100.00 92.93
100 Gaussian, σSL = 1.95 σRWE = 0.25 100.00 86.82 100.00 92.80
0.1 Gaussian, σSL = 1.45 σRWE = 0.75 72.71 69.57 78.73 74.73
10 Gaussian, σSL = 1.45 σRWE = 0.75 100.00 86.28 100.00 92.66
100 Gaussian, σSL = 1.45 σRWE = 0.75 100.00 86.28 100.00 92.66
Neural Networks Synchronization Likelihood Relative Wavelet Entropy
Layer 1 Layer 2 Train (%) Test (%) Train (%) Test (%)
10 85.80 78.26 94.16 87.77
30 83.82 79.48 96.67 90.49
50 84.04 78.94 95.79 90.22
100 86.62 80.16 94.39 88.59
50 50 86.73 78.13 96.20 89.54
100 50 86.09 79.89 97.49 89.13
100 100 86.97 79.08 95.27 88.72

Bold values are the maximum achieved accuracy for each feature extraction method.