Table 2.
Sleep stage classification results.
| Classifier Parameters | Classification Accuracy | ||||
|---|---|---|---|---|---|
| k-Nearest Neighbors | Synchronization Likelihood | Relative Wavelet Entropy | |||
| k | Distance | Train (%) | Test (%) | Train (%) | Test (%) |
| 1 | Euclidean | 100.00 | 72.55 | 100.00 | 89.95 |
| 3 | Euclidean | 85.80 | 74.86 | 96.26 | 90.90 |
| 5 | Euclidean | 83.40 | 76.22 | 94.39 | 91.44 |
| 1 | Cityblock | 100.00 | 67.93 | 100.00 | 88.18 |
| 3 | Cityblock | 84.40 | 71.33 | 95.79 | 89.40 |
| 5 | Cityblock | 80.48 | 73.10 | 94.16 | 89.95 |
| 1 | Cosine | 100.00 | 73.91 | 100.00 | 89.95 |
| 3 | Cosine | 88.66 | 77.17 | 96.26 | 91.85 |
| 5 | Cosine | 85.97 | 78.26 | 94.45 | 91.44 |
| Support Vector Machines | Synchronization Likelihood | Relative Wavelet Entropy | |||
| C | Kernel | Train (%) | Test (%) | Train (%) | Test (%) |
| 0.1 | Linear | 73.35 | 71.74 | 87.61 | 85.05 |
| 10 | Linear | 89.42 | 79.35 | 99.24 | 90.22 |
| 100 | Linear | 93.28 | 76.49 | 100.00 | 90.49 |
| 0.1 | Polynomial, d = 3 | 53.83 | 52.72 | 99.65 | 91.44 |
| 10 | Polynomial, d = 3 | 90.77 | 80.98 | 100.00 | 91.58 |
| 100 | Polynomial, d = 3 | 99.59 | 82.07 | 100.00 | 91.58 |
| 0.1 | Polynomial, d = 5 | 51.14 | 51.22 | 100.00 | 91.58 |
| 10 | Polynomial, d = 5 | 86.44 | 78.94 | 100.00 | 91.58 |
| 100 | Polynomial, d = 5 | 98.48 | 82.34 | 100.00 | 91.58 |
| 0.1 | Gaussian, σSL = 1.95 σRWE = 0.25 | 71.65 | 67.53 | 80.30 | 78.13 |
| 10 | Gaussian, σSL = 1.95 σRWE = 0.25 | 100.00 | 86.82 | 100.00 | 92.93 |
| 100 | Gaussian, σSL = 1.95 σRWE = 0.25 | 100.00 | 86.82 | 100.00 | 92.80 |
| 0.1 | Gaussian, σSL = 1.45 σRWE = 0.75 | 72.71 | 69.57 | 78.73 | 74.73 |
| 10 | Gaussian, σSL = 1.45 σRWE = 0.75 | 100.00 | 86.28 | 100.00 | 92.66 |
| 100 | Gaussian, σSL = 1.45 σRWE = 0.75 | 100.00 | 86.28 | 100.00 | 92.66 |
| Neural Networks | Synchronization Likelihood | Relative Wavelet Entropy | |||
| Layer 1 | Layer 2 | Train (%) | Test (%) | Train (%) | Test (%) |
| 10 | – | 85.80 | 78.26 | 94.16 | 87.77 |
| 30 | – | 83.82 | 79.48 | 96.67 | 90.49 |
| 50 | – | 84.04 | 78.94 | 95.79 | 90.22 |
| 100 | – | 86.62 | 80.16 | 94.39 | 88.59 |
| 50 | 50 | 86.73 | 78.13 | 96.20 | 89.54 |
| 100 | 50 | 86.09 | 79.89 | 97.49 | 89.13 |
| 100 | 100 | 86.97 | 79.08 | 95.27 | 88.72 |
Bold values are the maximum achieved accuracy for each feature extraction method.