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Abstract

Mammalian cells detect and respond to topographical cues presented in natural and synthetic 

biomaterials both in vivo and in vitro. Micro- and nano-structures influence the adhesion, 

morphology, proliferation, migration, and differentiation of many phenotypes. Although the 

mechanisms that underpin cell-topography interactions remain elusive, synthetic substrates with 

well-defined micro- and nano-structures are important tools to elucidate the origin of these 

responses. Substrates with reconfigurable topography are desirable because programmable cues 

can be harmonized with dynamic cellular responses. Here we present a lithography-free 

fabrication technique that can reversibly present topographical cues using an actuation mechanism 

that minimizes the confounding effects of applied stimuli. This method utilizes strain-induced 

buckling instabilities in bi-layer substrate materials with rigid uniform silicon oxide membranes 

that are thermally deposited on elastomeric substrates. The resulting surfaces are capable of 

reversible of substrates between three distinct states: flat substrates (A = 1.53 ± 0.55 nm, Rms = 

0.317 ± 0.048 nm); parallel wavy grating arrays (A|| = 483.6 ± 7.8 nm and λ|| = 4.78 ± 0.16 μm); 

perpendicular wavy grating arrays (A⊥ = 429.3 ± 5.8 nm; λ⊥ = 4.95 ± 0.36 μm). The cytoskeleton 

dynamics of 3T3 fibroblasts in response to these surfaces was measured using optical microscopy. 

Fibroblasts cultured on dynamic substrates that are switched from flat to topographic features 

(FLAT-WAVY) exhibit a robust and rapid change in gross morphology as measured by a reduction 

in circularity from 0.30 ± 0.13 to 0.15 ± 0.08 after 5 min. Conversely, dynamic substrate 

sequences of FLAT-WAVY-FLAT do not significantly alter the gross steady-state morphology. 

Taken together, substrates that present topographic structures reversibly can elucidate dynamic 

aspects of cell-topography interactions.
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Introduction

Mammalian cells can detect the topography of biomaterials in both natural and synthetic 

microenvironments [1–5]. Topography plays an important role in determining the collective 

cell behavior in many complex biological processes in development, wound healing, and 

tissue regeneration [1,4,6–11]. Topographical cues control fundamental cellular functions 

including adhesion, migration, proliferation, and differentiation [12–16]. Most 

phenomenological studies that correlate cell function with feature geometry and size employ 

substrates with static structures [7,17–25]. Static surfaces can extract many complex 

mechanisms that underpin cell-materials interactions such as contact guidance. However, 

there is a limit to the insight that can be gained by interrogating dynamic systems with static 

cues. Substrates that present topography with spatiotemporal control are advantageous in 

studying cell-materials interactions including contact guidance. They can potentially 

decouple contact guidance responses from other confounding processes such as cell 

attachment and spreading [5,26].

Controlled presentation of topographical cues has improved through recent advances in 

stimuli-responsive materials [27,28] precise delivery of stimuli such as temperature changes, 

light, or mechanical strain [1,4,10,16,20,28,29]. This strategy has been used for dynamic 

microstructure presentation to study cell-materials interactions in numerous contexts 

[1,3,5,30]. Programmable topography can also be engineered using stimuli-responsive 

polymers including those that respond to cues such as electric fields, temperature changes, 

and enzymes [3,5,27,31,32].

The introduction of external stimuli may affect baseline metabolism, viability, or 

proliferation of cell populations [33]. For example, changes in temperature, the presence of 

enzymes, or irradiated light can impact basal cell function [3,33]. Mechanical stimuli via 

direct application of strain is advantageous for topographic feature formation because it is 

rapid, robust, and facile [1,5]. Most currently available methods that use strain-induced 

topography require uniaxial strains of greater than 10% [1,26,34]. Mammalian cells can 

detect strains of the underlying substrate as small as 3.5% and respond to these stains by 

altering their morphology [35,36]. Therefore, inducing topographic features using 

mechanical strains >3.5% may convolve contact guidance with responses to substrate 

deformation. Strain-induced topography will ideally utilize mechanical stimuli that are 

below the lower limit of detection for mammalian cells. Furthermore, mechanical stimuli 

can be coupled with materials that can reversibly present homogeneous topographical cues 

in various orientations. Herein we report a lithography-free fabrication technique that is 

capable of producing strain-induced topography using sub-threshold uniaxial strains. 

Cytoskeleton morphodynamics in fibroblasts are measured using these model surfaces.

Materials & Methods

Fabrication and Characterization of Programmable Dynamic Topography

Elastomeric substrates were prepared using polydimethylsiloxane (PDMS, Sylgard 184, 

Dow Corning, Midland, MI USA) cured in a 10:1 ratio at 75 °C. Rectangular PDMS 

coupons (W x L x H = 1.5 cm x 3.5 cm x 600 μm) were mounted in a custom fixation device 
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and strained to the desired amount. Pre-strained substrates were coated with 100 nm of 

silicon oxide (SiOx) deposited by thermal evaporation. Briefly, silicon monoxide (SiO) was 

thermally deposited at a rate of 1 Å/sec at 10−6 Torr (NexDep, Angstrom Engineering, 

Kitchener, ON Canada). All substrates were processed in an identical manner with the 

exception that the thickness of the bi-layer membrane was set at either 10 or 100 nm. 

Dynamic topography sequences were switched between states in less than 3 sec. 

Microstructures of bilayer membranes were characterized using optical microscopy 

(Olympus BH2 microscope, Olympus America Inc., Center Valley, PA USA) and atomic 

force microscopy (AFM, Dimension 3100 SPM, Veeco, Plainville, NY USA). Fourier 

transforms of optical micrographs were prepared using ImageJ (National Institute of Health, 

USA, available at http://rsb.info.nih.gov/ij).

Fibroblast Culture and Imaging

All cell culture supplies were purchased from Invitrogen (Carlsbad, CA USA) unless 

otherwise stated. Bi-layer membranes were sterilized in ethanol (70% v/v) and irradiated 

with UV for 30 min. Bi-layer membranes were incubated with RGD solution (50 μg/cm2) 

for 40 min and rinsed with 3x PBS. NIH 3T3 fibroblasts (ATCC, Monassas, VA USA) were 

seeded at densities of 25,000 cells/cm2 and incubated in DMEM medium supplemented with 

10% fetal bovine serum (FBS) and 1% penicillin/streptomycin (P/S) at 37 °C. Live cell 

images were performed by culturing cells for 24 hr prior to dynamic topography sequences. 

Cells were cultured in en environmentally controlled chamber set at 37 °C with >90% 

relative humidity and 5% CO2 (BioImager, Mississauga, ON Canada). FB were imaged in 

phase contrast and analyzed using NIH ImageJ to measure morphology and relative 

orientation. Cell circularity was calculated using the following expression.

Ccell =
4πAproj

P2 Eqn. 1

where Aproj and P are the projected surface area and perimeter of the cell, respectively. The 

axial ratio Raxis was calculated from the length of the major axis divided by the length of the 

minor axis (Figure S1) [37].

Cells were fixed in 4% formaldehyde for 20 min, stained using 20 μL of Alexa Fluor® 488 

Phalloidin (200 U/mL), and counterstained with SlowFade® Gold Antifade Reagent with 

DAPI. Phase contrast and fluorescent images were recorded using an EvosFL microscope 

(Advanced Microscopy Group, Bothell, WA USA). FB on a static substrate were also 

imaged using confocal fluorescence microscopy (LSM 510 META DuoScan, Carl Zeiss, 

Heidelberg Germany) and scanning electron microscopy (SEM) (PhilipsXL-30 FEG, FEI, 

Hillsboro, OR, USA). Cells dedicated for SEM imaging were fixed in 4% formaldehyde for 

20 min, washed with distilled water for 3 times, and dehydrated in a series of mixtures 

containing ethanol and hexamethyldisilazane (HDMS), as previously described [38]. 

Dehydrated samples were coated with 4 nm of platinum prior to imaging (Emtech K575X, 

Quorum Technologies, Guelph, ON, Canada).
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Statistical Methods

Cell morphodynamic measurements were based on at least 100 cells per each data point and 

all experiments were repeated in triplicate. All data is shown as mean ± s. e. m. unless 

otherwise stated. A student’s t-test with p-value of 0.05 was performed to consider 

significant difference of two groups with statistical significance set at p-values of < 0.05. 

One-way ANOVA with Tukey post-hoc criterion was used to assess the significance across 

more than 2 groups.

Results and Discussion

Microstructural Characterization of Dynamic Topography

Strain-induced feature formation is a convenient strategy for rapid programmable 

presentation of topographic cues. Ordered buckling is an energy-relief mechanism that 

occurs when a thin rigid membrane on an elastomeric substrate is compressed [39,40]. 

Releasing the pre-strain of bi-layer substrates produces grating arrays composed of ridge-

groove features with short-range order (Figure 3) [41]. This phenomenon has been used as a 

non-conventional microfabrication technique [42]. Rigid silicon oxide (SiO2) membranes on 

polydimethylsiloxane (PDMS) substrates are commonly fabricated by exposing PDMS to 

O2 plasma [43,44]. PDMS-SiO2 bilayers fabricated in this manner typically require large 

uniaxial strains (ε > 10%) to create grating arrays [43,45]. One possible explanation is that 

the minimum thickness of SiO2 membranes processed using O2 plasma is large because a 

significant depth of the PDMS must be converted into SiO2 before a strain-sensitive 

percolating network of oxide structures is formed within the substrate. The alternative 

method described herein uses thermal evaporation of SiO to deposit homogeneous SiOx 

(with 1.5 < x < 2) film apical to PDMS substrates [46]. This approach reduces the effective 

critical strain required for feature formation via compression. Although the exact 

composition of SiOx rigid membranes depends upon the deposition procedure, the 

composition will hereby be referred to as SiO2 for simplification.

The morphologies of PDMS-SiO2 bilayers in flat (F) and wavy (W⊥) configurations are 

shown in Figure 2. Cycling the strain forms microstructures reversibly as indicated by 

optical and scanning probe microscopy. AFM images of bilayers in flat configuration (ε = 

0%) contain features with characteristic peak-to-trough amplitudes of approximately 2 nm. 

This feature height is an order of magnitude smaller than the minimum detection limit for 

mammalian cells [20,47]. The size of the microstructure of the grating is a strong function of 

the intensive mechanical properties of the two materials: the thickness of the membrane hf, 

and the amount of pre-strain εpre [48,49]. The anticipated values for average peak-to-through 

amplitude A0 and wavelength of the features λ0 in grating arrays with net compressive 

strains can be predicted using the following relationships:

λ0 = 2πh f
E f
3Es

⅓
Eqn. 2
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A0 = h f
εpre
εc

− 1 Eqn. 3

The parameters in each equation are as follows: hf is the thickness of the rigid membrane; Ef 

and Es are Young’s moduli of substrate and rigid membrane, respectively; εpre is amount of 

uniaxial pre-strain; εc is critical buckling strain given by [49]:

εc = 1
4

3Es
E f

⅔
Eqn. 4

A buckling pattern is established only when the applied strain exceeds εc. Values for λ0 are 

predicted to be largely independent of the amount of pre-strain. However, experimentally 

observed values of λ0 are reduced for uniaxial strains greater than 10% [49–51]. 

Relationships that describe feature sized formed via spontaneous buckling are valid if certain 

criteria are satisfied. The intensive properties and extensive geometry of the film must be 

such that Ef ≫ Ef and hf ≪ ts where ts is the substrate thickness. The net strain Δε is defined 

as the difference between the resulting applied strain εapp and the pre-strain via Δε = εapp − 

εpre. Feature formation either by compression or tension (|εapp|> εpre) yields grating features 

with peak-to-trough amplitudes of A > 400 nm. Topographic features produced from pre-

strained PDMS-SiO2 bilayer substrates in this study were consistent with constitutive 

relationships in Eqns. 2—4. Releasing the pre-strain produces a net compressive strain εapp 

< εpre and a uniaxial grating array that is oriented orthogonally to the axis of the applied 

strain. Orthogonal features have an average amplitude of A⊥ = 429.3 ± 5.8 nm and λ⊥ = 

4.95 ± 0.36 μm (Figure 2). Applying a strain εapp such that Δε = 0% abolishes the grating. 

Tensile strains of Δε = εapp − εpre > 3% produce grating arrays parallel to the axis of applied 

strain. Parallel features have an average amplitude of A|| = 483.6 ± 7.8 nm and λ|| = 4.78 

± 0.16 μm. Features emerge for strains as small as Δε = |εapp − εpre|= 3%. Fast Fourier 

Transforms (FFT) of optical micrographs are shown in Figure 3b. The intensity and 

orientation of these data confirm the presence (absence) and orientation of grating arrays 

under compression, tension, and zero-strain states. The feature amplitude A is also a strong 

function of the SiO2 membrane thickness hf. Optical and scanning probe micrographs of 

PDMS-SiO2 bilayer substrates with hf = 10 nm, pre-strain of εpre = +3%, and an applied 

strain of Δε = −3% produce random isotropic features with no short-range order and an Rms 

roughness of 0.317 ± 0.048 nm (Figure 2). Strain-dependent topography can be cycled 

without any observed hysteresis in feature size. “Strain cycles could likely be repeated 

dozens of times without any fatigue or fracture of the SiO2 membrane or mechanical failure 

of the PDMS substrate.” PDMS-SiO2 bilayer substrates formed by thermal evaporation of 

SiO2 membranes offer additional advantages for use in dynamic presentation of substrate 

topography. First, the minimum critical strain εc is reduced, which minimizes crosstalk from 

mechanical stimuli during quantification of cytoskeleton remodeling [52]. Second, small 

strains can alter the surface topography between three discrete states: flat (F), orthogonal 

wavy (W⊥), and parallel wavy (W||). The precise selection of the SiO2 membrane permits 
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facile fabrication of control substrates that are identical to dynamic topography substrates in 

terms of surface chemistry and applied strain. Lastly, topography can be presented both 

rapidly (~5 sec) and reversibly without indirectly impacting feature geometry.

Morphological Responses of Fibroblasts to Static Topography

FB cultured on static flat (Static F) exhibit a more rounded morphology and random 

spreading compared to the aligned morphologies of fibroblasts cultured on static grating 

arrays (Wavy W) as assessed by fluorescent microscopy (Figure 4). Four parameters were 

used to quantify FB morphology: circularity Ccell, ratio of major-to-minor axes Raxis, 

projected area Aproj, and angle of major axis to grating direction θalign [37,53]. FB cultured 

on flat substrates exhibit a larger average cell circularity (0.30 ± 0.13 versus 0.15 ± 0.08; 

p<0.001) and a higher average angle between the major axis of the cell and the features 

compared to topographic substrates (43.25° ± 23.40° versus 15.22° ± 13.10°; *** p <0.001) 

(Figure 5). These results suggest that static surfaces with grating topography can recapitulate 

the highly conserved morphological response of mammalian cells to grating features that is 

associated with contact guidance [54]. These measurements produce a baseline to compare 

the evolution of FB cytoskeleton morphology on substrates with dynamic topography.

Cell Culture on Substrates with Programmable Topography

Many mammalian cell phenotypes respond to dynamic topographical features through 

cytoskeleton reorganization [26]. The strain detection threshold for mammalian cells in 

response to uniaxial stretching is εcycle = 3.5% as inferred by gross morphological 

characterization [35,36]. This threshold provides a benchmark to limit the maximum applies 

strains to |Δε| < 3.5%. Nevertheless, applying strain in sub-threshold regimes may still 

impact other as of yet unknown aspects of cell-materials interactions. Therefore, several 

substrate topography sequences were utilized to assess the potential impact of strains in the 

sub-threshold regime. Static substrates that are either Flat (F) or Wavy (W) are mapped to 

corresponding dynamic substrates with the following sequences: FW⊥F and FW⊥. 

Substrates with FW⊥F sequences are critical control conditions to measure the potential 

impact of the transient strain on the downstream cytoskeleton morphodynamics. 

Furthermore, a direct comparison between sequences of FW⊥F and FW⊥ can isolate the 

direct impact of dynamic topography presentation on cytoskeleton morphology. FB 

morphology was largely preserved immediately after applied strains of Δε = ±3% (Figure 6). 

The orthogonal and parallel axes refer to the relative orientation of the grating features to the 

direction of applied strain. The morphology of FB cultured on PDMS substrates coated with 

10 nm SiO2 membranes was measured for t ≤ 6 hr (Figure 7). PDMS substrates with SiO2 

membranes of hf = 10 nm, εpre = +3%, and Δε = −3% exhibit random gratings with feature 

sizes of A = 1.53 ± 0.55 nm and λ = 1.8 ± 0.1 μm. These features do not significantly alter 

FB morphology via contact guidance mechanisms since the feature heights are smaller than 

35 nm, the previously reported detection limit for contact guidance [55]. PDMS substrates 

with 10 nm SiO2 membranes serve as valuable control materials since the strain and 

chemistry of the substrate are identical to PDMS-SiO2 bilayers that with thicker SiO2 

membranes. Maintaining constant material properties in dynamic substrates can be 

challenging [5]. Thin film deposition and precise strains achieve dynamic programmable 

Pholpabu et al. Page 6

Biomaterials. Author manuscript; available in PMC 2018 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



topography while preserving many of the other physicochemical aspects of the cellular 

microenvironment.

After 24 hr of cell seeding (t = 0 hr), the surface topography is switched either from flat to 

wavy (FW⊥) or flat to wavy to flat (FW⊥F) in rapid succession. The dynamic presentation 

of substrate topography induces alterations in FB morphology that initiate within 6 min and 

persist for t > 6 hr (Figure 7). The circularity and ratio of major/minor axes of the (FW⊥) 

both exhibit a significant change within 5 min of substrate actuation (** p < 0.01), while the 

average projected area A and major axis angle exhibit significant differences within 1 hour 

(** p < 0.001). Substrates with FW⊥F programs present gratings briefly (5 ± 3 sec). FB 

cultured on FW⊥F programs exhibit cytoskeleton dynamics that are substantially different 

compared to Static F substrates. FW⊥F sequences induce transient alterations in the 

following parameters that are associated with elongated morphologies: circularity Ccell, 

projected area Aproj, and axial ratio Raxis. Values for Ccell and Raxis in FB populations 

cultured on substrates with FW⊥F sequences converge to values observed in cells on Static F 
substrates for t ≤ 2 hr. These results suggest that sub-threshold strains induce transient 

fluctuations in morphological response. Temporary presentation of topographical cues may 

engage memory mechanisms in mammalian cells that have been previously reported in the 

context of other types of dynamic cell-materials interactions [56].

Substrates with FW⊥ sequences yield morphological changes in FB that are internally 

consistent with other observations within this study. Substrate actuation via compressive 

strains is comparable between FW⊥ and FW⊥F sequences. FB cultured on substrates with 

FW⊥ sequences adopt a temporary rounded morphology that is manifested by a transient 

decrease in Aproj for t = 1 hr (*** p < 0.001), a decrease in Ccell at t = 0.1 hr (*** p < 0.001), 

and an increase in Raxis at t = 0.1 hr (** p < 0.01) compared to Static F substrates (Figure 7). 

The morphology of FB cultured on substrates with FW⊥ sequences for t ≥ 6 hr compared to 

Static F substrates approximate that of Static W compared to Static F. These results suggest 

that steady state FB morphology is achieved within 6 hr.

Single Cell Sensing on Programmable Substrates

Programmable substrates can measure the cytoskeleton morphology of individual FB to 

transiently altered strain-induced topography. Isolated FB alter their shape and orientation 

for t ≤ 1 hr. Single cell morphological responses observed in FB populations cultured on 

substrates with FW⊥ and FW⊥F sequences are shown in Figure 8. FB alignment and 

elongation occurs for t < 2 hr for FW⊥ sequences. FB cultured on substrates with FW⊥F 
sequences extend lamellipodia in seemingly random directions within t < 2 hr. Single-cell 

morphodynamics are consistent with morphological observations made in FB populations. A 

notable observation is that both FW⊥ and FW⊥F sequences induce an initial temporary 

phase of cell rounding immediately after substrate actuation. This observation is curious 

because the minimum apparent strain detection threshold during cyclic stretching is εcycle = 

3.5%. Furthermore, the strains applied in this system are approximately 1 order of 

magnitude smaller than other experiments that employ dynamic strain. Typical cyclic strain 

experiments require uniaxial substrate strains of εcycle > 10% [57]. Furthermore, the impact 

of mechanical stress on cytoskeleton dynamics typically results in strains of γ ~ 20% 

Pholpabu et al. Page 7

Biomaterials. Author manuscript; available in PMC 2018 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[58,59]. It is unlikely that the application of transient strains will directly impact binding 

between integrins and adhesion-promoting peptides because of the strength of these bonds 

[60]. Typical dissociation constants for this specific kind of receptor-ligand interaction is on 

the order of KD = 10−9 M, which corresponds to a characteristic binding distance of r0 = 3 

nm [60]. Considering the characteristic dimension of integrins is ~10 nm [61], it is likely 

that 3% strains will not dissociate integrin-peptide coupling. Dynamic topography 

presentation may, however, alter other downstream effectors of cell-matrix interactions. 

Transient substrate strains may disrupt focal adhesions or cytoskeleton proteins that induce 

an altered state in which the cell rapidly interrogates the local chemical and topographical 

microenvironments by forming nascent integrins [62]. This topic is the subject of ongoing 

research.

Conclusions

We describe a lithography-free approach to fabricate dynamic substrate topography for 

measuring morphodynamics of cells during contact guidance. This substrate is advantageous 

because it presents ordered topographical cues in a manner that decouples potential 

contributions from other stimuli including substrate chemistry and large mechanical strains. 

Homogeneous surface chemistry (SiO2) and small required extensive strains (~3%) are key 

features of the approach described herein. Although the substrate cannot completely 

eliminate the effect of external mechanical stimuli on in vitro cell-topography interactions, 

using small strains minimizes the impact of the applied stimulus. This work represents a 

strategy to better isolate the effect of dynamic programmable topography on living cells. 

Furthermore, this technique permits rapid and reversible presentation of topographic cues 

with precise temporal precision. Dynamic substrate topography afforded by the strategy 

described herein could be further applied to studying signal transduction pathways that 

original from transient cell-matrix interactions and propagate to downstream pathways that 

control cytoskeleton reorganization. Thus, programmable substrate topography is a 

promising strategy to elucidate cytoskeleton remodeling dynamics in many cell phenotypes 

in the context of cell-biomaterials interactions.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Fabrication scheme and actuation of reconfigurable dynamic topography. a) The fabrication 

flow is shown: (i) PDMS substrates are strained to a prescribed amount and (ii) SiO2 

membranes are deposited on the surface using thermal evaporation. (iii) The pre-strain is 

released to create wavy grating arrays via spontaneous buckling. b) Programmable 

topography consists of three discrete strain-dependent states that depend on the difference 

between the pre-strain and applied strain Δε: Δε < 0% produces perpendicular wavy gratings 

(W⊥); Δε = 0% produces flat substrates (F); Δε > 0% produces parallel wavy gratings (W||). 

These states are shown sequentially from top to bottom as the value of Δε becomes more 

positive.
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Figure 2. 
PDMS coupons are pre-strained to εpre = +3% and SiO2 membranes of thickness hf are 

deposited on elastomeric substrates. The pre-strain is released such that Δε = -3% prior to 

characterization. SiO2 membranes with hf = 100 nm generate flat (F) surfaces, while SiO2 

membranes with hf = 100 nm generate substrates with perpendicular gratings (W⊥).
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Figure 3. 
PDMS-SiO2 bilayer substrates produce reconfigurable programmable topography. PDMS-

SiO2 bilayer substrates are pre-strained to εpre = 9% and coated with SiO2 layers of hf = 100 

nm. a) Wavelengths and amplitudes of the surface features are measured as a function of Δε 
= εapp – εre. Values of Δε < 0%, Δε = 0% and Δε > 0% generate perpendicular wavy 

gratings (W⊥), featureless flat substrates (F), and parallel wavy gratings (W||)features, 

respectively. b) Fast Fourier Transforms (FFT) of PDMS-SiO2 bilayer substrates with the for 

−9% < Δε < +9%. The intensity and relative orientation of FFT signals confirm the presence 

(absence) of distinguishable features and the orientation of wavy grating arrays in the 

following discrete states: W⊥, F, and W||.
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Figure 4. 
Fibroblast morphology and orientation on static flat (F) and static wavy gratings (W). 

Fibroblasts are fixed on PDMS-SiO2 bilayers for 24 hr prior to characterization. 

Micrographs suggest that fibroblasts were randomly oriented on static flat (F) substrates and 

aligned to wavy gratings (W). The direction of the grating is indicated by the red arrows. 

Actin and nuclei are shown in green and blue, respectively.
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Figure 5. 
Quantification of fibroblast morphology and orientation on substrates with static flat (F) and 

static perpendicular gratings (W⊥). Values of circularity Ccell, projected area Aproj, axial 

ratio Raxis, and alignment angle θalign confirm that fibroblasts exhibit reduced spreading and 

increased alignment and orientation when cultured on W⊥ substrates compared to F 
substrates (*** p<0.001).
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Figure 6. 
Transient response of isolated fibroblast in response to PDMS-SiO2 bilayers cycled through 

discrete states of substrate topography. The applied strain is applied rapidly to achieve the 

following configurations: The strain is sequentially and quickly applied across the following 

values: Δε = 0% generates flat substrates (F) with no grating features; Δε = +3% produces 

perpendicular wavy grating arrays (W⊥); Δε = -3% produces wavy grating arrays that are 

parallel to the axis of applied strain (W||). The rapid switching of substrate topographies does 

not induce observable morphological changes in FB over the span of 30 sec.
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Figure 7. 
Cytoskeleton morphodynamics for FB cultured on substrates over the course of 6 hr with the 

following sequences are shown: Static flat (F), dynamic flat to wavy grating (FW⊥), and 

dynamic flat to wavy grating back to flat (FW⊥F). Results of one-way ANOVA with Tukey 

post hoc tests are summarized in the table.
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Figure 8. 
Morphodynamics of a single FB in response to substrate perturbations. Single cells are 

captured before and after topographical switching, indicated at zero time point (:00). Phase 

contrast micrographs are processed using ImageJ to depict changes of cellular shape and 

orientation. Substrates are programmed with the following sequences: (a) flat to 

perpendicular wavy grating (FW⊥); (b) flat to perpendicular wavy grating back to flat 

substrates (FW⊥F).
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