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A B S T R A C T

Purpose
Hodgkin Reed-Sternberg (HRS) cells evade antitumor immunity by multiple means, including gains
of 9p24.1/CD274(PD-L1)/PDCD1LG2(PD-L2) and perturbed antigen presentation. Programmed
death 1 (PD-1) receptor blockade is active in classic Hodgkin lymphoma (cHL) despite reported
deficiencies of major histocompatibility complex (MHC) class I expression on HRS cells. Herein, we
assess bases of sensitivity to PD-1 blockade in patients with relapsed/refractory cHL who were
treated with nivolumab (anti–PD-1) in the CheckMate 205 trial.

Methods
HRS cells from archival tumor biopsies were evaluated for 9p24.1 alterations by fluorescence in situ
hybridization and for expression of PD ligand 1 (PD-L1) and the antigen presentation pathway
components—b2-microglobulin, MHC class I, and MHC class II—by immunohistochemistry. These
parameters were correlated with clinical responses and progression-free survival (PFS) after PD-1
blockade.

Results
Patients with higher-level 9p24.1 copy gain and increased PD-L1 expression on HRS cells had
superior PFS. HRS cell expression of b2-microglobulin/MHC class I was not predictive for complete
remission or PFS after nivolumab therapy. In contrast, HRS cell expression of MHC class II was
predictive for complete remission. In patients with a . 12-month interval between myeloablative
autologous stem-cell transplantation and nivolumab therapy, HRS cell expression of MHC class II
was associated with prolonged PFS.

Conclusion
Genetically driven PD-L1 expression andMHC class II positivity on HRS cells are potential predictors
of favorable outcome after PD-1 blockade. In cHL, clinical responses to nivolumab were not de-
pendent on HRS cell expression of MHC class I.

J Clin Oncol 36:942-950. © 2018 by American Society of Clinical Oncology

INTRODUCTION

Classic Hodgkin lymphomas (cHLs) are com-
posed of rare malignant Hodgkin Reed-Sternberg
(HRS) cells within an extensive inflammatory and
immune cell infiltrate.1 Despite this T cell–rich
infiltrate, HRS cells evade effective antitumor
immune responses by multiple mechanisms.1-4

HRS cells exhibit frequent copy number alterations
of 9p24.1 and the genes encoding the programmed

death 1 (PD-1) receptor ligands, PD-L1 and PD-L2
(also called CD274 and PDCD1LG2, respectively),
ranging from low-level polysomy to relative copy
gain and high-level amplification and copy number–
dependent increased expression of PD-1 ligands.3,4

PD-1 ligands engage the PD-1 receptor on T cells,
inhibiting T-cell activation and antitumor immune
responses.5

The identified 9p24.1 alterations and PD-1
ligand overexpression in cHL prompted clinical
evaluation of PD-1 blockade in patients with
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relapsed/refractory disease. In pilot and registration trials of the
PD-1–blocking antibody nivolumab, patients with relapsed/refractory
cHL and limited treatment options had response rates of 65% to 87%
and prolonged progression-free survival (PFS).6,7 Similar results were
obtained with a second PD-1–blocking antibody, pembrolizumab.8,9

These findings—the highest reported response rates to PD-1 blockade
in any tumor type—led to rapid approval by the US Food and Drug
Administration and the European Medicines Agency of both PD-1
antibodies for the treatment of relapsed/refractory cHL.

In murine cancer models and human solid tumors, the ef-
ficacy of PD-1 blockade has been attributed to activation of CD8+

cytotoxic T cells in the tumormicroenvironment.10-13 CD8+ T cells
require antigen presentation via major histocompatibility complex
(MHC) class I molecules that are transported to the cell surface in
association with b2-microglobulin (b2M). However, HRS cells
exhibit frequent inactivatingmutations and copy loss of B2M, leading
to decreased or absent cell surface expression of MHC class I.14,15

An alternate mechanism of antitumor immunity depends on
MHC class II–mediated antigen presentation to CD4+ effector
cells.16-18 Unlike solid tumors, which are largely MHC class II
negative, HRS cells frequently express MHC class II, likely because
of their derivation from germinal center B cells. However, a subset
of patients with cHL have genetic bases for deficient MHC class II
expression and decreased/absent cell surface MHC class II on HRS
cells.15,19-21 In recent imaging analyses of the intact cHL tumor
microenvironment, we found that PD-L1+ HRS cells were sig-
nificantly more likely to be in physical contact with PD-1+ CD4+

T cells than PD-1+ CD8+ T cells.22

In this study, we assessed the possible predictive value of
9p24.1/PD-L1/PD-L2 genetic alterations and PD-L1 expression for
clinical outcome in patients with relapsed/refractory cHL who
received nivolumab in the CheckMate 205 trial. We also evaluated
HRS cell expression of b2M, MHC class I, and MHC class II and
the association of these antigen presentation proteins with out-
come after nivolumab therapy.

METHODS

Clinical Data
CheckMate 205 is a multicenter, multicohort, phase II trial of single-

agent nivolumab in patients with cHL (ClinicalTrials.gov identifier:
NCT02181738).7 The research protocol was approved by the respective
institutional review boards; all participants gave written informed consent.
The current biomarker study focused on cohorts B and C: patients with
relapsed/refractory disease who previously underwent autologous stem-
cell transplantation (ASCT) and received brentuximab vedotin (BV)
before and/or after ASCT. Patients were treated with nivolumab 3 mg/kg
every 2 weeks until disease progression or unacceptable toxicity. Best
overall response (BOR) and PFS were assessed by an independent review
committee (IRC) using 2007 International Working Group response
criteria.23

Fluorescence In Situ Hybridization
In patients with available archival tumor biopsies, 9p24.1 genetic

alterations were evaluated by fluorescence in situ hybridization (FISH)
assay; probes encompassed CD274 (PD-L1, red) or PDCD1LG2 (PD-L2,
green) and included a centromeric control (aqua). Copy number alter-
ations were defined as previously described4 on the basis of the target:
control signal ratio. Fifty HRS cells per tumor were analyzed. Nuclei with

a target:control signal ratio of$ 3:1 were defined as coamplified for PD-L1
and PD-L2, and those with a signal ratio of. 1:1 but, 3:1 were classified
as having relative copy gain of these loci. Nuclei with a signal ratio of 1:1,
but more than two copies per probe, were defined as polysomic for 9p24.1.
For each patient, the percentage and magnitude of 9p24.1 amplification,
copy gain, polysomy, and normal copy numbers (disomy) were noted.
Patients were classified by the highest observed level of 9p24.1 genetic
alteration; those with 9p24.1 copy gain lacked amplification, and those
with 9p polysomy lacked 9p24.1 copy gain or amplification.

Immunohistochemistry
Dual immunohistochemical staining of PD-L1 (clone 405.9A1124)

and PAX5 (24/Pax-5; BD Biosciences, San Jose, CA) was performed to
delineate PD-L1 expression in PAX5dim+ malignant HRS cells on archival
tumor biopsies, as previously described.4 A modified PD-L1 H-score
(range, 0 to 300) was calculated by multiplying the percentage of PAX5dim+

(malignant) cells with positive PD-L1 staining (0% to 100%) and the
average intensity of staining (0 to 3+ on 50 HRS cells). Dual immuno-
histochemical staining of the antigen presentation components b2M
(A0072, 1:6,000; Dako, Troy, MI), MHC class I (EMR8-5, 1:6,000; Abcam,
Cambridge, MA), and MHC class II (CR3/43 M0775, 1:750; Dako) with
PAX5 (BD Biosciences) was performed using an automated staining system
(Bond III; Leica Biosystems, Vista, CA) according to the manufacturer’s
protocol.

Scoring criteria for samples in this trial followed the three-tiered
scoring system previously established in the analysis of newly diagnosed
cHLs treated with standard induction therapy.15 Briefly, two expert
hematopathologists (S.J.R. and G.S.P.) independently reviewed each case.
After their initial assessment, the two pathologists reviewed each case
together and recorded a single consensus score.15 Each tumor was classified
as positive, decreased, or negative for expression on HRS cells, relative to
staining on adjacent nonmalignant inflammatory cells. In each case, areas
with adjacent HRS cells were closely analyzed for HRS cell membrane
expression of b2M, MHC class I, and MHC class II, a process analogous to
that used for the clinical evaluation of CD45 (leukocyte common antigen).
For cases categorized as positive, at least 90% of evaluable HRS cells
showed positive membrane staining for the biomarker at levels equivalent
to, or greater than, that of adjacent nonmalignant inflammatory cells.15 For
cases categorized as negative, at least 90% of evaluable HRS cells showed no
detectable membrane staining for the biomarker relative to nonmalignant
inflammatory cells.15 For cases categorized as decreased, positive mem-
brane staining of HRS cells was present and unequivocally reduced relative
to surrounding cells, and/or positive staining was observed in , 90% of
evaluable HRS cells. Stained slides were scored blinded to the outcome
data.

Statistical Analyses
IRC assessment of BOR was obtained in all treated patients at the

database lock in December 2016. BOR was defined as the best response
(complete remission [CR], partial remission [PR], stable disease, pro-
gressive disease [PD], or nonevaluable disease) between the first study
treatment date and the first progression date or first subsequent therapy
date, whichever occurred first. The modified H-score for PD-L1 expression
was divided into four quartiles. Exact Kruskal-Wallis and Jonckheere-
Terpstra tests were used to analyze singly and doubly ordered categorical
associations, respectively. IRC-assessed PFS was defined as time from the
date of first treatment until the date of progression or death. Patients who
underwent subsequent anticancer treatment without reported progression
were censored at the last tumor assessment before the additional anticancer
therapy. Time-to-event analyses were performed using the Kaplan-Meier
method, and SEs were calculated by Greenwood’s formula. Differences in
PFS curves were assessed with log-rank tests. Kruskal-Wallis and
Jonckheere-Terpstra tests were performed with StatXact software (Cytel,
Cambridge, MA); additional analyses were performed with R version 3.2.2
(R Foundation). All P values were two-sided and nominal.
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RESULTS

Patient Characteristics
A total of 180 patients with relapsed/refractory cHL were

treated in cohorts B and C of CheckMate 205. All 80 patients in
cohort B received single-agent BV after relapsing from ASCT
(ASCT→BV). In contrast, cohort C (n = 100) included patients
who received BV before ASCT for treatment of relapse (BV→ASCT,
n = 33), BV after relapse from ASCT (ASCT→BV, n = 58), or BV
before and after relapse from ASCT (BV→ASCT→BV, n = 9; Data
Supplement Table A1A and Fig A1).

An identified clinical difference in patients from cohorts B and
C was the time (median [range]) between prior myeloablative
ASCT and nivolumab therapy (cohort B, 40 [2 to 228] months,
versus cohort C, 21 [3 to 204] months; P, .001; Data Supplement
Table A1A). This difference largely reflected the sequence of prior
therapies for relapsed disease in the respective cohorts. In the cohort
B ASCT→BVand cohort CASCT→BVand BV→ASCT→BV subsets,
time intervals between myeloablative ASCT and nivolumab therapy
were 40 months (2 to 228 months), 32 months (3 to 204 months), and
23 months (7 to 40 months), respectively. In the cohort C BV→ASCT
subset, the time interval betweenASCTand treatmentwas only 10months
(3 to 42 months) months (P , .001; Data Supplement Table A1A).

We postulated that patients with a shorter interval between
myeloablative ASCT and nivolumab therapy were still actively
reconstituting their immune repertoire and tumor microenviron-
ment at study entry.25-27 For this reason, we analyzed patients who
were treated with nivolumab # 12 months and . 12 months after
ASCTseparately in these exploratory analyses, in addition to evaluating

all patients in cohorts B and C. The available biomarker data and
clinical responses for patients are summarized in the Data Supplement
Table A1B and Fig A1. Patients with evaluable biopsy specimens had
PFS rates that were comparable to those of all treated patients in cohorts
B and C (Data Supplement Fig A2).

9p24.1 Genetic Alterations and PD-L1 Expression
In total, 99 of 180 patients had evaluable tumor biopsy

specimens for 9p24.1 FISH (Data Supplement Table A1B); all 99
had detectable 9p24.1 alterations in HRS cells: polysomy in 10 of
99 (10%), copy gain in 59 of 99 (60%), and amplification in 27 of
99 (27%; Fig 1A). Patients were classified by the highest-level 9p24.1
alterations (Figs 1A and 1B), as previously described.4 Tumors with
9p24.1 amplification had additional HRS cells with copy gain (6% to
84%), polysomy (4% to 44%), and disomy (2% to 45%); those with
relative copy gain had additional cells with polysomy (2% to 84%)
and disomy (4% to 86%), and those categorized as polysomic had
additional residual disomic HRS cells (20% to 92%; Fig 1B). The
percentage of residual disomic cells was lowest in tumors with
amplification, intermediate in tumors with copy gain, and highest in
tumorswith polysomy (P, .001; Fig 1C), consistent with an ordered
spectrum of 9p24.1 genetic alterations in cHL.

Of patients with available 9p24.1 genetic data, 97 of 99 could
be analyzed for PD-L1 protein expression (Data Supplement Table
A1B). There was a significant association between PD-L1 protein
expression (H-score) and the magnitude of 9p24.1 copy number
alterations in HRS cells (P = .001; Fig 1D). Similar results were
obtained for patients with intervals of # 12 or . 12 months
between ASCTand nivolumab therapy (Data Supplement Fig A3).
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Fig 1. Prevalence of 9p24.1 genetic alterations
and association of residual disomy and programmed
death ligand 1 (PD-L1) H-scores with 9p24.1 genetic
categories. (A) Prevalence of 9p24.1 genetic alter-
ations in classic Hodgkin lymphomas (cHLs). (B) The
spectrum of 9p24.1 alterations in evaluated cHLs.
Each patient is classified by the highest observed
level of 9p24.1 alteration in Hodgkin Reed-Sternberg
(HRS) cells: polysomy, copy gain, amplification, or
rearrangement (rearr., top). Individual patients are
visualized as columns on the x-axis, and the per-
centage of HRS cells with monosomy/relative loss
(gray), disomy (black), polysomy (light pink), copy gain
(medium pink), amplification (red), balanced rear-
rangement (taupe), and/or unbalanced rearrangement
(dark brown) is depicted on the y-axis. (C) Percentage
of HRS cells with residual 9p24.1 disomy in cHLs
classified by 9p24.1 genetic categories (P , .001,
Kruskal-Wallis rank sum test). (D) PD-L1 H-scores in
cHLs classified by 9p24.1 genetic categories (P= .001,
Kruskal-Wallis rank sum test). Ninety-nine patients
were evaluable for 9p24.1 alterations. Two patients
had missing PD-L1 H-scores; 97 patients were
evaluable for PD-L1 expression.
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In addition to copy number changes, chromosomal rear-
rangements of 9p24.1 were observed in three of 99 (3%) patients
(Figs 1A and 1B). Two (2%) patients had balanced rearrangements
by FISH, positive PD-L2 expression, and no PD-L1 immuno-
staining (Data Supplement Fig A4; patients 1 and 2), indicative of
PD-L2 translocations. The third patient (1%) had an unbalanced
rearrangement, with extra copies of PD-L1 and selective mem-
branous PD-L1 expression (Data Supplement Fig A4; patient 3).

BOR and PFS According to 9p24.1 Alterations and
PD-L1 H-Scores

We next evaluated the potential associations between BOR
and defined 9p24.1 alterations and PD-L1 H-scores (Figs 2A and
2B). The majority of evaluable patients responded to PD-1

blockade (Figs 2A and 2B). In contrast to patients who ob-
tained CR or PR or had stable disease, those who experienced
progression on therapy were more likely to have lower-level 9p24.1
alterations (polysomy; Fig 2A and Data Supplement Fig A5A; PD v
non-PD, P = .006) and less PD-L1 expression on HRS cells (Fig 2B
and Data Supplement Fig A5B; PD v non-PD, P = .047). Patients
whose tumors had lower-level 9p24.1 alterations and less PD-L1
expression on HRS cells also had shorter PFS (Fig 2C, P , .001,
and Fig 2D, P = .026).

A patient whose tumor had an unbalanced rearrangement
involving PD-L1 obtained a PR and had prolonged PFS (patient 3,
14.8+ months; Data Supplement Fig A4A). The two patients with
balanced PD-L2 rearranged tumors had rapidly PD (PFS was
1.4 months in patient 1 and 2.1 months in patient 2; Fig 2C and
Data Supplement Fig A4A).
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Fig 2. Best overall response (BOR) and progression-free survival (PFS) by 9p24.1 genetic category and programmed death ligand 1 (PD-L1) H-scores. Ninety-nine patients
were evaluable for 9p24.1 genetic alterations. Two patients had missing PD-L1 H-scores; 97 patients were evaluable for PD-L1 expression. Four additional patients were
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categories on the x-axis equals 100%. For each genetic category, the No. (%) of patients with each BOR are indicated. (B) BOR by PD-L1 H-scores in Hodgkin Reed-
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two cases NE for PD-L1; P = .026, log-rank test). Bal. rearr., balanced rearrangement; CR, complete remission; PD, progressive disease; PR, partial remission; SD, stable
disease; Unbal. rearr., unbalanced rearrangement.
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In patients with intervals of # 12 or . 12 months between
ASCTand nivolumab therapy, the magnitude of 9p24.1 alterations
was significantly associated with PFS (Data Supplement Fig A5C-D).
The levels of PD-L1 protein expression were significantly associated
with PFS in patients with . 12 months between ASCT and nivo-
lumab therapy (Data Supplement Fig A5F) but not in those with
a # 12-month interval (Data Supplement Fig A5E). In the latter
group of patients, who were still reconstituting their immune
repertoire and tumor microenvironment after myeloablative ASCT,
PD-L1 expression may have been driven by additional microenvi-
ronmental signals that would not be reflected in the analyzed archival
tumor biopsies (Data Supplement Fig A5E).

Antigen Presentation in Patients Treated With
Nivolumab

Given the importance of effective antigen presentation for
T-cell responses, we next assessed the patterns of b2M, MHC class
I, and MHC class II expression on HRS cells. In total, 72 patients
had available specimens for analysis of all three antigen pre-
sentation components (Data Supplement Table A1B and Fig 3A;
representative images in Fig 3B and Data Supplement Fig A6). HRS
cell membrane expression of b2M was negative in 51 of 72 (71%)
tumors, decreased in 16 of 72 (22%), and positive in five of 72 (7%;
Fig 3A). Similarly, HRS cell membrane expression ofMHC class Iwas
negative in 46 of 72 (64%) patients, decreased in 21 of 72 (29%), and
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positive in five of 72 (7%; Fig 3A). In this series, there was a highly
significant association between HRS cell expression of b2M and
MHC class I, implicating B2M alterations in the perturbed MHC
class I presentation (P , .001; Data Supplement Table A2).14,15

Overall, 93% (67 of 72) of analyzed cHLs had impaired (negative or
decreased) HRS cell surface expression of MHC class I (Fig 3A).

HRS cell membrane expression of MHC class II was negative in
21 of 72 (29%) patients, decreased in 23 of 72 (32%), and positive in
28 of 72 (39%; Fig 3A). There was no association between the ex-
pression of MHC class II and b2Mor MHC class I on HRS cells (P =
.645 and P = .5764, respectively; Data Supplement Table A2).

Antigen Presentation and Clinical Outcome
We next examined the importance of intactMHC class I and II

expression on HRS cells for response to PD-1 blockade. First, we

assessed the association between BOR, PFS, and b2M and MHC
class I expression. Ninety-two percent (11 of 12) of patients who

achieved a CR to nivolumab had tumors that were negative for
b2M and MHC class I (Figs 4A and 4B). There was no association

between b2M or MHC class I expression on HRS cells and PFS

(Figs 4C and 4D). Similar results were obtained in patients with
intervals of# 12 and. 12 months between ASCTand nivolumab

therapy (Data Supplement Fig A7). These data suggest that, in cHL,

PD-1 blockade is largely independent of MHC class I–mediated
antigen recognition and CD8+ cytotoxic T-cell responses.

In contrast, 92% (11 of 12) of complete responders had
tumors with membranous MHC class II expression on HRS cells
(67% [eight of 12] positive, 25% [three of 12] decreased; Fig 5A

and Data Supplement Fig A8; CR v no CR, P = .03). MHC class II

expression on HRS cells was not predictive for PFS in patients who
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were treated with nivolumab # 12 months after myeloablative
ASCT, likely because of microenvironmental signals that would not
be reflected in archival biopsy specimens (Fig 5B). However, in
patients who received the PD-1–blocking antibody . 12 months
after ASCT, positive MHC class II expression on HRS cells was
predictive for prolonged PFS (Fig 5C; P = .014). Taken together,
these data highlight a previously unappreciated role of MHC class
II–mediated antigen presentation on HRS cells in the clinical
response to PD-1 blockade.

DISCUSSION

In this study of patients with relapsed/refractory cHL, we assessed
the possible predictive value of specific immune evasionmechanisms—
9p24.1/PD-L1/PD-L2 alterations, PD-L1 expression, and perturbed
antigen presentation—for response to nivolumab therapy as well as
PFS after treatment. All evaluable patients had genetic alterations of
9p24.1/PD-L1/PD-L2 and copy number–dependent increased ex-
pression of PD-L1 in HRS cells. Althoughmost patients responded to
nivolumab therapy, those with higher-level 9p24.1 alterations and
PD-L1 expression on HRS cells had superior PFS. These analyses
highlight the importance of quantifying and specifically delineating
PD-L1 expression in malignant HRS cells.

Our data suggest that the mechanism of action for PD-1
blockade in cHL may be different from that described in certain
solid tumors.10-13 In the current study, 93% of evaluable patients
with cHL had absent or decreased expression of b2M and MHC
class I. In 92% of complete responders to nivolumab, HRS cells
were negative for cell surface b2M andMHC class I; moreover, PFS
was unrelated to HRS cell expression of b2MorMHC class I. These
findings strongly suggest that b2M deficiency is a major mecha-
nism of MHC class I loss in cHL, and PD-1 blockade is largely
independent of MHC class I–mediated antigen recognition and
associated CD8+ cytotoxic T-cell responses in cHL.

In marked contrast, 92% of complete responders to nivolu-
mab had membranous MHC class II expression on their HRS cells.
The observed variability in MHC class II expression on HRS cells
may have genetic bases, such as inactivating rearrangements of the
MHC class II transactivator CIITA19 and downregulation of CIITA
by Epstein-Barr virus latent membrane protein 2A.20 In patients
with fully reconstituted immune systems (. 12 months from
myeloablative ASCT), positive MHC class II expression on HRS
cells was also predictive for prolonged PFS. Of note, a subset of
patients with MHC class II–negative HRS cells also had short-lived
responses to nivolumab, suggesting that additional mechanisms
remain to be defined.

These initial analyses were limited by the availability of tumor
biopsy specimens from patients in the CheckMate 205 trial and
should be prospectively validated in additional trials of PD-1
blockade in relapsed/refractory cHL.9 However, our data already
prompt speculation regarding an alternative CD4+ T cell–mediated
mechanism of response to PD-1 blockade in cHL and suggest
associated biomarkers of response and resistance and additional
complementary targets, such as the MHC class II-interacting
checkpoint protein, LAG3.28

Despite the focus on CD8+ T cell–mediated mechanisms of
PD-1 blockade,10-13 recent studies also highlight the role of MHC
class II–associated antigen presentation and CD4+-infiltrating
T cells in certain solid tumors16 and define tumor neoantigens that
are largely recognized by CD4+ T cells.17,18,29 Taken together, these
findings support the hypothesis of an alternative MHC class II–
dependent, CD4+ T cell–associated mechanism of action of PD-1
blockade in cHL and, possibly, other tumors.
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