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Scaling has been proposed as a powerful tool to analyze the
properties of complex systems and in particular for cities where
it describes how various properties change with population. The
empirical study of scaling on a wide range of urban datasets dis-
plays apparent nonlinear behaviors whose statistical validity and
meaning were recently the focus of many debates. We discuss
here another aspect, which is the implication of such scaling forms
on individual cities and how they can be used for predicting the
behavior of a city when its population changes. We illustrate this
discussion in the case of delay due to traffic congestion with a
dataset of 101 US cities in the years 1982–2014. We show that the
scaling form obtained by agglomerating all of the available data
for different cities and for different years does display a nonlin-
ear behavior, but which appears to be unrelated to the dynamics
of individual cities when their population grows. In other words,
the congestion-induced delay in a given city does not depend on
its population only, but also on its previous history. This strong
path dependency prohibits the existence of a simple scaling form
valid for all cities and shows that we cannot always agglomerate
the data for many different systems. More generally, these results
also challenge the use of transversal data for understanding lon-
gitudinal series for cities.
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The recent availability of data for cities opens the fascinating
possibility of a science of cities (1, 2) and has led numerous

scientists to search for general laws (3, 4) ruling the evolution of
various socioeconomic and structural indicators such as patent
production, personal income, or electric cable total length, etc. In
ref. 3, it was suggested that assuming the population P to be the
most important determinant for cities, we could study the evo-
lution of many different features when P is increasing. In ref. 4,
many socioeconomic factors were studied vs. population, indicat-
ing the existence of simple scaling laws under the form of power
laws. For each indicator Y , Bettencourt et al. (4) found a power
law of the form Y ∼Pβ , where the exponent β depends on the
quantity considered. Some quantities evolve superlinearly with
the population (β > 1), for instance new patents (β=1.27), gross
domestic product (GDP) (1.13<β < 1.26), or serious crime
(β=1.16), while some others behave sublinearly (β < 1) as gaso-
line stations or sales. Quantities that are independent from the
size of the city—typically human-related quantities such as water
consumption—scale with an exponent β=1. The usual explana-
tion for these effects is the impact of interactions (scaling as P2)
for superlinear quantities and economies of scale for sublinear
quantities. This publication (4) was followed by a wealth of other
measures such as the abundance of business categories (5), the
number of sexually transmitted infections (6), road networks (7),
or carbon dioxide emissions (8–12).

Scaling in urban systems has, however, been criticized in some
recent papers (10, 13–16). A first reanalysis of the data for the
GDP and income (13) showed that the power law could not be
distinguished from other functional forms, or that the linear fit
is better (14), and in ref. 15 the authors led a rigorous investiga-
tion into the statistical quality of scalings for various quantities
and found that in many superlinear cases, the linear assumption

could in fact not be rejected. They also showed that the fitting
results depend crucially on the assumptions about noise. From
another point of view, the authors in ref. 16 showed that, for
some socioeconomic indicators, those scalings are not universal
and could depend on details of urban systems. More precisely,
they showed in data from 5, 000 French cities that two differ-
ent definitions of the cities [unité urbaine (urban units) and aire
urbaine (metropolitan areas)] led to different values of the scal-
ing exponent for a given quantity, a result confirmed in transport-
emitted CO2 in ref. 10. Not only the value of the exponent can
change, but in some cases, for different definitions of the city, the
scaling regime changes: For instance, the number of jobs in the
manufacturing sector grows superlinearly with the population of
urban units, but sublinearly if one considers metropolitan areas
(16). We can expect the results to change quantitatively, but here
we have changes from the superlinear to the sublinear regime,
casting some doubt on this nonlinear scaling and its universality.

In this paper we consider another problem, that is, the rele-
vance of such a scaling for the individual dynamics of cities. At a
more theoretical level, we question here the scaling assumption
where a quantity Y (usually extensive) is assumed to be deter-
mined by the population only, Y =F (P) (where F is in gen-
eral an unknown function). Even if the population is an impor-
tant determinant for cities, we cannot exclude time effect and
path dependency which would then imply that the quantity Y
depends also on time Y =F (P , t) and possibly on all Y (t ′) for
t ′< t . In other words, the path dependency means that it does
not make sense in general to compare two cities having the same
population but at very different dates: Both central Paris and
Phoenix, AZ had a population of about 1 million inhabitants, the
former in 1840 and the latter in 1990, and it is very likely that
the dynamics—for most of the relevant quantities—from 1840 in
Paris will be very different from those starting in 1990 in Phoenix,
implying that the usual scaling form does not apply in general. In
this paper, we investigate this question and test whether a scal-
ing exponent computed by aggregating data for different cities
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(usually at the same date) is relevant for predicting what will hap-
pen at the level of individual cities as their populations grow. We
illustrate this discussion in the case of congestion-induced delays
but our results could have far-reaching consequences for many
other scaling results for cities.

Aggregating All Cities: Global Scaling
We focus on the particular case of traffic congestion and its
impact on time delays. Previous studies have been made to
empirically test and theoretically explain how traffic congestion
scales with the population. In refs. 17 and 18 for instance, the
authors propose a theory of urban growth which accounts for
some of the observed scalings. The theoretical predictions are
tested against several datasets, collected by Organization for
Economic Cooperation and Development (OECD) or by a GPS
device company (TomTom) (17). Here, we study the dataset
(freely available from ref. 19) published by the Texas A&M
Transportation Institute (TTI) in the Urban Mobility Report
(UMR), obtained for 101 cities in the United States over 33 y
from 1982 to 2014 (the methodology used for constructing this
dataset is described in ref. 20, and we also give more details
about this dataset in SI Appendix, section 1). This database
was investigated in 2017 by the authors of ref. 21 and in this
study, the authors agglomerated all of the data correspond-
ing to different cities and performed the usual power-law fit of
the form

δτi = aPβi , [1]

where δτi is the annual congestion-induced delay corresponding
to city i . In this study we take for Pi (also denoted by P in the fol-
lowing) the number of car commuters for the city i rather than
the population, because this is the relevant parameter in many
models that deal with congestion in cities (18). If we take the pop-
ulation instead of the number of car commuters, our results are
qualitatively the same and our conclusions remain unchanged,
even if all of the exponent values change slightly (a fit for all
cities and all years shows that the number of car commuters is
approximately a constant fraction of order 35% of the popula-
tion). In ref. 21, they used the least-squares method to estimate
β and for the year 2014 (the last available year in the UMR), we
find with this method β=1.23± 0.03. We plot the data and the
corresponding fit in Fig. 1.

Fig. 1. Plot of the annual delay δτ vs. the number of drivers P for all cities
in 2014 (data from TTI’s Urban Mobility Information website, ref. 19). The
straight line is a power-law fit in this log-log representation and gives an
exponent value β≈ 1.23 (and R2 = 0.97).

Fig. 2. Scaling exponent β(t) for the delay computed for each year sepa-
rately, from 1982 to 2014. All these values are consistent with a superlinear
behavior found in ref. 21.

The quality of a fit must in general be carefully checked with
the help of statistical methods (15), and computing a good esti-
mation of this exponent value relies on several assumptions: Data
points are independent, and the noise is multiplicative and has a
variance independent of Pi (homoscedasticity). It should also be
checked that the nonlinear fit that has an additional parameter
compared with the linear one is much better than what would be
expected by pure chance. In this case, the trend seems, however,
to fit the data in a reasonably good way with a large R2 =0.93,
even if we have only two decades here. The value of β larger
than 1 indicates a superlinear behavior of the traffic congestion,
a fact in agreement with recent empirical (21) and theoretical
approaches (18, 22).

We can repeat this fit for each year separately, from 1982
to 2014. Formally, we test for each time t the relationship
log(δτi(t))= log(a)+β(t)× log(Pi(t))+ noise, where β(t) is
the scaling exponent to be determined. We show the values
of β(t) vs. t in Fig. 2 and we observe that β(t) is not con-
stant through time and displays nonnegligible fluctuations of
order 20%. However, all these values are larger than 1, indi-
cating a consistent superlinear behavior. In ref. 21 a least-
squares method was used on all of the points available: The
authors mix all of the 33 y available for each of the 101 cities
and get 33× 101=3,333 points leading to a scaling exponent
β≈ 1.36± 0.01, consistent again with a superlinear relation, as
found in ref. 21. For this dataset, we plot the scatterplot and
the corresponding nonlinear fit in Fig. 3, Top, (note that we
plot here the delay per capita). We observe some variability
but the global increasing trend seems to be correct. This way
of proceeding with data is common: One mixes data for dif-
ferent cities and for the available years and then performs a
regression over the whole set. The scaling that is obtained—
and that we qualify as “global”—is then used for discussing the-
oretical approaches. For instance, in ref. 22, this approach is
used for computing some scaling exponents (for quantities such
as land area, wages, etc.) and is compared with the exponent
expected from theoretical calculations. In ref. 23, empirical reg-
ularities are found by applying this methodology to different
indicators, suggesting the existence of universal socioeconomic
dynamics. Beyond statistical problems related to fitting proce-
dures, the exact meaning and the relevance of this global scal-
ing for individual cities are, however, not clear. In other words,
when we know that a certain quantity Y scales for all cities as
Y ∼Pβ , what can we say about the evolution of a single city?
In the following we address this question in the case of con-
gestion delay and by studying in detail the dynamics of every
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Fig. 3. (Top) Scatterplot of the annual delay per capita δτ/P vs. P for all of
the 101 cities and for all years (1982–2014). The straight line is the power-
law fit leading to the value β≈ 1.36 consistent with a superlinear behavior.
(Bottom) Same scatterplot but where the points are colored according to the
city they describe (one color per city). As we discuss in the text there is no
obvious relation between the global power-law scaling and the individual
behavior of cities.

individual city and compare its behavior with the global scaling
described above.

The Dynamics of Individual Cities
In Fig. 3, Bottom, we show the same plot as in Fig. 3, Top, but
where we now distinguish cities (one color corresponds to one
city). This allows us to compare the evolution of the delay due
to congestion in each city when its population grows. The first
striking observation is that for all cities in our dataset, the evolu-
tion of the congestion delay does not behave as predicted by the
global trend. They have their own trend which depends on their
particular history. In this respect, it is natural to ask, what are the
individual city dynamics and what do they have in common with
the global scaling? In what follows we thus focus on this individ-
ual behavior and discuss its relation with the global power-law
exponent.

Absence of a Single Scaling. With this dataset, we can monitor the
evolution of each city when its population grows. We first observe
in the examples in Fig. 4, Top, that the annual delay is not a sim-
ple function of P only. The value of the number of drivers (or
the population) is not enough to determine the delay. We also
note in Fig. 4 that the slopes are different (a power-law fit gives

β≈ 3.20 for Bakersfield and β≈ 1.45 for Sarasota), showing that
even when a power law exists it is not with the same exponent
(see Type-1 Cities: Power-Law Growth for a further analysis of
this point). To test further the existence of a scaling of the form
δτ ∼Pβ we plot in Fig. 4, Bottom, for all cities δτ(t)/δτ(t1) vs.
P(t)/P(t1), where t1 is the first available time. Even if the pref-
actor changes from one city to another one, this rescaling allows
us to test the existence of a unique power-law scaling. As we can
see in Fig. 4, Bottom, the curves for different cities do not col-
lapse, signaling the absence of a scaling form governed by a sin-
gle exponent. In the following we focus on the different behaviors
observed for this set of cities.

Different Categories of Cities. We analyze the behavior of each of
the 101 cities in the dataset and we observe a variety of behaviors.
More precisely, there are two main categories characterized by
different time evolutions:

• The delay increases with P and in most cases can be fitted by
a power law (Fig. 5, Top) and we refer to this set as “type-1”
cities, which represent over 30% of our cases. We note that for
the dataset studied here, the time range (from 1982 to 2014)
does not allow us to have a very large variation of the num-
ber of drivers [the ratio P(2014)/P(1982) varies from 1.2 to 6

Fig. 4. (Top) Log-log plot of the annual delay per capita δτ/P vs. P for two
different cities: Bakersfield, CA and Sarasota, FL. For the same range of P val-
ues, the delay is different, and the slopes are different as well. (Bottom) Plot
of the rescaled delay δτ (t)/δτ (t1) vs. P(t)/P(t1). The curves correspond to dif-
ferent cities and the fact that they do not collapse indicates the absence of
a unique scaling determined by a single exponent.
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Fig. 5. Log-log plot of the annual delay per capita δτ/P vs. P from 1982
to 2014. (Top) An example of a type-1 city where the delay grows with P
and can be reasonably fitted by a power law (Bakersfield, CA). (Bottom).
Example of a type-2 city with two power-law regimes characterized by two
different exponents (Cincinnati, OH).

approximately] and a much larger dataset would be needed to
have better accuracy for these exponent values.

• The other cities (about 40% of all cities) display two regimes
separated by a change of slope that is in general abrupt. The
second regime for these “type-2” cities can be in some cases a
“saturation” where the delay stays constant. We show in Fig. 5,
Bottom, an example of such a city that displays saturation with
zero slope in the second regime.

• The remaining cities (≈30%) do not display a common behav-
ior (for instance, some present two or three changes of
slope, etc.).

In most cases, however, the individual behavior of a city does
not correspond to the global scaling δτ ∼P1.36. In the following
we focus on each of these classes and try to characterize them
more precisely.

Type-1 Cities: Power-Law Growth. This particular class comprises
cities that display an individual scaling law that can be fitted by a
power law of the form δτ(t)'P(t)β(i), where P(t) is the num-
ber of commuters at time t and δτ(t) the corresponding annual
congestion-induced delay. The quantity β(i) depends in general
on the city i and we show in Fig. 6 the histogram for this exponent
computed for all type-1 cities. We clearly see that very few cities
behave as the “global trend” predicted: Only 2 cities of 31 have

an exponent <1.5, while 13 cities have an exponent >2.5 (we
give in SI Appendix, section 2 the list of values for β). This result
shows that when we observe a power-law behavior at the individ-
ual city level, it is generally with an exponent that is much larger
than 1 and much larger than the result found for the global scal-
ing. In other words there seems to be no correlation between the
global observation made on all cities and the individual behavior
of cities when their population evolves.

Type-2 Cities: Existence of Two Regimes. For about 40% of the
cities in the dataset, the delay vs. the number of car commuters
displays a change of slope and log(δτ) is a piecewise linear func-
tion of log(P). Formally one could write

log(δτ)=

{
a1 +β1× log(P) when P <P∗

a2 +β2× log(P) when P >P∗
. [2]

This behavior indicates that the dynamics of the traffic conges-
tion in those cities followed successively two different scaling
laws with two different exponents β1 and β2 and we plot the
histograms for both these exponents in Fig. 7 (we give in SI
Appendix, section 2 the list of values of β1 and β2). We note that
the average of β1 is around 5.35, while the average of β2 drops
to 1.32, closer to the “global exponent” (but with a large disper-
sion around this value). Beyond averages, we have that for almost
every case, β1>β2 (we also show in SI Appendix, Fig. S4 that
there are no correlations between β1 and β2). Almost all of the
exponents of the first regime β1 are above 2 (indicating a strong
superlinearity) while the second exponents β2 are mostly <2.
For this second regime, some cities do not exhibit superlinear
behavior. Indeed for some cities (∼30%), the exponent β2 is very
close to 1, indicating a linear behavior and equivalently a delay
per capita constant—that we coined as saturation. The cities of
Akron (Fig. 8) or Birmingham, for instance, fall into that subcat-
egory. We also observe that in some cases a crossing between the
curves corresponding to different cities can occur (such as Akron
and Albuquerque in Fig. 8). This crossing is another sign that the
posterior evolution of a city is not uniquely determined by the
population and the delay at a certain time (if it was, the evolu-
tion after the crossing should be identical for the two cities).

In other cases (∼10%), the exponent β2 is clearly <1, which
indicates sublinearity and that the delay per capita decreases with
the population. We show the example of the city of Albuquerque,

Fig. 6. Empirical histogram of β for type-1 cities. The average value is 2.46
(and the dispersion is σ= 0.91). The vertical line indicates the value of the
global scaling β≈ 1.36.
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Fig. 7. Empirical histograms for the two exponents β1 and β2 that describe
the two regimes of type-2 cities. (Top) Histogram for β1. The average is β1≈
5.35 and the dispersion is σ≈ 3.31. (Bottom) Histogram for β2. The average
is here β2≈ 1.32 with a dispersion σ≈ 0.81. For most cities we have β1 >β2.

NM in Fig. 8. This phenomenon is very counterintuitive, even if
we point out some elements of explanation. Indeed, in addition
to the congestion-induced delay, we also have the data for the
total driven length Ltot (in miles× commuters) for each city and
each year. We can check whether this quantity can explain, even
partially, the behavior of the total delay. For some type-2 cities
with two regimes, we plot the driven length per commuter against
the number of drivers and we observe that this curve displays a
change of regime at the exact same point for the delay. In Fig.
9, Top, we see that for the case of Birmingham, from 1998, the
delay remains almost constant, whereas it increased constantly
at a high rate before that (more precisely we have here β1' 5.7
and β2' 1). In Fig. 9, Bottom, we observe that in the same year,
the curve for the total driven length per capita Ltot/P experi-
enced a change of slope: The length per capita increased before
1998 and slowly decreases after that date. This could explain par-
tially why the delay does not evolve after this date: There are cer-
tainly more people on the road after 1998, and therefore more
likely some congestion, but each commuter drives less on aver-
age, which decreases the occurrence of traffic jams: These two
effects can compensate each other. This is one possible partial
explanation, which, however, does not hold for all of the cities.
The change of slope in Ltot/P vs. P is common in this dataset
and in most cases happens simultaneously with the change of
regimes of the delay, pointing to the existence of correlations
between these quantities, even if not in a causal manner. The

Fig. 8. Example of two different type-2 cities with two regimes character-
ized by two exponents β1 and β2. In the case of Akron, OH we observe a
saturation with a constant delay per capita (β2≈ 1), while for Albuquerque,
NM the delay per capita decreases with the population (β2 < 1).

simultaneous change of regime for these two quantities might
also be the sign that the city experienced a large-scale structural
change.

For this category of cities, beyond the two exponents β1 and
β2, we can also study (i) at what time T ∗ the change of slope hap-
pened, (ii) what the population of the city was when it happened
(P∗), and (iii) what the delay per capita was when it happened
((δτ/P)∗). The histograms for these quantities are shown in SI
Appendix, Fig. S5. The distribution of T ∗ is difficult to interpret
and does not display a typical date at which the slope changes.
The change of slopes therefore does not occur at the same time
for these cities, which would have been the case, for instance, if
there had been a national plan in the United States to rebuild
the whole road system or any other federal decision. The his-
togram for P∗ seems clearer to interpret with the existence of a
clear maximum around 200, 000 commuters and a quick decay
for larger values. The average of the distribution is 394, 000,
while the SD is 367, 000. Finally, the delay per capita (δτ/P)∗

displays a histogram that has a relatively small compact support,

Fig. 9. Birmingham case. (Top) Log-log plot of δτ/P vs. P. (Bottom) Log-
log plot of the total driven length per capita Ltot/P vs. P. The vertical dot-
ted line indicates the change of slope of δτ/P and corresponds here to the
year 1998.
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with an average of about 39 h per year and a SD of about 18 h per
year. This relatively small variation of (δτ/P)∗ suggests that it is
the congestion that triggers the change of regime signaled by dif-
ferent exponents. Further studies are, however, certainly needed
to clarify this important point.

Discussion
We focused in this paper on the dataset for congestion-induced
delay in some US cities. This is a particularly interesting dataset
as it is both transversal (it contains many cities) and longitudi-
nal (for each city we have the temporal evolution of the delay).
This is a rather rare case at the moment, but this type of data
will certainly become more abundant in the future and will allow
us to test our results on other quantities. Our observations about
scaling might therefore have far-reaching consequences for the
quantitative study of urban systems, well beyond the case of
congestion-induced delays.

The general scaling form Y ∼Pβ indicates that if the popu-
lation is multiplied by a factor λ, the quantity Y is then mul-
tiplied by a factor λβ . This scaling form relies, however, on a
strong implicit assumption which is the “logarithmic population
translation” invariance. In other words, this scaling form implies
that for any times t and t ′ we have Y (t ′)/Y (t)= (P(t ′)/P(t))

β

and then it depends on the ratio of populations only (or the dif-
ference of logarithms). As we observed in this study, there is no
such scaling at the individual city level but a variety of behav-
iors. In the language of statistical physics, the quantity Y (here
equal to δτ) is not a state function determined by the population
only and displays some sort of aging effect where the delay in a
city depends not only on the population but also on the time and
probably on the whole history of the city. In any case we can-

not make for a given city a prediction for time t2> t1 knowing
only its state for t1. This idea of path dependency is natural for
many complex systems, and in statistical physics, we know that
spin glasses (24) for example display aging, which means that
some features of the system (for instance, the relaxation time)
evolve with the age of the system and do not depend on the state
of the system only. This in particular implies that we do not have
time translation invariance but that most functions of two times
t and t ′ do not depend on t − t ′ only. This aging theory has been
applied to many other complex systems, from “soft material” (25)
to superparamagnet (26), and it would be interesting to under-
stand it in the framework of the evolution of urban systems. An
interesting direction for future research would be to investigate
the relation between the growth rate of a city and the importance
of aging. We could, for example, test the naive expectation that a
slow enough “adiabatic” growth would imply that the size of the
city is very important, while a rapid growth would imply that the
state of the system at previous times becomes relevant.

The results presented in this paper illustrated in the case of
congestion-induced delays could in principle be applied to any
other quantity. They highlight the risk of agglomerating data for
different cities and to consider that cities are scaled-up versions
of each other (as questioned in ref. 27, for example): There are
strong constraints for being allowed to do that such as path inde-
pendence, which is apparently not satisfied in the case of conges-
tion and which should be checked in each case.

Beyond scaling, these results also pose the challenging prob-
lem of using transversal data (i.e., for different cities) to get some
information about the longitudinal series for individual cities.
This is a fundamental problem that needs to be clarified when
looking for generic properties of cities.
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