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Meiotic crossovers shuffle parental genetic information, providing
novel combinations of alleles on which natural or artificial selection
can act. However, crossover events are relatively rare, typically one
to three exchange points per chromosome pair. Recent work has
identified three pathways limiting meiotic crossovers in Arabidopsis
thaliana that rely on the activity of FANCM [Crismani W, et al. (2012)
Science 336:1588–1590], RECQ4 [Séguéla-Arnaud M, et al. (2015)
Proc Natl Acad Sci USA 112:4713–4718], and FIGL1 [Girard C, et al.
(2015) PLoS Genet 11:e1005369]. Here we analyzed recombination
in plants in which one, two, or all three of these pathways were
disrupted in both pure line and hybrid contexts. The greatest effect
was observed when combining recq4 and figl1 mutations, which
increased the hybrid genetic map length from 389 to 3,037 cM. This
corresponds to an unprecedented 7.8-fold increase in crossover fre-
quency. Disrupting the three pathways did not further increase re-
combination, suggesting that some upper limit had been reached.
The increase in crossovers is not uniform along chromosomes and
rises from centromere to telomere. Finally, although in wild type
recombination is much higher in male meiosis than in female meio-
sis (490 cM vs. 290 cM), female recombination is higher than male
recombination in recq4 figl1 (3,200 cM vs. 2,720 cM), suggesting that
the factors that make wild-type female meiosis less recombinogenic
than male wild-type meiosis do not apply in the mutant context.
The massive increase in recombination observed in recq4 figl1 hy-
brids opens the possibility of manipulating recombination to en-
hance plant breeding efficiency.
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Crossovers (COs), reciprocal exchanges between homologous
chromosomes, have two consequences. First, in combination

with sister chromatid cohesion, COs provide a physical link be-
tween homologs, which is required for balanced segregation of
chromosomes at meiosis. Failure of the formation of at least one
crossover per chromosome pair is associated with reduced fer-
tility and aneuploidy (1). Second, COs lead to the exchange of
flanking DNA, generating novel mosaics of the homologous
chromatids. This translates into genetic recombination, clas-
sically measured in Morgans, or centiMorgans (cM).
The number of COs appears to be constrained by both an

upper limit and a lower limit (2). To illustrate, Fig. 1 plots the
genetic size (cM) versus the physical size (DNA base pairs, log
scale) of chromosomes in a diverse panel of eukaryotes. Note the
large variations in physical size, while the genetic map length is
much less variable. At the lower limit, chromosomes measure
50 cM, which corresponds to the requirement of at least one CO
per chromosome pair (0.5 per chromatid). In some species, such
as the worm Caenorhabditis elegans, the plant Capsella rubella,
and the fish Kryptolebias marmoratus, all chromosomes are ∼50 cM
long. Across all species, most chromosomes do not receive much
more than one CO per meiosis, with 80% having fewer than three.
Among the exceptional cases with more than nine COs per chro-
mosome are the three chromosomes of the yeast Schizo-
saccharomyces pombe, whose meiosis has other unusual aspects,
including the lack of both a synaptonemal complex and CO in-
terference (3). Thus, the high numbers of COs per chromosome
observed in a handful of species appears to be counterselected in

most species, suggesting that CO rate is a trait under selection in
both directions (4).
Plant breeding programs rely on meiotic COs that allow the

stacking of desired traits into elite lines. However, as described
above, the number of COs is low. Furthermore, some regions
are virtually devoid of COs, such as the regions flanking cen-
tromeres (5). This limits the genetic diversity that can be cre-
ated in breeding programs and also limits the power of genetic
mapping in prebreeding research. Thus, increasing recombination
is a desirable trait in plant breeding (6, 7). Forward screen ap-
proaches have identified three pathways that limit recombination in
Arabidopsis thaliana, relying respectively on the activity of (i) the
FANCM helicase and its cofactors (8, 9), (ii) the BLM/Sgs1 helicase
homologs RECQ4A and RECQ4B and the associated proteins
TOP3α and RMI1 (10, 11), and (iii) the FIGL1 AAA-ATPase (12).
RECQ4A and RECQ4B are duplicated genes that redundantly limit
meiotic crossovers in Arabidopsis, and thus are designated RECQ4
herein for simplicity. In all mutants, recombination is largely in-
creased compared with wild type when tested in pure lines; however,
the fancm mutation, which increases meiotic recombination three-
fold in pure lines, has almost no effect on recombination in hybrids
(12, 13). Thus, it has remained unclear whether the manipulation
of these three pathways could be used to increase recombination
in hybrids, the context that matters for plant breeding programs.

Results
Here we analyzed recombination in single, double, and triple
mutants for FANCM, RECQ4, and FIGL1 in both pure line and
hybrid contexts using two complementary approaches. First, we
used a fluorescent-tagged line (FTL I2ab) that relies on trans-
genic markers conferring fluorescence to pollen grains organized
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in tetrads (14) (Fig. 2). With this tool, we accurately measured
recombination in two adjacent intervals in either pure line (Col) or
F1 hybrid contexts (Col/Ler). Second, we used the segregation in
F2 progeny of a set of 96 Col/Ler single nucleotide polymorphisms
(SNPs) (12) to measure recombination genome-wide in F1 hybrid
contexts (Fig. 3). In pure Col, each single mutant had higher re-
combination than wild type in both FTL tested intervals (Fig. 2 A
and B). Each double mutant was higher than the respective single
mutants, confirming that FANCM, RECQ4, and FIGL1 act in three
different pathways to limit COs. The greatest increase was observed
in the fancm recq4 and figl1 recq4 double mutants, both of which
exhibited a ∼10-fold increase compared with wild type. The obser-
vation that each double mutant combination results in an increase in
recombination compared with the single mutants (i.e., three in-
dependent pathways) predicts that the triple mutant should increase
recombination even further; however, recombination in the figl1
recq4 fancm triple mutant was not higher than that in the highest
double mutants, suggesting that some upper limit had been reached.
In the Col/Ler hybrid context (Fig. 2 C and D for FTLs; Fig. 3A

for genome-wide genetic maps), both figl1 and recq4 increased re-
combination, but fancm had no detectable effect, as reported pre-
viously in several hybrid contexts (12, 13). Similar to observations in
pure Col, double-mutant hybrids exhibited higher recombination
than the corresponding singles. Notably, the fancm mutation led to
a detectable increase in recombination when combined with figl1 or
recq4 (Figs. 2 C and D and 3A). This finding again predicts that
combining the three mutations should lead to a further increase.
However, recombination was not statistically higher in the figl1 recq4
fancm triple mutant compared with the figl1 recq4 double mutant
and even appeared to be reduced (Figs. 2C and 3A).
The greatest increase in the hybrid context was thus observed

in the figl1 recq4 double mutant, with an ∼11-fold increase in
the FTL I2ab intervals (Fig. 2 C and D) and a 7.8-fold increase
genome-wide (Fig. 3A), from 389 ± 18 cM in wild type to
3,037 ± 115 cM in figl1 recq4 (translating to 7.8 ± 0.4 and 60.7 ±
2.3 COs per meiosis, respectively). This is much higher than the
greatest increase in meiotic recombination observed so far in

any mutant (15–17). While Arabidopsis wild type had a very
typical frequency of CO, with the genetic maps of each of the five
chromosomes ranging from 70 to 110 cM (an average of 1.6 CO per
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chromosome), the figl1 recq4 was almost the highest recombining
eukaryote (Fig. 1), with the genetic maps of chromosomes ranging
from 450 to 800 cM (an average of 12 COs per chromosome: Fig. 1).
We asked whether such a large increase in recombination

could reduce the fertility of plants, precluding the use of these
mutant combinations in breeding programs. No growth or de-
velopmental defects were observed in any of the genotypes. In
hybrids, the number of seeds per fruit was not significantly re-
duced in any genotype (Fig. 4B); however, a slight defect in pollen
viability was observed in single mutants and multi-mutants (Fig.
4D). Furthermore, in pure Col, both reduced seed set and pollen
viability defects were detected, with the highest numbers in recq4
figl1 and recq4 figl1 fancm (Fig. 4 A and C). This suggests that some
fertility defects may be associated with increased recombination.
The fertility defects in the different genotypes were quite poorly
correlated with the increase in COs, however (compare Figs. 2 and
Fig. 4); for example, Col fancm recq4 had the same large increase
in recombination observed in figl1 recq4 (Fig. 2 A and B), but
pollen viability was much less affected (Fig. 4C). This suggests that
high levels of COs are not responsible per se for reduced fertility.
We further examined meiosis in the Col recq4 figl1 and recq4

figl1 fancm, which showed >40% pollen death (Fig. 5). At dia-
kinesis, homologous chromosomes were associated in pairs, con-
nected by COs. The chromosomes appeared more tightly connected
in the mutants than in wild type, presumably because of increased
CO numbers (Fig. 5 A and B). The shape of chromosomes at
metaphase I was also suggestive of increased CO numbers (Fig. 5 C
and D). At metaphase II, chromosome spreads revealed the pres-
ence of a few chromosome fragments and chromosome bridges in
50% of the cells (n = 114 metaphase II cells; Fig. 5 F–H), suggesting
defective repair of a small subset of recombination intermediates.

We propose that the absence of FIGL1 and RECQ4 disturbs
the double-strand break repair machinery, leading to the for-
mation of aberrant intermediates [such as the multichromatid
joint molecules observed in the yeast recq4 homolog sgs1 (18)],
most of which are repaired as extra-COs and a few failing to be
repaired. Ectopic intermediates and ectopic COs are other
possible source of bridges and fragments. We suggest that
unrepaired intermediates or aberrant products are responsible
for most of the reduced fertility, but we cannot fully exclude that
the extra COs themselves slightly disturb chromosome segregation.
We next explored the distribution of COs along the genome

(Fig. 3 B and C) using the Col/Ler genome-wide recombination
data. The first line of Fig. 3 B and C shows the gene density,
SNP density (19), and proportion of methylated cytosines (20)
plotted along each chromosome. The centromeres (vertical dotted
line in Fig. 3B) are flanked by pericentromeric regions with low
gene density and high methylated cytosine levels (>7.5%, the ge-
nome average, delimited by thin dotted lines). The three bottom
lines of Fig. 3 B and C show recombination along the chromosomes
in single, double, and triple mutants, respectively. At the scale used
in this study (bins of ∼1.3 Mb), the wild-type curve of recombination
frequency oscillates around ∼2.5–3.5 cM/Mb in chromosome arms,
with the maximum observed close to pericentromeric and distal
regions. The interval that spans the centromere in each chromo-
some has a very low level of recombination. In accordance with
results for total map size (Fig. 3A), fancm is indistinguishable from
wild type. The curves of all other mutant genotypes show higher
recombination than wild type, with recq4 figl1 having the strongest
effect (Fig. 3 B and C). In all mutants, the same tendency is ob-
served, with no effect on recombination for intervals encompassing
or immediately flanking the centromere and an increase in re-
combination with increasing distance from the centromere to reach
a maximum close to telomeres. In figl1 recq4, the recombination
frequency rises rapidly from the centromere to the first third of the
arm, where it reaches ∼20 cM/Mb (approximately fivefold higher
than wild-type levels). This first third of the chromosome arms
correspond to the pericentromeric region, with a progressive de-
crease in methylation and increase in gene density with increasing
distance from the centromere (Fig. 3 B and C, first row). In the
remaining two-thirds of the chromosomes, methylation and gene
density are relatively stable but recombination continues to increase
toward the telomere, reaching an average of 45 cM/Mb (>10-fold
higher than wild-type levels). Thus, knockdown of recq4 and figl1
has very different effects in different regions of the chromosome.
We propose three nonexclusive possible causes for this effect.

First, the position along the chromosome itself could influence CO
frequencies, as recombination occurs in the context of highly or-
ganized and dynamic chromosomes (21). Second, the accessibility of
the chromatin may directly account for CO frequency, notably
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Fig. 5. Meiotic chromosome spreads. (A and B) Diakinesis. Five chromosome
pairs are observed in both wild type (Col) and recq4 figl1 and appear to be
more tightly linked in recq4 figl1. (C and D) Metaphase I. The five chromo-
some pairs are aligned on the metaphase plate. (E–H) Metaphase II. In wild
type, five pairs of chromatids align on two metaphase plates. In recq4 figl1
and recq4 figl1fancm, chromatid bridges (large arrows) and chromosome
fragments (small arrows) are observed in 50% of the cells. (Scale bars: 10 μM.)
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by influencing SPO11-dependant double-strand break formation
(22). The anticorrelation of cytosine methylation and recombination
(Fig. 3D) seen in recq4 figl1 (Fig. 3D; linear regression, R2 = 0.68,
P < 10−4), supports this view. Third, DNA polymorphism, which
decreases from centromere to telomere (Fig. 3C), may also prevent
CO frequency. We observed a strong anticorrelation between re-
combination and SNP density in recq4 figl1 (Fig. 3E; linear re-
gression, R2 = 0.61, P < 10−4), which is very weak and positive in
wild type (R2 = 0.09, P = 0.07). The distance from the centromere,
methylation, and polymorphisms are correlated with one another,
but multiple linear regression suggests that each of these three
parameters influences recombination in recq4 figl1 (P = 0.0012,
3.5 10−6, and 6.8 10−6, respectively). Interestingly, decreased
recombination is observed in the middle of the right arm of
chromosome 1 in recq4 figl1 and recq4 figl1 fancm (Fig. 3B),
corresponding to a region of high polymorphism associated with
a cluster of NBS-LRR disease-resistance genes (23). This sup-
ports the hypothesis that DNA polymorphisms discourage extra
COs in the mutants. In some crops, such as wheat (24), barley
(25), and tomato (26), large portions of chromosomes surrounding
centromeres receive virtually no COs, albeit containing genes that

thus are out of reach for breeding. It would be of particular
interest to test the effect of recq4 figl1 in such crops to see how
the CO increase seen in the short pericentromeres of Arabi-
dopsis translates to their large pericentromeres.
We next asked whether the increase in recombination that we

observed in F2s affects male and female meiosis equally. We did
so by backcrossing the F1 hybrids (wild type, recq4, or recq4 figl1)
by Col-0, as either male or female, and analyzing SNP segrega-
tion in the progeny (Fig. 6). In wild type, the genetic map was
∼70% larger in males than in females (495 ± 38 cM vs. 295 ±
28 cM; P < 10−4), with the difference particularly marked in the
vicinity of telomeres, where male recombination is at its highest
and female recombination is at its lowest (Fig. 6 B and C), in
accordance with previously reported data (27). In sharp contrast,
in recq4 and recq4 figl1, the female maps were larger than the
male maps (P < 10−4; Fig. 6A), and the CO distributions were sim-
ilar in the two sexes (Fig. 6 B and C). The total female map was
increased from 295 ± 28 cM in wild type to 3,176 ± 190 cM in
recq4 figl1, a >10-fold increase. The most spectacular increase
was observed in the vicinity of telomeres, where the average
recombination rate was 0.8 cM/Mb in female wild type and
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female recombination in the different genotypes (cM/Mb, Haldane equation) plotted along each of the five chromosomes (Mb). Errors bars represent 95%
confidence intervals. Vertical dotted lines mark the position of the centromeres. (C) The same data as in B, merged for all chromosome arms (short arms of
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47 cM/Mb in female recq4 figl1. In wild type, the vast majority of COs
were of class I (ZMM-dependent and subject to CO interference,
which limits the occurrence of two adjacent COs) while recq4 and figl1
mutations, which have been isolated as suppressors of zmm mutants,
showed an increase in class II COs exclusively (2, 10, 12). Accordingly,
CO interference, as measured genetically with tetrad analysis (Dataset
S2) or genome-wide data (Fig. 6D), was present in the wild type but
not detectable in the mutants. Thus, it appears that regulation of class
I COs shapes their distribution along chromosomes and differentiates
male and female meiosis, but this regulation does not apply to
the class II COs up-regulated in the recq4 figl1 double mutant.

Discussion
We have shown that a high CO frequency is obtained when com-
bining recq4 and figl1 mutations, resulting in a 7.8-fold increase in
total map size with only a limited effect on plant fertility and no
noticeable growth or developmental defects, at least in the first two
generations. This opens the possibility of manipulating recombination
in plant breeding programs to increase the shuffling of genetic in-
formation, break undesirable linkages, combine desirable traits, or
increase the power of genetic mapping in prebreeding research. It is
intriguing that, although it is possible (as observed in a few excep-
tional eukaryotes and here in Arabidopsis mutants), very few eu-
karyotes have high CO levels per chromosome. One possibility is that
a high level of COs is associated with segregation problems at meiosis
and thus with fertility defects. Our data do not strongly support this
possibility, however. Alternatively, it is possible that selection for a
low level of recombination limits COs in eukaryotes, which could be
optimal for adaptation in most contexts. An attractive idea is that in a
stable environment, high recombination levels would break favorable
allelic combinations that have been selected in previous generations
(28). Thus, the ZMM pathway, which accounts for most COs in
plants, mammals, and fungi, may have arisen in early eukaryotes to
address the opposing constraints of ensuring at least one CO per
chromosome while being able to adjust their numbers to low levels.

Methods
The following mutations were used in this study: Col, fancm-1 (8), figl1-1
(12), recq4a-4 (N419423) (29), and recq4b-2 (N511130) (29); Ler, fancm-10
(12), figl1-12 (12), and recq4a-W387X (10). The tetrad analysis line was I2ab
(FTL1506/FTL1524/FTL965/qrt1-2) (14). Hybrid lines were obtained through

the crossing of Col plants bearing the fancm, recq4a, recq4b, figl1, and qrt
mutations and the FTL transgenes I2ab to Ler plants bearing the fancm, recq4a,
figl1, and qrt mutations. F1 plants were grown in growth chambers (16 h/day at
21 °C, 8 h/night at 18 °C, 65% humidity) and genotyped twice for each mutation
(Dataset S5). F1 sibling plants of the desired genotypes were used for tetrad
analysis and fertility measures, selfed to produce the F2 population and crossed
as male or female to Col-0 to produce BC1 populations. Tetrad analysis (Fig. 2),
including data collection, measures of recombination (Perkins equation) and
interference (interference ratio), and statistical tests, were performed as de-
scribed by Girard et al. (12). F2 and BC1 populations were grown for
3 wk, and 100–150 mg of leaf material was collected from rosettes. DNA
extraction and genotyping for Col/Ler polymorphisms was performed using
the KASPAR technology at Plateforme Gentyane, INRA Clermont-Ferrand,
France. The set of 96 KASPAR markers (Dataset S4) that are uniformly dis-
tributed on the physical map (∼every 1.3 Mb) has been described by Girard
et al. (12). Genotyping data were analyzed with Fluidigm software (www.
fluidigm.com) with manual corrections. The raw genotyping dataset is
shown in Dataset S3. Recombination data were analyzed with MapDisto
1.7.7.0.1.1 (30). Genotyping errors were filtered using the iterative error
removal function (iterations = 6, start threshold = 0.001, increase = 0.001).

Recombination (cM ± SEM) was calculated using classical fraction estimation
and the Haldane mapping function. The Haldane function is preferred over
the Kosambi function because the latter incorporates crossover interference,
the effect of which is absent in the mutants analyzed in this study (Fig. 6D and
Dataset S2), and thus likely would have underestimated the genetic distances.
The obtained recombination frequencies per interval and corresponding ge-
nomic data are shown in Dataset S4. Crossover interference patterns (Fig. 6D)
were analyzed using MADpatterns (31). Graphical representations were pre-
pared with GraphPad Prism 6. The tests shown in Fig. 3A are one-way ANOVA
with Dunnett’s correction on the observed number of COs (genotype transi-
tions) per F2 plant in the genotyping data after error filtering. Linear re-
gression analyses were performed with GraphPad Prism 6, except for the
multilinear regression, which was done with R version 3.4.1. Male meiotic
chromosome spreads were performed as described previously (32).
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