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Metabolic pathways are often engineered in single microbial
populations. However, the introduction of heterologous circuits
into the host can create a substantial metabolic burden that limits
the overall productivity of the system. This limitation could be
overcome by metabolic division of labor (DOL), whereby distinct
populations perform different steps in a metabolic pathway,
reducing the burden each population will experience. While con-
ceptually appealing, the conditions when DOL is advantageous
have not been rigorously established. Here, we have analyzed
24 common architectures of metabolic pathways in which DOL can
be implemented. Our analysis reveals general criteria defining the
conditions that favor DOL, accounting for the burden or benefit of
the pathway activity on the host populations as well as the
transport and turnover of enzymes and intermediate metabolites.
These criteria can help guide engineering of metabolic pathways
and have implications for understanding evolution of natural
microbial communities.
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In conjunction with synthetic and systems biology, metabolic
pathway engineering, or the reprogramming of a cell’s me-

tabolism for increased production of a desired metabolite, has
enabled the biosynthesis of diverse chemicals for the food, bio-
fuels, pharmaceuticals, textiles, and cosmetic industries (1–5).
Although metabolic engineering is typically done in clonal pop-
ulations, the single-population approach presents several limi-
tations, especially for complex metabolic pathways. First, it is
challenging to optimize multiple pathways while avoiding cross-
talk in a single population (6–9). Second, negative pathway ef-
fects on the host cell, such as toxicity, could drive mutations that
result in loss of function over time (10–13). Third, the burden of
having all engineered components in a single population could
reduce the total biomass and, in turn, the overall synthesis rate of
the final product (14–17).
These limitations may be overcome by metabolic division of

labor (DOL), in which different populations execute different
but complementary metabolic tasks. DOL can reduce overall
complexity by dividing up one or multiple processes such that
each population contains only a subset of the overall pathway,
thereby reducing the complexity within individual cells. This, in
turn, can diminish the metabolic burden experienced by each
population. Unlike previous studies of DOL that consider evo-
lutionary benefit or cost (18, 19), we focus on the physical sep-
aration of different steps in a pathway without considering the
adaptive value of such a separation.
DOL has been observed in several metabolic pathways in

nature, and several synthetic systems demonstrate the feasibility
of its implementation. For example, the nitrification pathway
often operates through DOL: ammonia-oxidizing bacteria con-
vert ammonia to nitrite and nitrite-oxidizing bacteria convert
nitrite to nitrate (20). Similarly, Acetobacterium woodii and
Pelobacter acidigallici are each responsible for a part of con-
verting syringate to acetate (21). Cross-feeding in a mixed pop-
ulation is another example of DOL, since each population is
responsible for producing different metabolites that are shared

among the community (22–24). Finally, DOL has been adopted
in the engineering of synthetic consortia for various applications.
These include biosynthesis of useful compounds (25–28), bio-
processing (29, 30), bioremediation (31, 32), and biological
computation (33, 34).
While conceptually appealing, DOL has constraints. In certain

cases, one or more intermediates may be shared between two or
more populations. However, limitations in molecular transport
across the cell membrane and dilution of the intermediate(s) in the
extracellular space can reduce the efficiency of metabolic reactions
by reducing the effective concentrations of enzymes or substrates.
To address this issue, metabolic pathways can often be engineered
to minimize intermediate losses both in single-cell and DOL con-
texts (35). Depending on the pathway, DOL could also require
constituent populations to compete for nutrients or space, and this
too can reduce product yield and system stability. Given that DOL
can either help or hurt system performance, the conditions that
favor DOL remain to be rigorously established. To this end, we
have analyzed several metabolic pathway architectures to deter-
mine the conditions that would favor or disfavor DOL.

Model Formulation
For each system we formulated a minimal model using ordinary
differential equations for intracellular and extracellular metab-
olite concentrations depending on the system architecture. In all
cases we assume a well-mixed system (or sufficiently fast me-
tabolite transport), negligible intracellular degradation of me-
tabolite, excess of initial substrate, and transport via passive
diffusion. Moreover, in our models a population represents a
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phenotype such that they are differentiated by the tasks that they
accomplish. Here we present the dimensionless forms of the
model; see SI Appendix, section 2.1 for detailed justifications of
our assumptions and derivations of all models.

Modeling Kinetics of an Intracellular Pathway. Consider conversion
of a substrate (S) into an intermediate metabolite (M) by one
enzyme (E1), then to a final product (P) by a second enzyme
(E2). This pathway can be implemented in a single-cell pop-
ulation (SC) (Fig. 1A). The rates of change in intracellular and
extracellular products are given by

dm
dτ

= α1e1 − ηðm−meÞ− α2e2m, [1]

dme

dτ
= υηðm−meÞ− δmeme, [2]

dp
dτ

= α2e2m− p. [3]

Here, δme is the turnover rate constant of M in the extracellular
space; η is the transport rate constant of M across the cell mem-
brane; ei (i = 1, 2) is the steady-state concentration of Ei per cell;
αi (i = 1, 2) is the production rate of M and P, respectively; and υ
is the steady-state cell volume of the SC population. We assume
the enzymes are always present at steady state in each cell.
If M can diffuse across the cell membrane, the above-described

pathway can also be implemented in two populations, realizing
DOL (Fig. 1B). In DOL, the first population only expresses
E1, while the second only expresses E2. P is synthesized in

the second population by using M produced and released
from the first population. For this scenario, the corresponding
rates of changes of intracellular and extracellular products are
given by

dm1

dτ
= α1e1 − ηðm1 − meÞ, [4]

dme

dτ
= υ1ηðm1 −meÞ− υ2ηðme −m2Þ− δmeme, [5]

dm2

dτ
= ηðme −m2Þ− α2e2m2, [6]

dp
dτ

= α2e2m2 − p, [7]

where υi (i = 1, 2) is the steady-state cell volume of each
DOL population.

Modeling Cell Growth. We assume all populations follow logistic
growth and cell size is constant such that cell volume is pro-
portional to total biomass (Eqs. 8–10). Thus, we model SC cell
volume ðυÞ using a dimensionless logistic equation:

dυ
dτ

= μυ

�
1−

υ

ρ

�
− δυυ, [8]

where δυ is the turnover rate constant of the population, μ is the
growth rate constant of the population, and ρ is the carrying

A
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Fig. 1. Design criterion of DOL. (A) Model framework for an intracellular pathway within a single population (SC). Substrate (S) is converted to intracellular
intermediate (M), which diffuses into the extracellular environment (Me) and is directly converted to final product (P). Enzyme expression (E1 and E2) suppress
the growth of the population. (B) Model framework for an intracellular pathway within two populations (DOL). S is converted to intracellular intermediate
(M1), which diffuses into extracellular environment (Me) and then into population 2 (M2), where it is converted to P. Enzyme expression (E1 and E2) suppresses
the growth of the population they are contained in. (C) The design criterion defines when DOL is favored over SC. The left-hand side of the inequality
represents the gain in biomass by DOL; the right-hand side represents the inefficiency of DOL. (D) The criterion determines the parametric spaces where each
design strategy is favored. The color of the heat map indicates the magnitude of lnðυ2DOL=θIðυ2 + «υÞÞ. Expressions for each term in the inequality are detailed in
the main text and SI Appendix. To the left of the border ðlnðυ2DOL=θIðυ2 + «υÞÞ= 1Þ, SC produces more P than DOL (Top). To the right of the border, DOL
produces more P than SC (Middle). Above a certain level of burden, DOL always outperforms SC because the SC population goes extinct (white region,
Bottom). Past a maximum level of burden, both DOL populations go extinct (black region).
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capacity. We also assume that μ is affected by the potential
burden of enzyme expression and metabolite growth effects.
In DOL, we further assume that the populations consume

different resources and do not compete. If so, each population
will have its own carrying capacity. Therefore, the DOL growth
equations can be simplified to

dυ1
dτ

= μ1υ1

�
1−

υ1
ρ1

�
− δυ1υ1, [9]

dυ2
dτ

= μ2υ2

�
1−

υ2
ρ2

�
− δυ2υ2, [10]

where δυi, μi, and ρi (i = 1, 2) are the turnover rate constant, the
specific growth rate, and the carrying capacity of the ith popula-
tion. This assumption allows us to establish a simple model to
ensure coexistence of the two populations. It is directly applica-
ble when different members of a community have nonoverlap-
ping metabolism (36–39). In general, the coexistence can be
achieved by other mechanisms such as mutualism (22–24). Re-
gardless of the mechanism, our results (discussed below) remain
the same.

Growth Rates Due to Metabolic Burden and Additional Growth
Effects. Expression of heterologous enzymes can negatively af-
fect maximum growth rates in microbial hosts (40–43). This can
result from funneling resources away from cell growth toward
expression and maintenance of the enzymes or the energetic
constraints of the pathway itself (i.e., the pathway is endergonic)
(16, 44, 45). We model this metabolic burden of enzyme ex-
pression using decreasing Hill functions similar to previous
studies (40, 46) (Eqs. 11–13). Again, this assumption does not
change our results (discussed below). In the dimensionless SC
model, the cell growth rate, influenced by E1 and E2, is given by

μ=
μmaxG

1+ ðβe1 + γe2Þn, [11]

where G represents additional intermediate growth effects such
as toxic byproducts or crucial metabolites on the SC population;
1=ð1+ ðβe1 + γe2ÞnÞ represents the total metabolic burden of
expressing both enzymes, where β is the metabolic burden per
unit of E1 (henceforth called relative burden of E1), γ is the
metabolic burden per unit of E2 (henceforth called relative
burden of E2), and n is the Hill coefficient. G and
1=ð1+ ðβe1 + γe2ÞnÞ are multipliers of μmax and take values be-
tween 0 and 1. In DOL, the total metabolic burden experienced
by the SC population is split between the two DOL populations:

μ1 =
μmax,1G1

1+ ðβe1Þn, [12]

μ2 =
μmax,2G2

1+ ðγe2Þn, [13]

where G1 and G2 represent growth effects from M and/or P on
each DOL population; 1=ð1+ ðβe1ÞnÞ and 1=ð1+ ðγe2ÞnÞ repre-
sent the burden of expressing each enzyme. Similar to the SC
model,G1 and 1=ð1+ ðβe1ÞnÞ are multipliers of μmax,1, andG2 and
1=ð1+ ðγe2ÞnÞ are multipliers of μmax,2, all of which take values
between 0 and 1.

Results
Deriving a Criterion of DOL. The dynamics of each configuration
can be described using simple kinetic models, each consisting of
coupled ordinary differential equations (Eqs. 1–3 for SC; Eqs. 4–7

for DOL). We solve these equations to obtain the steady-state
concentrations of the total P for SC and DOL respectively:

pSC =
α1e1ðδme + ηυÞ
δme +

δmη
α2e2

+ ηυ
, [14]

pDOL =
α1e1ηυ1

δme +
δmeη
α2e2

+ ηυ2
. [15]

We consider DOL to be favored if it leads to higher total product
yield, or pDOLυ2 > pSCυ. Given Eqs. 14 and 15, this inequality can
be alternatively represented by (Fig. 1C)

υ2DOL

υ2 + «υ
> θI , [16]

where «= δme=η and θI =
�
δme +

δmeη
α2e2

+ ηυ2
���

δme +
δmeη
α2e2

+ ηυ
�
reflect

the inefficiency of DOL due to transport of M and υDOL =
ffiffiffiffiffiffiffiffiffi
υ1υ2

p
is

the geometric mean of the steady-state cell density in DOL (see
SI Appendix, section 2.3 for derivation). The left-hand side of Eq. 16
is approximately the ratio of the mean DOL density to the SC cell
density, which represents the net gain in biomass by utilizing DOL.
Meanwhile, the right-hand side represents the reduced per-cell pro-
ductivity of DOL. Thus, Eq. 16 represents a criterion of DOL:
For DOL to outperform a single population its gain in total
biomass must overcome its pathway inefficiency. This general
form of the criterion is independent of downstream assumptions
associated with modeling growth such as separate carrying ca-
pacities and burden formulation. If «= 0 and θI = 1, DOL does
not reduce efficiency, and maximizing product yield is the same
as maximizing biomass.
If the transport of M is much faster than its turnover (δme � ηÞ,

we have «≈ 0. If we also assume that the populations and enzymes
are approximately identical (e1 ≈ e2, β≈ γ, μmax ≈ μmax,1 ≈ μmax,2,
δυ ≈ δυ1 ≈ δυ2, and ρ1 ≈ ρ2 ≈ ρ=2), Eq. 16 simplifies to

ðβeÞn >
�
μmax
δυ

− 1
	�

2
ffiffiffiffiffi
θI

p
− 1

�
2n+1

ffiffiffiffiffi
θI

p
− 1

. [17]

Eq. 17 suggests that the metabolic burden caused by each en-
zyme ðβeÞn and host growth parameters determine if DOL is
favored. In comparison, kinetic parameters do not significantly
affect which strategy performs better (SI Appendix, Fig. S1).
Higher burden, due to increasing enzyme expression level (e)
or increasing burden per unit amount of enzyme ðβ, γÞ, favors
DOL. In contrast, increasing maximum growth rate or decreas-
ing population turnover allows the population to support higher
burden, favoring SC. That is, DOL is favored when the pathway
burden overcomes both the host’s resilience to burden and the
inefficiency of DOL. Moreover, the extent by which one strategy
outperforms the other varies with these parameters: For exam-
ple, SC performs increasingly better as the burden decreases
(Fig. 1D). By contrast, at high burden DOL yields higher biomass
that ultimately outweighs its pathway inefficiency because not all
cells perform all traits, thus reducing the burden per population.

Generalizing the Criterion for Alternative Pathway Mechanisms and
Architectures. Our criterion implicitly accounts for diverse effects
on growth by intermediates, products, and enzymes. For example,
one or several metabolites could promote or suppress population
growth (Fig. 2 A and B), which has been shown experimentally
(47–49). Alternatively, burden of enzyme expression could follow
a different mathematical form, or the pathway could generate
beneficial side-products (50–52) (SI Appendix, section 3.4.1).
Growth effects act through modulation of υ1, υ2, and υ in Eq. 3

and therefore do not change the form of the criterion. Instead,
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they affect how the boundary shifts in a specific parametric space
(Fig. 2 C and D and SI Appendix, Fig. S3). If the intermediate or
product promotes the growth of the host(s), SC becomes favored
for a broader range of parameter values; otherwise, DOL is fa-
vored for a broader range of parameters (Fig. 2C; see SI Ap-
pendix, Eqs. S3.7–S3.12 for corresponding metabolite growth
effect expressions). Similarly, DOL is favored if the pathway
imposes a greater burden on the host(s) (Fig. 2D): Here, the
linear dependence and exponential dependence are assumed to
cause more growth reduction than the Hill dependence, but ul-
timately the expression for burden does not change the form of the
criterion (see SI Appendix, section 3.1.1 for burden expressions).
Additional kinetic interactions also do not change the general
form of the criterion (SI Appendix, section 3.4). For example, in-
troducing intracellular metabolite turnover into the model only
increases the complexity of θI (SI Appendix, section 3.4.5).
The basic form of the criterion is maintained for common

pathway architectures (Fig. 3; see SI Appendix, section 4.1 for
details on model formulations and derivations). The first archi-
tecture, an extracellular pathway, reflects processes such as

synthesis of exoenzymes that break down complex compounds
for metabolism (53, 54). The next two architectures represent two
cases of independent pathways—one inside the cell and one
outside the cell—and are analogous to metabolic specialization
(55). Cross-feeding is also an example of intracellular independent
pathways (22–24) since, according to our results, incorporating
additional metabolite transport and growth effects would not change
the form of the criterion. The last two architectures represent hybrid
intracellular–extracellular pathways, where one step happens inside
the cell and the other step happens in the extracellular space. The
first hybrid architecture can be found in biosynthesis of exopoly-
saccharides for biofilm formation, where the polysaccharide is pro-
duced inside the cell before undergoing extracellular enzymatic
modifications (56). The final architecture accounts for metabolic
pathways involved in biofuel biosynthesis, which comprises two
core steps: first, the digestion of biomass by extracellular enzymes
and, second, the conversion of the resulting simplified sugars into
biofuels (29, 30). The same criterion is also applicable for path-
ways longer than two steps (SI Appendix, section 5).
Despite the different pathway architectures, the corresponding

criteria are almost identical, only varying in their expressions for θ.
Specifically, the different mathematical forms of the criteria reflect
the pros and cons of DOL in each pathway architecture. Re-
gardless, fundamental prediction of these criteria is qualitatively

A

C D

B

Fig. 2. The impact of growth effects of metabolites and enzymes. (A) SC
architecture with growth effects: Metabolites can promote or inhibit growth
of the population. (B) DOL architecture with growth effects: Metabolites can
promote or inhibit growth of one or both populations. (C) The analytical
border separating SC- and DOL-favored parametric spaces shifts with different
product growth effects. Beneficial metabolites reduce the effective burden
experienced by the populations, increasing the parameter space where SC
outperforms DOL (border shifts right). Toxic metabolites increase the effective
burden experienced by the populations, increasing the parameter space where
DOL outperforms SC (border shifts left). The mathematical expressions of each
metabolite growth effect are given by SI Appendix, Eqs. S3.7–S3.12. At low
diffusivity, the shapes of the borders for Toxic M and Beneficial Me change
such that at low burden increasing diffusivity favors SC. In this range of pa-
rameters, increasing diffusivity improves SC cell growth (reducing M in the
former and increasing Me in the latter), outweighing the loss in efficiency that
would otherwise favor DOL. Additionally, at low diffusivity, a portion of the
border for toxic Me is on the right side of the base because in this region toxic
Me is more impactful on DOL than SC; however, DOL is still more favored
overall in this scenario. (D) The border separating SC- and DOL-favored para-
metric spaces shifts with different mathematical representations of metabolic
burden. B represents the total metabolic burden of enzyme expression, and
each mathematical form determines the impact of the burden on growth.
Changing the mathematical representation of burden does not change the
form of the criterion. Rather, the magnitude of the burden determines the
parametric spaces where each design strategy is favored. Higher burden shifts
the border to the left, favoring DOL. (D, Inset) Growth rate as a function of
relative burden for each mathematical representation of burden. In this ex-
ample, parameters are chosen such that Hill-type burden reduces growth the
least and linear burden reduces growth the most.

A B C

Fig. 3. The criterion is applicable to different configurations of DOL.
(A) Different SC architectures. (1) An extracellular pathway: Extracellular in-
termediate is converted to final product by two extracellular enzymes, both of
which are synthesized by one population. (2) Two independent intracellular
pathways: One population contains two pathways, each producing a different
product. (3) Two independent extracellular pathways: One population syn-
thesizes both extracellular enzymes catalyzing two separate pathways. (4)
Hybrid pathway 1: Intermediate is produced within the cell and is converted to
final product extracellularly by enzyme secreted out of the same cell. (5) Hy-
brid pathway 2: Intermediate is produced extracellularly by enzyme secreted
from the cell and is converted to final product within the cell. (B) The corre-
sponding DOL architectures. (1) Each population synthesizes one enzyme. (2)
Each population contains one pathway. (3) Each population synthesizes one
enzyme. (4) Hybrid pathway 1: The first population produces the intermediate,
and the second population secretes the enzyme. (5) Hybrid pathway 2: The
first population secretes the enzyme, and the second population converts M
into P. (C) The design inequalities dictating when DOL is favored over SC are
similar or identical in form for various pathway architectures that can utilize
DOL. Expressions of the correction terms can be found in SI Appendix. Each
inequality is derived using the same assumptions as the base models.
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the same: DOL is favored if it improves overall cell density suffi-
ciently to overcome the inefficiency DOL causes in transport and
resource sharing. Notably, «, which reflects DOL’s inefficiency in
the base model, is not present in these criteria because both SC
and DOL require metabolite and/or enzyme transport. As a result,
we also generalize from the criteria that it is easier for DOL to
outperform SC if all or part of the entire pathway occurs in the
extracellular space.

Discussion
DOL has been hypothesized as an effective design strategy for
engineering sophisticated functionality (57–60). Indeed, there
are several synthetic systems featuring DOL between members
of each community. However, despite numerous examples the
conditions favoring DOL have not yet been rigorously estab-
lished. This is in part because DOL is seemingly implemented ad
hoc, and most DOL examples lack SC versions of the same
pathway with which to compare. From our analysis we derive a
general criterion that dictates the conditions when DOL out-
performs SC and establishes design principles for engineering
metabolic pathways via DOL. Unlike previous studies (46, 55,
61), our results are applicable to many different pathway archi-
tectures and configurations (as the case-specific criteria are de-
rivatives of the general criterion) and can determine which
design strategy to use given pathway parameters. It also provides
a concrete basis, namely maximization of the overall pro-
ductivity, to interpret and guide applications of DOL (Fig. 4).
Our results indicate that DOL is favored when the pathway re-
duces overall cell fitness such as in cases of high metabolic
burden or toxicity. This can result from an increasing complexity
of the overall pathway, highly burdensome enzymes (requiring
lots of resources to express or function), or generation of toxic
intermediates or products. Additionally, DOL will likely out-
perform SC if all or part of the pathway occurs outside the cells
because such pathways are transport-limited in both configura-
tions (thus DOL is no longer as inefficient relative to SC).

Indeed, these conclusions are reflected in the implementation of
several engineered pathways. Pathways implemented in DOL often
involve high complexity, comprising several steps, each catalyzed by
a different enzyme (25, 26, 28). If a pathway has been engineered
both in SC and in DOL, the DOL implementation typically contains
more steps that require additional enzymes to express (this could be
in part due to less effort in optimizing DOL implementations). For
example, an engineered Escherichia coli–Saccharomyces cerevisiae
coculture produces scoulerine from dopamine in a seven-enzyme
pathway (27), whereas an S. cerevisiae monoculture only uses four
enzymes starting from the intermediate norlaudanosoline (62).
Similarly, a Trichoderma ressi–E. coli coculture converts biomass
pretreated with ammonia fiber expansion into isobutanol (26). In
contrast, the same product can be produced with fewer steps from
glucose in E. coli and S. cerevisiae monocultures (63, 64). In these
cases, a longer pathway is likely to generate a substantial burden on
a single population, thus favoring a DOL implementation. Addi-
tionally, many examples of DOL involve intermediates, products, or
byproducts that are toxic to at least one of the populations (25, 26,
29, 31), consistent with our criterion (Fig. 2C). Finally, several
pathways implemented using DOL are partially or completely cat-
alyzed in the extracellular environment where DOL’s pathway in-
efficiency in comparison with SC is less pronounced (26, 29).
For pathways in nature, natural selection does not directly

constrain the pathway yield. In cases where the yield promotes host
growth, however, maximizing the productivity of such pathways
would have an adaptive value (49–52). Therefore, we can apply our
criteria to interpret these particular pathways under the basis of
optimizing metabolic productivity. For example, both syringate
metabolism and nitrification generate energy for the cells and can
exist in either SC or DOL configurations (20, 50, 65–68). Given the
analogous overall architectures of the pathways in either configu-
ration, what constrained these different implementations remains
an open question. In both cases, the SC populations were pre-
dicted to have a lower growth rate but higher yield based on kinetic
theory of optimal pathway length (51). Similarly, our criteria pre-
dict the SC population would have a lower growth rate due to the
higher metabolic burden of expressing more enzymes. This is
consistent with experimental results—the SC cases were found to
grow in biofilms, where a slower-growing organism would have a
higher fitness than the fast-growing one due to a biofilm’s low
substrate and biomass mixing (51, 65, 67–69). Others propose that
diffusion barriers and substrate concentration gradients in biofilms
could create niches where SC outcompetes DOL (68, 70). In-
corporating biofilm transport limitations into our criterion would
also favor SC by increasing « in Eq. 16. Moreover, in nitrification
the SC nitrifiers lack enzymes for assimilatory nitrite reduction,
whereas nitrite-oxidizing bacteria in DOL nitrification express as-
similatory nitrite reductases (67, 68, 71, 72). Expressing fewer en-
zymes could reduce the metabolic load on SC, increasing its
relative fitness in ammonia-containing environments where those
enzymes are not necessary.
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