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Background: Surgeons in the operating theatre deal constantly with high-demand tasks that require
simultaneous processing of a large amount of information. In certain situations, high cognitive load
occurs, which may impact negatively on a surgeon’s performance. This systematic review aims to provide
a comprehensive understanding of the different methods used to assess surgeons’ cognitive load, and a
critique of the reliability and validity of current assessment metrics.
Methods: A search strategy encompassing MEDLINE, Embase, Web of Science, PsycINFO, ACM
Digital Library, IEEE Xplore, PROSPERO and the Cochrane database was developed to identify
peer-reviewed articles published from inception to November 2016. Quality was assessed by using the
Medical Education Research Study Quality Instrument (MERSQI). A summary table was created to
describe study design, setting, specialty, participants, cognitive load measures and MERSQI score.
Results: Of 391 articles retrieved, 84 met the inclusion criteria, totalling 2053 unique participants. Most
studies were carried out in a simulated setting (59 studies, 70 per cent). Sixty studies (71 per cent) used
self-reporting methods, of which the NASA Task Load Index (NASA-TLX) was the most commonly
applied tool (44 studies, 52 per cent). Heart rate variability analysis was the most used real-time method
(11 studies, 13 per cent).
Conclusion: Self-report instruments are valuable when the aim is to assess the overall cognitive load
in different surgical procedures and assess learning curves within competence-based surgical education.
When the aim is to assess cognitive load related to specific operative stages, real-time tools should be
used, as they allow capture of cognitive load fluctuation. A combination of both subjective and objective
methods might provide optimal measurement of surgeons’ cognition.
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Introduction

In the past two decades, great effort has been devoted to
assess surgeons’ intraoperative performance and pinpoint
the many factors that may either improve, or impair surgi-
cal care1–4. In certain situations, high demands imposed by
surgical tasks and other factors, such as teaching and flow
disruption, may exceed surgeons’ cognitive capacity, lead-
ing to a potentially risky cognitive overload. Many studies
have demonstrated a direct relationship between surgical
performance metrics and patient outcomes5–7. Although
there are several methods for assessing cognitive perfor-
mance, the majority of existing tools are administered

post hoc and do not allow recognition or correction of a
surgeon’s performance in real-time8. One barrier to imple-
menting these tools to support surgical performance is a
lack of understanding of the evidence supporting their use.

Regardless of how competent and expert surgeons may
be, they are still subject to the common cognitive limita-
tions, frailties and fallibilities that characterize the human
brain. The sensory memory system can receive and pro-
cess a vast amount of visual and auditory information.
Modulated by attention and situational awareness, incom-
ing information is allocated into working memory, which
organizes it to be stored efficiently in long-term memory,
and retrieved when required. Although the human brain
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theoretically has unlimited capacity, working memory is
able to process only a limited amount of information
simultaneously9–11. Cognitive load is a contemporary sci-
entific term that encapsulates a wide variety of nomen-
clatures used to describe the phenomenon of working
memory use: cognitive workload, mental strain and men-
tal effort. Cognitive load theory assumes that as surgeons
engage in intraoperative tasks a certain level of load com-
mensurate with required attention is imposed on working
memory. A hallmark of surgical expertise is the ability to
balance operative task demands against the available cog-
nitive resources12. However, surgeons occasionally expe-
rience a state of cognitive overload; previous research has
shown that this impairs performance during specific tasks,
especially those involving complex and/or non-routine
operative situations such as emergencies and unexpected
events13–15.

Measurement of cognitive load is also important for
surgical education. More experienced surgeons and senior
residents can process larger amounts of information con-
currently than novices. Even when residents reach the
plateau of the learning curve, operating similarly to estab-
lished surgeons in terms of motion economy, task length,
error rate and non-technical skills, they require a higher
cognitive load to execute the same tasks13,16,17. Continued
practice may enhance automaticity, and by using fewer
cognitive resources, surgeons can dedicate sufficient work-
ing memory to deal with high-demand situations that
may occur during surgery. Measuring surgeons’ cognitive
load in addition to the current performance metrics may
be a useful strategy towards supporting and enhancing
surgeons’ cognitive capability.

Despite the large amount of research measuring cogni-
tive load in healthcare and other high-risk industries10,18,
no systematic review has been performed to explore the
existing cognitive load measurement methods in surgery,
and evaluate the quality of evidence. Before systems can be
developed to support cognitive performance in the oper-
ating theatre, an understanding of the range of available
cognitive load assessment tools and evidence for their reli-
ability and validity in surgery are needed.

Methods

The PRISMA guidelines19,20 were used to design the
present study and report the review findings.

Search strategy and data source

A literature search was conducted in December 2016,
using MEDLINE (PubMed), Embase (embase.com), Web

of Science (Core Collection), PsycINFO (EBSCO), ACM
Digital Library (Guide to Computing Literature), IEEE
Xplore (Digital Library), International Prospective Reg-
ister of Systematic Reviews (PROSPERO) and Cochrane
Database of Systematic Reviews (EBSCO) databases. All
studies published from inception to November 2016 were
considered and no restriction was imposed regarding lan-
guage or study design. The Medical Subject Headings
(MeSH) terms and text words from the MEDLINE search
strategy (Table S1, supporting information) were adapted to
other databases according to the specific syntax required.
In addition, a hand search of references cited in the
studies and reviews was conducted to ensure literature
saturation.

Selection process and data extraction

Only original articles published in peer-reviewed journals
were considered. Studies were included that used at least
one cognitive load measurement involving senior surgeons,
surgical trainees or medical students performing surgi-
cal procedures. Studies that did not assess cognitive load
related to the intraoperative phase and studies that mea-
sured physiological data without intent to infer relationship
with cognitive load were excluded. Two authors screened
title and abstract for all search results independently, and
identified relevant articles based on the eligibility criteria.
For these articles, the full text was read by both investi-
gators independently, who then decided whether the study
met the inclusion criteria for the systematic review. The
reason for excluding articles after full-text reading was
registered. Using standard forms created in the REDCap
web-based platform21, two authors extracted specific data
from each study included in the systematic review inde-
pendently. In case of disagreement, a third author was
consulted.

Assessment of data quality and synthesis

A qualitative narrative synthesis was performed, structured
around different methods used to assess cognitive load
in surgeons. The methodological quality of all included
studies was assessed independently by two authors using
the standard Medical Education Research Study Quality
Instrument (MERSQI)22. This is a ten-item instrument
that reflects six domains of research quality: study design,
sampling, data type, validity of assessments, data analysis
and outcomes. Each domain scores out of 3 and the max-
imum total MERSQI score is 18. The mean MERSQI
score of both independent assessors for each article that
met inclusion criteria was reported.
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Fig. 1 PRISMA flow diagram for the review

Results

A total of 551 articles were captured in the broad search
strategy, involving eight different databases, and five addi-
tional articles were identified through hand search. From
these, 391 met eligibility criteria during screening and 84
met inclusion criteria after full-text review (Fig. 1). Pooling
of data in a meta-analysis was not carried out owing to the
heterogeneity regarding assessment methods and outcome
measures.

Study design and setting

Fifty studies (60 per cent) were prospective cohorts, 18 (21
per cent) cross-sectional and 16 (19 per cent) RCTs. Most
studies were carried out in simulated settings (59 studies, 70
per cent), 24 (29 per cent) occurred in clinical settings and
only one study (1 per cent)23 assessed surgeons’ cognitive
load in both settings.

Cognitive load assessment tools

The cognitive load measurement methods used in the
reviewed studies are shown in Table 1. Most studies (58, 69

per cent) used only one tool to measure surgeons’ cognitive
load, and the remaining 26 (31 per cent) applied two or
more methods.

Self-report tools
Sixty studies (71 per cent) used subjective (self-report)
measurements of surgeons’ cognitive load. The most
commonly used self-report instrument was the NASA
Task Load Index (NASA-TLX), used in 44 (52 per cent)
of studies. This is a multidimensional assessment tool
that has been used in a wide variety of domains, such
as healthcare, aviation and other high-risk industries.
Self-perceived cognitive load is rated from 0 to 100 points
(with 5-point steps) according to six different subscales:
mental demand, physical demand, temporal demand, per-
formance, effort and frustration. The overall workload is
calculated by weighting, adding or averaging each domain
rating. The NASA-TLX instrument can be adminis-
tered verbally, using a paper and pencil version, or by
a computer-based application. Despite more than 550
studies using NASA-TLX reported in the past 20 years,
few have proposed the workload redline when using
this tool – a point on the scale that indicates when the
workload is considered so high that it may affect human
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Table 1 Different methods used to assess surgeons’ cognitive load

No. of
studies

Self-reported (post hoc)
NASA Task Load Index (NASA-TLX) 44
Surgery Task Load Index (SURG-TLX) 7
Subjective Mental Effort Questionnaire (SMEQ) 2
Multiple Resource Questionnaire (MRQ) 3
Pass scale 2
Borg scale 1
Subjective Workload Assessment Technique (SWAT) 1
Human Factors Evaluation Questionnaire for Computer

Assisted Surgery Systems (HFEQ-CASS)
1

Other non-validated questionnaires 3
Real-time

Physiological parameters
Heart rate variability 11
Eye-tracking (blink rate) 5
Eye-tracking (gaze/fixation) 5
Eye-tracking (pupil dilation) 2
Electroencephalography 4
Functional near-infrared spectroscopy 3
Skin conductance response 3
Electromyography (masseter tone) 2
Heat flux (facial temperature) 1

Secondary task analysis
Reaction time 8
Visual detection rate 4
Task precision 1
Written task 1

performance24. A modified version of NASA-TLX was
developed and validated specifically to capture the surgical
context, the Surgery Task Load Index (SURG-TLX)25–31.
In two of the reviewed studies13,32, the NASA-TLX
questionnaire was used to capture surgeons’ cognitive
load over repeated training sessions, and correlated with
technical performance and errors. In several other studies,
self-report tools were used to compare the cognitive load
imposed by different surgical procedures (open, minimally
invasive and robotic surgery)33–35, as well as different
training strategies (for example simulation, cadaveric
models, lectures, video-based and virtual reality)36–38.

Real-time tools
Thirty-eight studies (45 per cent) used objective and
real-time measurements of surgeons’ cognitive load. The
most commonly used real-time measure was heart rate
variability (HRV) analysis, used in 11 studies (13 per
cent). These tools are often applied in basic and clini-
cal research studies and can be used in an unobtrusive
manner using an inexpensive, wearable device, such as a
Bluetooth® (Kirkland, Washington, USA) chest strap sen-
sor or smart watch. Recent models encompassing neuro-
visceral integration and polyvagal theory have proposed a

unifying framework, suggesting that a common reciprocal
inhibitory cortical–subcortical neural circuit serves as the
structural link between emotional regulation, cognitive
regulation and physiological processes, and that this cir-
cuit can be indexed with HRV39,40. In fact, neural network
studies in humans have reported increased activity in
the prefrontal cortex, linking vagally mediated HRV to
a set of neural structures implicated in working memory
tasks41,42. HRV metrics are based on the analysis of inter-
beat intervals (R-R intervals) and attempts to quantify the
sinoatrial rhythm variability. These variability measures
are divided in two broad categories: time domain and
frequency domain parameters, and, in order to extract
these parameters from R-R intervals, complex time series
statistical methods (such as spectral analysis) are used.
Two HRV parameters, low-frequency (LF) band and
high-frequency (HF) band, are mostly used to reflect the
balance between the sympathetic and parasympathetic
autonomic nervous system. In situations imposing a high
cognitive demand, there is a sympathetic predominance,
increasing the LF/HF ratio. LF/HF ratio has been used as
an objective and real-time measure of cognitive load43–45.

Participants

The number of participants included in the reviewed
studies varied from a minimum of one to a maximum
of 192, totalling 2053 unique participants. Twenty-three
studies (27 per cent) assessed the cognitive load of medical
students, 18 (21 per cent) assessed senior surgeons and
15 (18 per cent) assessed surgical trainees. Twenty-eight
studies (33 per cent) included a combination of these
grades. Only five studies (6 per cent) assessed the cognitive
load of multiple operating theatre team members besides
the surgeon. Team members included registered nurses
(3 studies)30,46,47, anaesthetists (3 studies)26,30,47, regis-
tered nurse anaesthetists (2 studies)30,46, theatre nurses
(2 studies)26,46, scrub nurses (2 studies)30,48, physician
assistants (1 study)48, surgical technicians (2 studies)30,46,
circulating nurses (1 study)30 and perfusionists (1 study)46.

Surgical specialties

In total, 14 surgical specialties/subspecialties were included
(Fig. 2). Seventy-six studies included only one specialty, two
studies included two specialties, and six studies included
three or more specialties (Fig. 3).

Study quality

The MERSQI score varied from a minimum of 6⋅5 to
a maximum of 16⋅4 points, with a mean(s.d.) score of
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11⋅1(2⋅2) points. In general, studies presenting a higher
MERSQI score were those that used an RCT design. The
main characteristics of all included studies, as well as the
MERSQI score for each are shown in Table S2 (supporting
information)15–17,23,25–38,44–109.

Relationship with surgical outcomes

Four studies45,89,94,98 measured actual patient outcomes,
but only one89 of these investigated the relationship
between surgeons’ cognitive load and patient outcomes.
In that study89, involving laparoscopic bariatric surgery,
the authors reported a significant correlation between
NASA-TLX score, duration of the operation and blood
loss in the first 48 h after surgery, but no correlation
between time to drain removal and duration of hospi-
tal stay.

Discussion

This systematic review has attempted to capture all rele-
vant research to date that involved assessment of surgeons’
cognitive load. The review shows that several methods have
been developed in different subspecialties, surgical proce-
dures, techniques, task complexities and training curricula.
Tools could be categorized according to self-assessment
or real-time, depending on the nature of implementation.
Additionally, a subset of studies investigated the relation-
ship between cognitive load and other factors intrinsically
related to surgical care, as well as the impact of cognitive
load on surgical performance.

Self-report tools commonly involve questionnaires
administered after task completion to gather participants’
recall of their cognitive effort during surgery. These sub-
jective measures are easy to administer and can be used to
track change over time, and evaluate interventions. Despite
the wide use of psychometrically robust tools, there are
limitations regarding concurrent validity of self-report
tools110. In addition, these metrics reflect attentional and
perceptual differences among individuals, memory111,
emotions and cognitive bias112, so may not be the best for
capturing fluctuations in surgeons’ intraoperative cognitive
load. For example, it is not known whether NASA-TLX
scores reflect the actual or inferred cognitive load in each
phase of a particular operation, and it is not clear how
long a cognitive overload state must be present in order
to cause impact17. Operations vary in both intensity and
duration of cognitive load43. Interrupting an operation
to administer a mental load questionnaire may interfere
with patient care and the primary surgical task, so is not
feasible. Self-report assessment tools must be administered
after the procedure, which limits their sensitivity.

Real-time assessment methods applied to surgery
included HRV analysis, eye-tracking, electroencephalo-
graphy (EEG) and skin conductance, together classified
as physiological metrics. HRV analysis was the phys-
iological metric used most in the reviewed literature.
This is in contrast to studies of absolute heart rate para-
meters (minimum, maximum and average heart rate),
which are insensitive to fluctuations in cognitive load,
and are influenced by other factors such as physical effort
and psychological stress. Despite the conceptual overlap
between stress and cognitive load, research from medicine
and other fields provides evidence for HRV analysis as a
metric that can assess cognitive workload. HRV analysis
compares favourably with the standard questionnaire used
to assess mental workload (NASA-TLX), and has been
shown to be accurate in detecting isolated increasing
mental demand in laboratory studies41,43,85,113,114.
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Skin conductance response reflects sympathetic activity
and was used in three studies14,53,93, revealing correlation
with perceived mental stress, blink rate, electro-oculogram,
EEG frontalis activity and intraoperative performance.
Limitations of this method are that psychological stress
also activates skin conductance response, so can be a
confounder84. Eye-tracking devices have been used to
assess surgeons’ cognitive states by measuring eye move-
ment and pupil dilation, providing information regarding
gaze patterns, fixations, blink frequency and sympathetic
activity23. This has been associated with the NASA-TLX
score, surgeon experience, surgical modality and task
complexity53,62,72,93,107,109. EEG has also been correlated
with NASA-TLX scores64,65,115, as well as expertise, task
complexity and poor surgical performance. Similarly,
functional near-infrared spectroscopy (fNIRS) has been
implemented to capture activation patterns in specific
brain areas during surgical tasks in three studies52,79,80,
with resulting correlations to surgical expertise and techni-
cal performance. A limitation related to eye-tracking, EEG
and fNIRS tools is that a wide variation of analytical meth-
ods is applied, making it difficult to replicate or integrate
findings across studies. In addition, these are obtrusive and
may interfere with a surgeon’s primary tasks in the oper-
ating room97,100. Finally, a series of secondary task studies
assessed surgeons’ cognitive load associated with training
modality50, surgical technique91, task complexity49, exper-
tise and dexterity metrics15. However, the secondary task
can also be a distraction from the primary task, making
it unreasonable to assess surgeons’ cognitive load in the
operating theatre66,91. This technique should be reserved
for research in simulated settings.

Several limitations should be considered when interpret-
ing the results of this systematic review. First, there is a con-
ceptual overlap in the literature regarding the terms stress,
mental strain, cognitive workload and mental demand, as
reflected in the measurement metrics that have been devel-
oped in the past decade. The same measurement tools
have been used to assess different cognitive states, and
the present review focused on cognitive workload met-
rics. Second, alongside the low methodological quality of
included studies, there was wide variability of application
and analysis of real-time tools, which compromises the
generalizability and reliability of these cognitive load met-
rics. Third, the methodological quality assessed by MER-
SQI score was low for most studies, indicating that several
aspects of research in this field can be improved. Although
many studies used extensively validated tools (face, con-
tent and construct validity), most of them were done in
simulated settings. Few studies assessed predictive validity
using patient outcomes, or RCTs to isolate the cognitive

demand derived by surgical tasks alone. Future studies
should include larger sample sizes, standard measurement
methods and patient-centred outcomes.

In the current era of increased technology and con-
strained work hours for surgical residents116, cognitive load
assessment may be integrated into the competence-based
medical education framework, as it is correlated to surgical
expertise and can capture the impact of new technologies
and training modalities on cognitive load. Future innova-
tions can be predicted by understanding the current state of
the science. For example, objective measures of surgeons’
cognitive load could be integrated into the current concept
of the theatre Black Box117, to enhance performance and
improve safety and surgical care. Despite the wide vari-
ety of available methods to assess cognitive load, there is
no reference value or normal range that can be used as a
threshold to determine when a state of cognitive overload
has been reached. Most studies compared cognitive load
in two or more situations (such as different surgical pro-
cedures, techniques or experience level) and, therefore, are
able to demonstrate only that surgeons display a higher or
lower cognitive load when comparing two or more oper-
ative conditions. To advance, this relatively new research
field must build on the already validated metrics to test
criterion validity. Specifically, as there are now several vali-
dated methods using objective and real-time metrics, future
research should investigate the cognitive load range that is
associated with surgeons’ performance impairment. This
can be characterized as a danger zone118 or redline for
overload, and, if associated with risk of patient harm, may
be used as a reference for the development of mitigation
strategies towards supporting the cognitive performance of
surgeons.
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