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Transcriptional analysis and histochemistry
reveal that hypersensitive cell death and
H-O, have crucial roles in the resistance of
tea plant (Camellia sinensis (L.) O. Kuntze) to
anthracnose

Yuchun Wang ' Xinyuan Hao', Qinhua Lu', Lu Wangw, Wenjun Qian', Nana Li', Changging Ding1,
Xinchao Wang®' and Yajun Yang'

Abstract

Anthracnose causes severe losses of tea production in China. Although genes and biological processes involved in
anthracnose resistance have been reported in other plants, the molecular response to anthracnose in tea plant is
unknown. We used the susceptible tea cultivar Longjing 43 and the resistant cultivar Zhongcha 108 as materials and
compared transcriptome changes in the leaves of both cultivars following Colletotrichum fructicola inoculation. In all,
9015 and 8624 genes were differentially expressed between the resistant and susceptible cultivars and their controls
(0 h), respectively. In both cultivars, the differentially expressed genes (DEGs) were enriched in 215 pathways, including
responses to sugar metabolism, phytohormones, reactive oxygen species (ROS), biotic stimuli and signalling,
transmembrane transporter activity, protease activity and signalling receptor activity, but DEG expression levels were
higher in Zhongcha 108 than in Longjing 43. Moreover, functional enrichment analysis of the DEGs showed that
hydrogen peroxide (H,O,) metabolism, cell death, secondary metabolism, and carbohydrate metabolism are involved
in the defence of Zhongcha 108, and 88 key genes were identified. Protein—protein interaction (PPI) network
demonstrated that putative mitogen-activated protein kinase (MAPK) cascades are activated by resistance (R) genes
and mediate downstream defence responses. Histochemical analysis subsequently validated the strong hypersensitive
response (HR) and H,O, accumulation that occurred around the hyphal infection sites in Zhongcha 108. Overall, our
results indicate that the HR and H,O, are critical mechanisms in tea plant defence against anthracnose and may be
activated by R genes via MAPK cascades.

Introduction
Tea plant (Camellia sinensis (L.) O. Kuntze) is a per-
ennial evergreen woody plant that is widespread
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throughout tropical and subtropical areas, such as China,
India, Kenya and Sri Lanka. As an important commercial
product, the fresh shoots of tea plant provide an wide
variety of nutrition for the human body, including flavo-
noids, alkaloids and theanine. Long-term tea drinking can
protect against different diseases; therefore, tea has
become the most popular healthy, non-alcoholic beverage
in the world"?. However, tea plant is frequently affected
by many kinds of disease. Of these diseases, anthracnose,
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which is caused by Colletotrichum, is one of the most
devastating diseases to tea plant’. Colletotrichum damages
mature tea plant leaves, affecting the growth and yield of
the plant®.

Host plants have evolved various defence mechanisms
during interactions with plant pathogens. The first type
involves pathogen- or microbial-associated molecular
pattern (PAMP or MAPM, respectively)-triggered
immunity (PTI)®. Pattern recognition receptors (PRRs)
located on host plasma membranes recognise PAMPs or
MAMPs, and these complexes induce mitogen-activated
protein kinases (MAPKs) and/or calcium signalling; these
MAPKs and/or calcium signalling trigger a series of
defence responses, which results in the suppression of
pathogen colonisation®. However, for successful invasion,
adapted pathogens have evolved numerous virulence
proteins called effectors to suppress or escape PTI in
order to achieve infection. In turn, hosts also have evolved
genes that encode intracellular nucleotide-binding site
leucine-rich repeat (NBS-LRR) proteins that can specifi-
cally recognise effectors; this recognition activates a sec-
ond host immune response named effector-triggered
immunity (ETI) to restrict pathogen growth”®, Interest-
ingly, ETI is a faster and stronger version of PTI, and
usually regulates the generation of host programmed cell
death (PCD) in addition to the production of reactive
oxygen species (ROS) at the site of pathogen infection®.

Colletotrichum is one of the largest genera of pathogens.
Colletotrichum species are pathogenic to more than 3200
plants and cause large economic losses'’. The hypersen-
sitive response (HR) is a phenomenon of PCD. The HR is
one of the most well-known resistance reactions and is
associated with host resistance to Colletotrichum. For
example, O’Connell et al.'' compared differences in
resistance reactions between incompatible and compa-
tible Arabidopsis plants in response to Colletotrichum
destructivum at different infection phases, the results
demonstrated that the incompatible Arabidopsis plants
produced a rapid HR and deposited both callose and
papillae in the infected epidermal cells following C.
destructivum inoculation. In general, generation of the HR
is associated with the activation of NBS-LRRs by pathogen
effectors, the NBS-LRRs act together with multiple
defence-related genes in plants to defend against Colle-
totrichum®'>'>, The resistance mechanism of tea plants
has been loosely explained based on the results of several
studies. For example, by studying tea plant defence to grey
blight disease caused by Pestalotiopsis species, Senthil-
kumar et al.'*, who used suppressive subtractive hybridi-
sation techniques, suggested that the HR and ROS play
crucial roles in tea plant resistance to P. theae. Moreover,
Palanisamy and Mandal'® reported that the antioxidative
enzymes associated with ROS in resistant tea cultivars
have higher activity than those in susceptible cultivars
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following Pestalotiopsis sp. infection. Another important
leaf disease of tea plant is blister blight, which is caused by
Exobasidium. The results of Jayaswall et al.'® based on
transcriptome analysis indicated that numerous defence-
related genes are upregulated upon induction by Exoba-
sidium vexans in tea plant, and a great number of well-
known NBS-LRR genes are involved in the defence
response. Despite many studies on tea plant resistance to
pathogens, information on the molecular mechanism of
resistance against Colletotrichum in tea plant is poorly
understood.

To elucidate the resistance mechanism of tea plant to
anthracnose, we previously used conidial suspensions of
Colletotrichum to inoculate resistant (cultivar Zhongcha
108, ZC108) and susceptible (cultivar Longjing 43, L]J43)
Ca. sinensis cultivars. ZC108 was produced by irradiating
the offspring of LJ43. We speculated that the resistance
mechanism of tea plant may be associated with NBS-LRR
genes as well as the phenylpropanoid and flavonoid
pathways based on our previous results using microarray
data'”. At the same time, we proved that flavonoid and
caffeine biosynthesis are involved in tea plant defence to
Colletotrichum fructicola infection®. Therefore, in the
present study, to further reveal the resistance mechanism
of tea plants to anthracnose, we comparatively analysed
the changes in transcription levels in the leaves of both
cultivars following C. fructicola inoculation using RNA-
sequencing (RNA-Seq) and revealed a possible resistance
mechanism in the tea plant response against anthracnose.

Materials and Methods
Plant material, fungal isolates and treatment

Tea plants (Camellia sinensis (L.) O. Kuntze) of the
resistant cultivar ZC108 and the susceptible cultivar L]43
as well as isolates of C. fructicola 1.33 were maintained as
described previously®'’. Three-year-old plants were used
as experimental materials. The plants were maintained in
the glasshouse (28°C, 14h light, 80% humidity) and
inoculated with conidial suspensions of C. fructicola (10°
spores/mL). For pathogenicity tests, wound inoculation of
plants was performed in vitro based on the method
described by Wang et al."”. The third leaves of ZC108 and
LJ43 were sampled at 3, 7 and 11 days post inoculation
(dpi). The non-wound inoculation of plants in vivo was
used for RNA-Seq analysis as described by Jayaswall
et al.'®. Leaf tissues (first-fourth leaves) of ZC108 and LJ43
were sampled at 0 h (before inoculation), 24 and 72 h post
inoculation (hpi).

RNA isolation, library construction and sequencing

A total of 18 RNA samples were isolated using the cetyl-
trimethylammonium bromide method described by Hao
et al.'"®. The RNA quality was verified by a 1% denaturing
agarose gel and a NanoDrop 2000 system (Thermo



Wang et al. Horticulture Research (2018)5:18

Scientific, Delaware, USA). Total RNA was used to con-
struct cDNA libraries using a TruSeq RNA Sample Prep
Kit (Illumina, San Diego, USA) according to the manu-
facturer’s protocol. The cDNA library was sequenced on
an Illumina HiSeq™™ 2000 platform, and paired-end reads
in 150 bp length were yielded.

Data analysis

The detailed processes of de novo assembly, functional
annotation and differentially expressed gene (DEG)
identification were performed in accordance with the
methods of Hao et al.'®. Briefly, de novo assembly was
performed using the Trinity (v2.2.0) programme'’. By
BlastX analysis (Basic Local Alignment Tool (BLAST)
2.2.30+) with the non-redundant (NR) database and
TAIR database (Athaliana_167_TAIR10.protein.fa and
Athaliana_167_TAIR10. annotation_info.txt)  (http://
www.arabidopsis.org/), the best hits (with a significant
E-value of <le ®) were assigned to the assembled tran-
scripts of tea plant. RSEM v1.2.11 programme was used to
analyse the RNA-Seq data for alignment and expression
calculation®. The expression patterns and posterior
probability of differential expression ‘posterior probability
of differential expression’ (PPDE) values of each gene/
contig were estimated by EBSeq v1.1.5 **, and the DEGs
were identified with PPDE = 1. The RNA-Seq raw data
have been deposited in the NCBI Sequencing Read
Archive database and can be accessed with the following

accession numbers: SRR5986350; SRR5986349;
SRR5986352; SRR5986351; SRR5986337; SRR5986353;
SRR5986348; SRR5986347; SRR5986346; SRR5986345;
SRR5986343; SRR5986339; SRR5986340; SRR5986338;
SRR5986342; SRR5986344; SRR5986354; and

SRR5986341. A Venn diagram was constructed using
software that is available online (http://bioinformatics.psb.
ugent.be/webtools/Venn/). Gene Ontology (GO) term
enrichment was analysed by Gene Ontology Enrichment
Analysis Software Toolkit (GOEAST), and statistical
enrichment was considered when P <0.05°%. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis
was performed by the Database for Annotation, Visuali-
sation and Integrated Discovery™’. The short time-series
expression miner software (STEM) software was used for
analysing the different patterns of the shared DEG
expression in both the resistant and susceptible tea plant
cultivars®*, Besides, the protein—protein interaction (PPI)
network was constructed based on the data produced by
the Search Tool for the Retrieval of Interacting Genes
database (http://string-db.org/) and visualised using
Cytoscape software (version 3.5.1)*.

Microscopic observations
The leaves were collected at 12, 24, 48, 72 and 96 hpi
and were cut into 0.5 cm segments, which were then used
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for observation of hypersensitive cell death and hydrogen
peroxide (H,O,) accumulation. Trypan blue (Sangon
Biotech Company, Shanghai, China) was used for the
detection of hypersensitive cell death, as described by
Faoro et al.”. The segments were boiled for 5min in 1
mg/mL trypan blue solution (phenol:lactic acid:glycerol:
distilled water = 1:1:1:1), after which the tissues were
decolourized by chloral hydrate (Sangon Biotech Com-
pany, Shanghai, China). Diaminobenzidine (DAB) (San-
gon Biotech Company, Shanghai, China) was used to
visualise H,O, accumulation in accordance with the
method of Hao et al.””. The segments were infiltrated with
1 mg/mL DAB solution (pH =3.8) and were vacuum-
infiltrated for 10 min. After 12h, the segments were
cleared in saturated chloral hydrate and then discoloured
in boiling 95% ethanol. Above treated samples were
mounted on glass slides in 50% glycerol, and were
observed under a Nikon 80i microscope (Japan).

Gene expression validation by quantitative real-time
PCR (qRT-PCR)

For qRT-PCR, 1 ug of total RNA used in the previous
RNA-Seq library construction was used for cDNA
synthesis. A PrimeScript RT enzyme with a gDNA eraser
(Takara, Japan) was used for cDNA synthesis. qRT-PCR
was performed on an Applied Biosystems 7500 Sequence
Detection System using SYBR Premix Ex Taq™ II (Takara,
Japan). The primers in this step are listed in Supple-
mentary Table S1. The polypyrimidine tract-binding
protein (CsPTBI) gene was used as an internal con-
trol*®. The relative expression levels were calculated using
the 274 method?’.

Results
Pathogenicity tests

The resistant cultivar ZC108 is significantly more
resistant to anthracnose in the field than is the susceptible
cultivar LJ43 (Fig. la). To confirm these results, we
inoculated the wounded mature leaves of ZC108 and LJ43
in vitro with conidial suspensions of C. fructicola (10°
spores/mL). Pathogenicity tests showed that LJ43
leaves displayed the typical brown lesions of anthracnose
disease around wounded areas during pathogen infection
(3, 7 and 11 dpi). However, the ZC108 leaves did not
exhibit clear disease symptoms during inoculation
(Fig. 1b). The in vitro results were consistent with the field
results.

Sequencing, assembly and DEG identification

In total, 878273717 raw data reads were generated
from 18 samples. After the raw read sequences were fil-
tered and passed through quality control, 851 249 406
clean data were obtained (Supplementary Table S2).
Based on the high-quality clean data, a total of 864 790
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Fig. 1 Altered disease resistance of resistant (ZC108) and susceptible (LJ43) tea plant leaves to anthracnose. a The images were taken from
the same areas under natural conditions; b differential disease resistance of LJ43 and ZC108 leaves to C. fructicola infection in vitro

transcripts were assembled across all 18 samples. After
their de novo assembly by the Trinity (version 2.2.0)
pipeline, the transcripts had an average length of 611 bp
and an N50 of 788 (Supplementary Table S3). A total of
497 332 unigenes were generated, of which 234496 and
134208 were annotated by BLAST analysis using the NR
database and The Arabidopsis Information Resource
(TAIR10) according to significant hits (E-value < le™®),
respectively (Supplementary Table S3). All unigenes were
grouped into 203 expression patterns (Supplementary
Table S4). Total of 49 784 and 49 661 DEGs were detected
in the resistant and susceptible cultivars, respectively,
following the elimination of genes that were not differ-
entially expressed (Supplementary Table S4). In our study,
the significant DEGs annotated by TAIR10 (E-value <
le °) were used to further analyse their function in both
cultivars in response to C. fructicola. Total of 9015 and
8624 DEGs were identified in the inoculated leaves of
ZC108 and LJ43, respectively (PPDE = 1; Supplementary
Fig. S1). Compared with the unigene transcription at 0 h
(control), at 24 hpi, 4581 DEGs were upregulated and
4254 were downregulated in ZC108; however, 4825 DEGs
were upregulated and 3590 were downregulated in LJ43;
at 72 hpi, the number of upregulated DEGs reached 5945
in ZC108, and 3058 DEGs were downregulated; in LJ43,
4554 upregulated and 4051 downregulated DEGs were
identified (Supplementary Fig. S1). To identify changes in
the resistance mechanism of Ca. sinensis during the C.
Sfructicola infection progress, the DEGs of ZC108 and LJ43
annotated by the Arabidopsis database were used for the

further analysis. Relevant information on the DEGs is
listed in Supplementary Table S5.

Investigation of DEGs and pathways involved in both
resistance and susceptible cultivars

To identify the resistance mechanisms in response to
anthracnose in both the resistant and susceptible tea
cultivars, all the DEGs were assessed in the two cultivars
at 24 and 72 hpi. The Venn diagram illustrated that the
3250 up- and 2024 downregulated DEGs in both ZC108
and LJ43 leaves are involved in the response to C. fruc-
ticola during the infection progress (Fig. 2a). Based on the
GO analysis, these DEGs were enriched in 216 terms,
including 176 biological process (the upregulated DEGs
involved in 111 pathways and downregulated DEGs in 102
pathways), 8 cellular component (the upregulated
DEGs involved in 4 pathways and downregulated
DEGs in 8 pathways) and 32 molecular function (the
upregulated DEGs involved in 25 pathways and down-
regulated DEGs in 16 pathways); among them, the
upregulated DEGs were mainly enriched in the
functional pathway that were mostly associated with
disease resistance, such as the response to sugar
metabolism (sucrose, disaccharides, hexose, mono-
saccharides, fructose and mannitol), phytohormones
(ethylene, auxin and cytokinin), ROS, biotic stimulus and
signalling, transmembrane transporter activity, protease
activity and signalling receptor activity (Fig. 2b, the
complete results of the GO enrichment are listed in
Supplementary Fig. S2). Using the STEM, the 3250 up-
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and 2024 downregulated shared DEGs were clustered into
3 profiles (Fig. 2c). Each profile represents a group of
genes that exhibit similar expression trends. For the
upregulated DEGs, profile 1 had the most genes (1877),
followed by profiles 2 (1238) and 3 (135) in the resistant
cultivar ZC108; in contrast, the most genes in the sus-
ceptible cultivar LJ43 were classified into profile 3 (2409),
followed by profiles 1 (807) and 2 (34). More genes whose
expression continuously increased (profiles 1 and 2) were
identified in ZC108 (3115) than in LJ43 (841). For the
downregulated DEGs, profile 3 had the most genes (1243),
followed by profiles 2 (712) and 1 (69) in the ZC108;
correspondingly, the most genes were enriched in profile
2 (1441) in the LJ43, and the profile 3 was least enriched
in the number of genes (206). In addition, 35 up- and 25
downregulated DEGs associated with disease resistance
were observed during the infection process; the fold
changes of these genes were markedly greater in ZC108
than in LJ43 (Supplementary Table S6). Together, various
types of defence in both the resistant and susceptible tea
plant cultivars were involved in the response to

anthracnose, but the effectiveness of the expression of the
shared genes in the resistant cultivar was better than that
in the susceptible cultivar.

Identification of specific pathways in resistant cultivars
The Venn diagram of the up- and downregulated DEG
data of both cultivars shows that 584 and 828 upregulated
DEGs as well as 1235 and 571 downregulated DEGs were
specifically expressed at 24hpi in ZC108 and LJ43,
respectively (Fig. 3a). More specific upregulated DEGs
were identified in ZC108 (2235 DEGs) than in L]J43 (844
DEGs) at 72 hpi, while the number of specific down-
regulated DEGs decreased in the ZC108 (800) dramati-
cally, reversely increased in the LJ43 (1793; Fig. 3b). The
GO analysis indicated that these DEGs were enriched in
multiple pathways associated with disease resistance. The
number of DEGs clearly changed during the infection
process (P <0.05; Supplementary Fig. S3). In particular,
DEGs were enriched in ROS (H,O, metabolic process,
organic hydroxyl compound catabolic process and ROS
metabolic process), cell death (host PCD and cell death),
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cytoskeleton (cytoskeleton organisation, actin filament-
based process and microtubule-based process), secondary
metabolic process, regulation of biological process (reg-
ulation of catabolic process, regulation of cellular process,
regulation of cellular component organization, negative
regulation of biological process, cellular response to sti-
mulus and cellular component organization) and protease
activity (protein kinase activity, protein serine/threonine
kinase activity, cation transmembrane transporter activity
and peroxidase activity) in ZC108, and the number of
DEGs significantly increased during C. fructicola infec-
tion. In contrast, these DEGs were not enriched in the
susceptible cultivar, and the number of DEGs decreased
(Fig. 3c). Taken together, the results revealed that cell
death and ROS play important roles in tea plant defence
to anthracnose.

Specific DEGs identified at different times after inoculation
in resistant cultivars

The data in Fig. 2a demonstrated that the 3007 DEGs
(1751 upregulated and 1256 downregulated) and the 2146
DEGs (960 upregulated and 1186 downregulated)
specific to the resistant and the susceptible Ca. sinensis
cultivar were induced by the C. fructicola infection

process, respectively. To identify the function of these
DEGs, the KEGG analysis was used. In the susceptible Ca.
sinensis cultivar, 2146 DEGs were only enriched in 8
pathways; comparatively, 3007 DEGs in the resistant
cultivar were enriched in 23 pathways, of which flavonoid
biosynthesis and phenylalanine metabolism were
markedly enriched (P<0.01 and fold enrichment < 0.4;
Fig. 4a), suggesting that these two pathways play impor-
tant roles in tea plant defence against anthracnose.
Among the 3007 DEGs, 88 key genes associated with
disease resistance were identified, including genes
involved with pathogen receptors (23); peroxidase (4);
signalling transduction, including Ca®" signalling (7) and
MAPK signalling systems (2); sugar metabolism (6); sec-
ondary metabolites (2); fatty acids (8); glutathione (3);
transcription factors (TFs) (19); cell death (3); wall-
associated kinases (2); protein kinases (1); and cyto-
chrome P450 (3), as well as other defence function genes
(5). The expression of all these genes were significantly
changed in ZC108, but no change or opposite expression
patterns were observed in LJ43 during C. fructicola
infection (Fig. 4b). Information of the 88 key genes
associated with disease resistance were listed in Supple-
mentary Table S7.
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Regulatory network analysis of selected genes involved in
the resistance response

To explore the possible signal pathway in tea plant
defence to C. fructicola, the putative 88 key DEGs specific
to the resistant cultivar (ZC108) and 60 shared DEGs
were used to build a PPI network with Arabidopsis. A
total of 126 unique TAIR IDs from the putative 148 genes
were identified, and 76 of these TAIR IDs directly inter-
acted with each other. The network analysis was used for
treating the network as directed; the average number of
direct neighbours in the network for each gene was 4.974.
In this network, MAPKs; Ca’" signalling; TFs; and
pathogen receptors (resistance genes, R genes), likely
RLKs, RLPs, cysteine-rich RLKs and NBS-LRRs, were
significantly correlated. Seven hub nodes (MAPK) were
involved in tea plant defence against C. fructicola, which
suggests that the MAPK signalling pathway is the crucial
signal transduction pathway; R genes were the major
pathogen receptors to C. fructicola stimulation, as 18
nodes interacted with major signal pathway and defence
genes (Fig. 5).

HR and H,0, accumulation observation in inoculated
leaves

To confirm whether the HR and H,O, are involved in
tea plant defence to C. fructicola, the leaves of ZC108 and

LJ43 were inoculated with conidial suspensions and
then stained with trypan blue and DAB solution,
respectively. As shown in Fig. 6a, ZC108 leaves exhibited
clear HR generation during C. fructicola infection,
whereas LJ43 leaves did not. Also, the ZC108 leaves
exhibited thickening of the cell walls and epidermal
cell necrosis at 24hpi; these symptoms gradually
increased as infection time increased (72 and 96 hpi),
and mesophyll cells became necrotic. In contrast, meso-
phyll cell necrosis was observed only in LJ43 leaves at 72
and 96 hpi, but the epidermal cells were not necrotic.
These results suggest that hyphae successfully infected
LJ43 leaves in vivo but did not elicit a HR. Therefore, the
HR is associated with Ca. sinensis resistance to C.
fructicola.

Microscopic analysis indicated that brown precipitate
occurred more on the ZC108 leaves than on the LJ43
leaves. The epidermal cells of ZC108 leaves exhibited
H,0, accumulation and cell wall thickening, but H,O,
accumulation was observed only in the mesophyll
cells of LJ43 (Fig. 6b). Together, these results illustrated
that the HR and H,O, accumulation are involved
in the resistance of tea plant against C. fructicola infec-
tion, and the structure of the cell wall in tea plant cells
could play an important role in the defence against the
pathogen.
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Fig. 5 Interaction analysis of putative DEGs that are associated with disease resistance and are involved in Ca. sinensis defence to C.
fructicola. The analysis was generated with a PPI network of Arabidopsis thaliana

Validation of differential expression data

To validate the RNA-Seq results, eight DEGs that were
randomly selected from RNA-Seq data were analysed
using qRT-PCR. The expression results showed that the
expression patterns were similar between the qRT-PCR
and RNA-Seq data at different times post inoculation,
suggesting reliable expression data by RNA-Seq (Supple-
mentary Fig. S4).

Discussion

Anthracnose causes severe damage to tea production.
However, little is known about the molecular mechanisms
of tea plant against Colletotrichum. In this study, we used
RNA-Seq to analyse the upregulated DEGs in a resistant

tea plant cultivar during the different stages of the
C. fructicola infection process. The experimental results
revealed that the HR and H,O, play crucial roles in dis-
ease resistance; these defence responses might be medi-
ated by multiple R genes, Ca®" signalling and MAPK
signalling; at the same time, sugar metabolism and sec-
ondary metabolites are also involved in tea plant defence
to anthracnose.

R genes specifically recognise pathogenic secretions

At the initial stage of infection, Colletotrichum
species secrete various virulence factors into host cells to
facilitate successful invasion. With respect to the plant
response, R genes are responsible for specifically
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recognising pathogenic secretions, and these complexes
trigger the plant immune system'>***"32 In our study, 23
R genes (7 NBS-LRRs and 16 PRRs) specific to the resis-
tant tea plant as well as 15 genes shared between the
resistant and susceptible cultivars were identified, and the
expression of these genes was significantly induced by C.
fructicola (Supplementary Table S6, S7 and Fig. 4b).
Jayaswall et al.'® reported that 25 NBS-LRRs are also
involved in tea plant defence against E. vexans using
RNA-Seq. These findings suggest that multiple R genes
are involved in tea plant defence. In general, pathogen
effectors can disturb or inhibit PAMP-PRR complex-
activated defence signalling networks for successful
infection®*~°, and NBS-LRRs can sequester effectors and
reactivate the plant immune system®”*®, Interestingly, we
observed that these 23 R genes were significantly
expressed in the resistant tea plant but were not expressed
in the susceptible cultivar. Therefore, we hypothesised
that Colletotrichum effectors may inhibit the PAMP-PRR
complexes in the susceptible cultivar, resulting in the
successful invasion. On the other hand, seven NBS-LRR
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genes may specifically recognise the related effectors in
the resistant cultivar and activate downstream signalling
to reactivate the innate immunity to restrict Colleto-
trichum infection.

MAPK, Ca®" signalling pathways are meditated by R gene
and triggers PCD

MAPK cascades, which consist of MAPKKK, MAPKK
and MAPK, are among the most important signalling
pathways and are activated by R genes®. In our study, we
obtained seven MAPK genes that were significantly
induced by C. fructicola, and the PPI network showed that
these candidate MAPK and R genes can directly interact
with each other; meanwhile, seven Ca®>" signalling-related
genes that were upreregulated and associated with plant
defence were identified*’, but only four of these genes
interacted with R genes and other defence-related genes
in the PPI network (Supplementary Table S7, and Figs. 4b
and 5). These results demonstrated that the MAPK and
Ca®" signalling may be mediated by R genes following
Colletotrichum infection, and MAPK cascades constitute
the main defence signalling pathway. In addition, the
expression of MAPKS was significantly upregulated in the
resistant tea plant cultivar following C. fructicola infection
but was downregulated in the susceptible cultivar
(Fig. 4b). Interestingly, the proteome data of Li et al.*!
indicated that the expression of MAPKS5 is downregulated
in susceptible wheat leaves after Blumeria graminis f. sp.
tritic infection. These results suggest that the specific
upregulated expression of MAPK5 may play an
important role in tea plant defence against C. fructicola. In
addition, MAPK phosphatase 2 (MKP2) can regulate
MAPK signalling and cell death to enhance
Arabidopsis defence against biotrophic and necrotrophic
pathogens by regulating MAPK3 and MAPK6*>*, We
observed that MKP2 and MAPK3 expression also
clearly increased in resistant tea plant cultivars after
C. fructicola infection. On the other hand, only one
unigene of MAPK6 was identified, and its expression
was lower. Moreover, the results of the GO analysis
demonstrated that PCD was also a defensive pathway that
contained enriched DEGs in the resistant cultivar
(Fig. 3c), and microscopic observations also showed that
the HR significantly accumulated around the C. fructicola
hyphal infection site in the resistant tea plant cultivar
(Fig. 6). These results were similar to those of Vilela
et al*®. Furthermore, we observed the upregulated
expression of three genes associated with PCD in the
resistant tea plant: two Development and Cell Deaths and
one Long Chain Base Biosynthesis Protein 1 (Fig. 4b)***.
We therefore speculated that MKP2 may regulate MAPK3
and MAPKS, and positively activate the three genes
associated with PCD in tea plant in defence against C.
fructicola.
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ROS bursts regulate multiple defence responses

In general, ROS bursts constitute one of the earliest plant
responses to pathogen invasion. As a signalling molecule,
ROS can regulate PCD in plants during pathogen infection
and can mutually regulate MAPK signalling®®>***’. Sen-
thilkumar et al."* reported that the HR and ROS bursts are
involved in tea plant defence against P. theae. In our study,
we observed that DEGs were enriched in the H,O, cata-
bolic process (Fig. 3c), and the histochemistry results
indicated that H,O, levels are significantly higher in the
resistant cultivar than in the susceptible following C.
fructicola infection (Fig. 6b). These results showed that
H,O, plays an important role in tea plant defence against
multiple diseases, including anthracnose, and H,O, pro-
duction may be regulated by MAPK signalling. Li et al.*®
recently reported that a C2H2-type TF can affect H,O,
levels by suppressing peroxidase to enhance the broad-
spectrum blast resistance of rice. We discovered that per-
oxidase 2 (PA2) (TR123656|c4_g4), which is clearly
induced by C. coccodes in Capsicum annuum’®, is enriched
in H,O, catabolic processes and that the expression of this
gene is distinctly upregulated in the susceptible tea plant
cultivar but not in the resistant cultivar (Fig. 4b)*°. Hence,
we suggested that PA2 may be a negative regulator of H,O,
production and that PA2 is suppressed by an unknown TF
to increase H,O, accumulation in the resistant tea plant; in
turn, this increased H,O, accumulation limits Colleto-
trichum infection. ROS metabolism, which is localised in
the peroxisome, is usually controlled by the protein peroxin
1la (PEX1la) under stress conditions®’. Notably, we
observed that PEX1la was distinctly upregulated in the
resistant tea plant during C. fructicola infection and may
also be associated with H,O, production. In addition,
thickening of cell walls, which constitute an important of
physical barrier to invading pathogens, is induced by H,O,
generation and is associated with wall-associated kinase
3°%°3,In the present study, the cell walls were significantly
reinforced at the penetration sites of C. fructicola hyphae,
and this reinforcement was accompanied by H,O, accu-
mulation in both epidermal and mesophyll cells. At the
same time, one wall-associated kinase 3, a cell signalling
receptor, was upregulated in the resistant cultivar; on the
other hand, H,O, was generated only in mesophyll cells in
the susceptible cultivar. These results suggested that H,O,
may regulate cell wall strengthening and activate signalling
to resist C. fructicola attack. Overall, we suggested that
H,O, plays a significant role in tea plant defence to C.
fructicola, H,O, generation may be directed by PEX11a
under pathogen stress and mediated by MAPK cascades,
and PA2 may be inhibited by other genes to maintain
higher levels of HyO, in tea plant to defend against C.
fructicola. Therefore, the function of ROS during the
interaction between tea plant and Colletotrichum needs
further clarification.
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Multiple metabolic pathways are involved in disease
resistance

During plant interactions with pathogens, carbohydrate
metabolism increases in the host not only to supply
massive energy to defence responses but also to regulate
the expression of resistance-related genes”*. More DEGs
were enriched in carbohydrate metabolism in the resistant
tea plant cultivar than in the susceptible tea plant cultivar
following C. fructicola infection (Figs. 2b and 3c), and the
expression of six specific genes associated with carbohy-
drate metabolism was significantly upregulated (Fig. 4b).
Among these genes, 6-phosphogluconate dehydrogenase,
which encodes a protein positively induced by
powdery mildew in wheat leaves, has been reported to
activate  host  defences*’, and  three  UDP-
glycosyltransferase genes that are closely related to the
mechanism of galloylated catechins and flavonol 3-O-
guycosides in tea were induced®®. We previously
demonstrated that the content of (-)-epigallocatechin-3-
gallate and caffeine rapidly accumulated after C. fructicola
infection; at the same time, the expression levels of key
genes associated with flavonoids and the caffeine meta-
bolism pathway were clearly upregulated, including the
phenylalanine ammonia-lyase (PAL) and S-adeno-
sylmethionine synthetase (SAMS)*. In the present study,
DEGs involved with phenylpropanoid and its
downstream metabolism of flavonoids were enriched in
the resistant tea plant, and the expression levels of PAL
(TR106249|c2_g2) and SAMS (TR316985|c0_gl) also
increased by C. fructicola (Fig. 4b). These results were
similar to those of Figueiredo et al.>®, in which SAMS and
PAL were involved in grapevine species defence against
multiple pathogen attack. In general, sugars, which are
sources of carbon, are mainly acquired by pathogens from
their hosts®”. Based on their biosynthesis and transfer-
ence, fatty acids have recently been reported to be
important organic nutrients between microbes and hosts;
RAM2 and ATP-binding cassette transporters play critical
roles in these processes®®. Our results showed that eight
genes associated with the fatty acid metabolism were
detected, and the expression of these genes was higher in
the resistant tea plant than in the susceptible tea plant
cultivar. In contrast, these genes were either down-
regulated or not regulated in the susceptible cultivar
(Fig. 4b). Despite these results being similar to those of
Jiang et al.”®, the role of fatty acids in the interaction
between tea plant and Colletotrichum needs to be further
explained >,

Plant hormones associated with tea plant defence to
Colletotrichum

In addition, plant hormones play important roles in
plant defence against pathogens. In our study, the shared
genes in the two cultivars were enriched in various
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phytohormone-related pathways, including responses to
ethylene, cytokinin and auxin (Fig. 2b). Meanwhile, six
related genes (ethylene response factor 1, like AUXIN
RESISTANT 2, one auxin-responsive protein family
gene, two gibberellin-regulated family genes, and one
SAUR-like auxin-responsive protein family gene) were
induced by C. fructicola (Supplementary Table S6). At
the same time, the expression levels of six key genes that
are specific to the resistant tea plant increased,
including two gibberellin-regulated family gene, one auxin
efflux carrier family gene, two SAUR-like auxin-respon-
sive protein family gene and one ethylene-responsive
element binding protein-coding gene (Supplementary
Table S7), suggesting that these genes are involved in the
regulation of plant hormones to activate plant defence
responses®”°’.

Conclusion

Tea plant has a complex defence network to defend
against various pathogens. We constructed a possible
model of Ca. sinensis defence against anthracnose based
on the results of our study (Fig. 7). During the early stage
of infection, Colletotrichum appressoria successfully
penetrate the cells of tea plant. The formed primary
hyphae then secrete and transport diverse virulence fac-
tors into the cell, and the pathogen receptors (RLKs, RLPs
and NBS-LRRs) specifically recognise pathogenic secre-
tions in the host. The activated pathogen receptors sub-
sequently trigger the defence signalling, which includes
MAPK and Ca®" signalling pathways. At the same time,
the ROS (H,O,) production is regulated by these two
signalling pathways. Activated R genes also regulate the
thickening of cell wall tissue to defend against hyphal
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growth. The activated signalling pathways trigger the
expression of genes associated with the interdependency
metabolism pathway, including those involved with sugar,
phenylpropanoid, flavonoids and lipid metabolisms; these
metabolites, most likely EGCG, suppress the invading
pathogen. The activated R genes also trigger a sustained
induction of both MAPK and Ca®" signalling as well as
the continuous production of H,O, in the peroxisome.
This signalling and production regulate HR-associated
cell death and H,O, accumulation around the hyphal
infection sites. Furthermore, the functional elimination of
peroxidase was suppressed by an unknown factor,
extending the H,O, inhibition (Fig. 7).
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