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Methane, the simplest organic compound, was deemed to have little physiological action for decades. However, recently, many
basic studies have discovered that methane has several important biological effects that can protect cells and organs from
inflammation, oxidant, and apoptosis. Heretofore, there are two delivery methods that have been applied to researches and have
been proved to be feasible, including the inhalation of methane gas and injection with the methane-rich saline. This review
studies on the clinical development of methane and discusses about the mechanism behind these protective effects. As a new
field in gas medicine, this study also comes up with some problems and prospects on methane and further studies.

1. Introduction

Methane, the simplest alkane, is the most plentiful organics
on earth and has been studied for hundreds of years since
its discovery in 1778. Being the main component of natural
gas, methane is used as gas fuel. In past decades, it has been
proven to be related to global warming since it contributes
20% of the greenhouse gases in the atmosphere and the con-
centration has raised rapidly [1]. In the clinic area, it was
deemed antecedently that human bodies could not use
methane. The endogenous methane is mainly excreted as
flatus and it can also enter into the blood circulation
and be exhaled by the respiratory system [2]. However,
scientists recently reveal the biological effect of methane,
especially the properties of anti-inflammatory, antioxidant,
antiapoptosis and other clinic effects of methane, remains
to be discovered.

There is about 200ml gas in human enteric canal which is
produced from various processes including air-swallowing,
diffusion from blood, and biochemical reactions caused
by bacteria in the enteric canal [3]. The proportion of
healthy adult who can be detected with methane is more
than 30%–50% worldwide [2, 4]. Anaerobic flora converts
undigested carbohydrates into different organic compound

including methane gas during fermentation [5]. To be more
precise, methane is produced by a unique metabolic process,
in which carbon dioxide is converted into methane with the
hydrogen from anaerobic bacterial fermentation. Methano-
brevibacter smithii and Methanospaera stadmagnae are the
main methanogen in the intestinal tract, but in the oral
cavity, Methannobrevibacter oralis is the chief methanogen
and can lead to dental disease [6, 7].

2. Delivery of Methane

2.1. Inhalation. It is generally acknowledged that methane is
a simple nontoxic asphyxiant, which means it is inherently
nontoxic. Methane can be delivered via inhalation through
many methods, including ventilator and facemask. As a flam-
mable and explosive gas, the safe concentration of methane
in pure oxygen is 4.9%. Nevertheless, methane should be
used and stored with reliable tools and safety must always
be the first concern. According to the study of Boros et al.,
the gas mixture of oxygen and methane (21% O2+ 2.5%
CH4) is safe for rodents [8].

2.2. Injection of Methane-Rich Saline. Although inhalation is
efficient and convenient, methane will bring the safety
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concern of explosion. Injection may make the delivery more
safe and precise. A flexible way to produce a supersaturated
methane-rich saline is set up through dissolving methane
into sterilizing saline for 6 hours under the pressure of
0.4MPa [9]. As methane gas is similar to hydrogen gas in
chemical aspect, some researchers [10] used the same
method to measure the concentration of methane as Ohsawa
et al. described in hydrogen [11].

3. The Biological Effects of Methane

3.1. Liver

3.1.1. Acute Liver Failure (ALF). Acute liver failure (ALF) is
the clinical manifestation of sudden and severe hepatic injury
[12]. In the United States, over 6% of liver-related mortality
was caused by ALF in 2005 [13]. Necrosis and apoptosis of
hepatocytes induced by infection, chemical, or biological
toxins are the dominant pathological causes of acute liver
failure [13–15]. In a carbon tetrachloride- (CCl4-) induced
acute liver injury mice model, methane showed a potential
to be a therapeutic agent for ALF. Yao et al. showed that
methane-rich saline could upregulate the expression of IL-
10 by activating the PI3K/AKT/GSK-3β pathway, which
would suppress the NF-κB and MAPK pathways and raise
anti-inflammatory properties [16].

3.1.2. Autoimmune Hepatitis (AIH). Autoimmune hepatitis
(AIH) is a generally progressive chronic inflammation dis-
ease of the liver that occurs when the self-tolerance is broken
down and hepatic cells are attacked by immune system acci-
dentally [17]. The etiological and pathological mechanism of
autoimmune hepatitis still remains unclear despite the
genetic factor and environmental triggers, including infec-
tion, familial inheritance, and gender, are involved in the
progress of the AIH [18]. Methane-rich saline showed kind
of protection to concanavalin A-induced autoimmune hepa-
titis in the study of He et al. [19]. According to the study, the
elevated serum aminotransferase levels in concanavalin A-
induced autoimmune hepatitis mice model were reduced
obviously after methane treatment. Furthermore, methane
treatment reduced the phosphorylated IκB, NF-κB, and
P38 MAPK in the liver, which consequently decreased
the secretion of proinflammatory cytokines and increased
the level of antioxidants.

3.1.3. Hepatic Ischemia/Reperfusion (I/R) Injury. Hepatic
ischemia/reperfusion (I/R) injury is induced by initial
deficiency of blood supply to the liver and succeeding recov-
ery of perfusion and oxygenation [20]. Surgery, transplanta-
tion, and circulation shock can all lead to liver I/R injury
[21–23]. Ye et al. suggested that methane protects the liver
against I/R injury through antiapoptotic, antioxidative, and
anti-inflammatory actions by measuring inflammation
makers, oxidant stress, and tissue injury [24].

3.2. Lung

3.2.1. Acute Lung Injury (ALI). Acute lung injury (ALI) is a
destructive complication of several diseases such as acute

circulatory failure, burn, and infection and is regarded as
the main cause of acute respiratory failure [25]. ALI is clini-
cally characterized by progressive hypoxemia and respiratory
distress syndrome. The hallmark of ALI is injury to pulmo-
nary capillary endothelial cells and alveolar epithelial cells
and the activation of the innate immune, leading to diffuse
edema in pulmonary interstitial and alveolar [26]. Sun et al.
showed that methane-rich saline protected the lipopolysac-
charide- (LPS-) challenged ALI via antioxidative, anti-
inflammatory, and antiapoptotic effects, which had potential
to be a new therapy for the treatment of ALI [27]. According
to their results, it showed that the survival period was pro-
longed significantly after methane-rich saline treatment.
The lung wet-to-dry (W/D) ratio and the number of inflam-
matory factors were reduced, and the levels of caspase-3 and
apoptotic index were decreased either. In addition, methane-
rich saline raised the antioxidants such as superoxide dismut-
ase (SOD) and decreased the level of malondialdehyde
(MDA) significantly, which proved the antioxidant property
of methane.

3.3. Central Nervous System

3.3.1. Spinal Cord Ischemia-Reperfusion (IR) Injury. Spinal
cord ischemia-reperfusion (IR) injury is a destructive
complication of several diseases such as spinal surgical proce-
dures, hypotension, thoracoabdominal aneurysms, and tho-
racic [28]. The succeeding central nervous system injuries,
such as paralysis, are severer health problems that have been
continuously troubling patients [29]. The antioxidant, anti-
inflammatory, and antiapoptotic properties of methane can
also protect patients from spinal cord ischemia-reperfusion
injury. Methane-rich saline (MRS) significantly decreased
the level of inflammatory cytokines and oxidative products
via the increased expression of nuclear factor erythroid 2
p45-related factor 2 (Nrf2) and downstream pathways
related with the expressions of heme oxygenase (HO-1),
SOD, catalase, and glutathione (GSH) at the onset of reperfu-
sion. As a result of all these actions, neuronal apoptosis death
was reduced and neurological function was preserved [10].

3.3.2. Acute Carbon Monoxide (CO) Poisoning-Induced
Injury. CO poison is an important cause of the accidental
death. Methane protects brain from acute CO poisoning-
induced injury with the properties of antioxidant, anti-
inflammatory, and antiapoptotic. A finding suggested that
methane reduced the level of inflammatory cytokines such
as tumor necrosis factor-α (TNF-α) and interleukin1-β
(IL-1β) in the brain but had no effect on interleukin 6
(IL-6) expression. In addition, the oxidative products such
as malondialdehyde (MDA), 3-nitrotyrosine (3-NT), and
8-hydroxydeoxyguanosine (8-OHdG) were reduced after
methane treatment while the amount of SOD in the hip-
pocampus and cortex was decreased, which improved
neuronal injury [30].

3.3.3. Spinal Cord Injury. Spinal cord injury (SCI) and the
subsequent risk of paralysis have been considered as a severe
problem in clinic [31]. The USA statistics showed that the
incidence of SCI reached 54 to 3393 cases/1 million in
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2012, and mortality increased significantly when compared
with that in 1993 [32]. There are various pathological mech-
anisms involve in SCI such as oxidative stress, inflammation
[33], and apoptosis [34]. According to Wang et al. [35],
methane can significantly decrease infarct area by reducing
the pathological factor including oxidative stress, inflamma-
tion, and cell apoptosis following SCI. Additionally, the
microglial activation can be significantly suppressed and hin-
dlimb neurological function was preserved.

3.4. Immune System. The inflammatory disease is character-
ized as a pathological process caused by immune disorder
including the dysfunction or excessive activation of immune
system. Among the inflammatory diseases, sepsis and
autoimmune colitis are regarded as serious problems
clinically. The study of Zhang et al. [36] showed that
methane-rich saline had the protective effect to inhibit some
inflammatory signals caused by LPS in macrophages and
suppress immune response in mice by intensifying IL-10
expression through PI3K/AKT/GSK-3β pathway. In conclu-
sion, methane-rich saline treatment can alleviate endotoxin
shock, bacteria-induced sepsis, and dextran-sulfate-sodium-
induced colitis in mice.

3.5. Eye

3.5.1. Retinal Ischemia/Reperfusion Injury (IRI). Retinal
ischemia/reperfusion injury (IRI) plays an important role
in glaucoma, retinal vascular occlusion, diabetic, and many
other diseases that can cause damage to human vision
[37–39]. It can ultimately lead to blindness through neuronal
damaging [40]. And in the pathological process of retinal IRI,
retinal ganglion cells are the most susceptible and are
regarded as the dominating factor. The study of Liu et al.
[41] has shown that methane treatment was a promising
therapeutic way for retinal IRI. According to their study,
the level of oxidative products was reduced and the antioxi-
dant enzyme was increased in retinas after methane treat-
ment. Meanwhile, methane treatment obviously attenuated
apoptosis in the retina by affecting the expression of the
apoptosis-related gene and the caspase activity was limited
as well. Thus, methane shows a protective role for the retinal
ganglion cell (RCG) loss and dysfunction of vision in terms of
retinal ischemia/reperfusion injury.

3.5.2. Diabetic Retinopathy (DR). Diabetic retinopathy (DR)
is the main microvascular complication of diabetes whose
succeeding problems such as blindness still remains to be
serious problems in developed countries [42]. The inflamma-
tion [43], oxidative stress [44], and apoptosis [45] are
involved in the pathology of diabetic retinopathy. The
expression of TNF-α, IL-1β, glial fibrillary acidic protein
(GFAP), and vascular endothelial growth factor (VEGF) in
the DR retina were ameliorated after methane treatment.
Moreover, the methane treatment upregulated retinal levels
of miR-192-5p which is related to apoptosis and tyrosine
kinase signaling pathway and also upregulated miR-335
which is related to proliferation, oxidative stress, and leuko-
cyte. In terms of regulating miRNA, methane showed the
protective effect on DR [45].

3.6. Motor System. The definition of overexercise is exces-
sively prolonged or intense exercise, and many factors are
associated with overload training including supercompen-
sation and lack of recovery. Overexercise can lead to severe
systemic disorders, such as rhabdomyolysis, acute kidney
function failure, and systemic inflammatory response [46].
A study of Xin et al. showed that the methane-rich saline
can promote the motor ability of rats such as treadmill
running time and ameliorated exercise-related damage in
gastrocnemius. At the meantime, the level of lactate acid
and urea nitrogen in blood was reduced after methane treat-
ment and the level of creatine kinase in plasma was
decreased. Thus, methane may have a protective effect on
the motor system in rats [47].

3.7. Cardiovascular System

3.7.1. Myocardial Infarction (MI). Myocardial infarction
(MI) caused by coronary artery occlusion is the most
common cardiovascular disease and a main cause of death
worldwide [48]. It was found that methane-rich saline
treatment can significantly ameliorate the apoptosis of cardi-
ocytes and inhibit the subsequent myocardial remodeling.
Thus, methane treatment can improve the cardiac function
during the MI. And it is also found that the protective
properties of methane-rich saline may be via its antioxida-
tive, anti-inflammatory, antiapoptotic, and antiremodeling
activities [9].

3.8. Skin

3.8.1. Ischemia/Reperfusion (I/R) Injury-Induced Flap Loss.
Skin flap transfer is a basic plastic surgery method, which is
used widely in trauma surgeries and plastic surgeries. Some
problems remain to be solved by skin flap transfer, and the
most serious problem among them is I/R injury-induced flap
loss [49]. According to previous studies, methane-rich saline
may serve as a novel promising therapeutic agent for improv-
ing skin flap survival through the effects that suppressed
apoptosis after transplantation and attenuate I/R injury. It
was shown that a better blood perfusion with less inflamma-
tory infiltration and cell apoptosis was established in the flaps
after the treatment of methane and thus the survival area was
increased significantly. Moreover, the apoptosis-related
expressions including p-ASK-1, p-JNK, Bax, and caspase-3
activity were reduced by the methane treatment [50].

3.9. Gastrointestinal System

3.9.1. Irritable Bowel Syndrome (IBS). Methane was consid-
ered to be inert in biological field. However, more and more
evidences have shown that methane is involved in many
intestinal diseases and also be regarded as a detection of
intestinal diseases according to the clinical data [51]. Irritable
bowel syndrome (IBS) is a group of symptoms—including
abdominal pain and changes in the pattern of bowel move-
ments without any evidence of underlying damage and it
can occur over years [52]. In different region, morbidity of
IBS varies from 7% to 21% [53]. The cause of IBS still remains
unclear but abnormalities occur in the gut flora, which
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happens after the infection is considered as a pathway of IBS
[54]. Mechanism research has shown that methane takes part
in constriction and velocity of the tract small intestinal and
ileum. Moreover, studies in different animals have shown
that methane can augment intestinal contractile function
and subsequently slow the intestinal transit. Additionally,
study in the guinea pig ileum showed that the peristaltic
velocity was decreased and contraction amplitude was
increased significantly after methane treatment [55–57]. In
this way, researchers believe that methanogen and their
products methane take part in the process of IBS.

3.9.2. Intestinal Ischemia/Reperfusion Injury. The study of
Boros et al. [8] provides evidence that methane inhalation
can decrease the ischemia/reperfusion injury in intestine by
involving in leukocyte activation and having a protective
effect on oxidative and nitrative stress. According to the study,
methane reduced the tissue damage index and the intestinal
pCO2 gap. Moreover, methane treatment reduced the myelo-
peroxidase (MPO) activity and the intestinal oxidant stress
levels. And also in the vitro experiment, the protective proper-
ties of methane were proven. Generally, the study shows that
methane has properties of anti-inflammatory and antioxidant
and has a potential to be a medicine for intestinal I/R injury.

3.9.3. Acute Pancreatitis. Acute pancreatitis (AP) is a sudden
inflammation in the pancreas and pancreatic acinar cell
necrosis following the activation of pancreatin. The mortality
of AP can be high. According to the study of Xie et al. [58],
methane showed a protective property in cerulein-induced
acute pancreatitis model. And the researchers further found
out that the level of inflammation, oxidant, and apoptosis
appeared to be reduced.

4. Discussion

Scientists have already revealed a few biological properties of
methane in inflammation, oxidative stress, and apoptosis.
Through these properties, methane can influence several
pathological processes including I/R injury and sepsis. What
is the exact mechanism underlying the protective properties
of methane? The answer is unclear. So far, different
researchers have come up with different hypotheses. Boros
et al. [8] proposed that methane might accumulate at the
interfaces of cell membranes and change the physicochemi-
cal properties or the situ functionality of proteins embedded
in the environment. Kai et al. [59] assumed the membrane
pathways including G protein, membrane, or receptor-
mediated signaling and acetylcholine-activated ion channel
kinetics may be involved in the mechanism that methane
has shown in the previous studies. Fink [60] came up with
several speculations to explain the biological effects of meth-
ane. In his speculations, cellular receptor, special oxygenase,
and the formation of small amounts of the reactive alcohol,
methanol, and/or changes in the redox milieu of the cell
might be involved in the mechanism of the biological effects
of methane. Since the mechanism of the protective effects is
not clear, we discussed the protective properties of methane
with an analysis of 15 studies (Table 1).

4.1. Anti-Inflammation. Inflammation is characterized by an
increasing production of proinflammatory cytokines,
leukocyte recruitment, and systemic and local regulation of
leukocyte reactions [62]. A suitable balance of the inflamma-
tion process will lead to a defense reaction to the harmful
target whereas the imbalance will lead to damage to the
organism [63].

According to previous studies, inflammatory-related
production during the tissue injury can be suppressed by
methane treatment. Methane treatment influences some
important pathway in activation of proinflammatory cyto-
kines in lymphocytes and then regulates the cytokines. Yao
et al. [16] showed that methane-rich saline may activate the
PI3K-AKT-GSK-3β pathway to induce IL-10 expression
and produce anti-inflammatory effects via the NF-κB and
MAPK pathways. Additionally, Wang et al. [10] indicated
that methane reduced the level of inflammation by increasing
the expression of Nrf2 and its downstream pathways.

4.2. Antioxidant. Oxidative stress is defined by an imbalance
between the generation of free radical agent, like reactive
oxygen species (ROS), and biological defenses that detoxify
the free radical intermediates. The control of ROS produc-
tion and antioxidant defense balance is necessary for normal
cell function since oxidative take part in many pathological
processes including I/R injury [64], cancer [65], and even
neurological diseases [66]. ROS can initiate cell apoptosis or
necrosis and the possible mechanism including DNA dissoci-
ation and lipid oxidation. Methane protects organism from
oxidant in two aspects. On the one hand, it can raise the level
of antioxidant factor such as SOD. On the other hand, meth-
ane can decrease oxidant factors like MDA and 3-NT. More-
over, the antioxidant effect may be related with the regulation
of Nrf2 expression and oxidant-related miRNA like miR-335.

4.3. Antiapoptotic. Apoptosis is a process of programmed cell
death that occurs in multicellular organisms and is important
for homeostasis in multicellular life forms. In physiological
manner, apoptosis diminishes harmed or transformed cells
and needs for controlling of cell numbers, tissue, and organ
morphology. Apoptosis is a highly regulated and controlled
process that confers advantages during an organism’s life-
cycle. Lots of pathways are involved in the process of apopto-
sis, including Bcl-2/Bax and caspase system, and any disorder
regulation of apoptosis often leads to cancer and tissue disor-
ders. Song et al. [50] found that the level of Bcl-2 can be
raised after the methane treatment. Additionally, the decline
of JNK and ASK-1 showed to have the property to raise the
level of Bcl-2 in the I/R mice model. Overall, methane shows
an antiapoptosis effect by decreasing expression levels of
activated ASK-1, JNK, and Bax and the increasing expression
of Bcl-2. Here, we summarized indicators which were used to
identify the properties of methane (Table 2).

4.4. Methane, Hydrogen, and Other Gases. Since Robert
Furchgott, Louis Ignarro, and Ferid Murad shared the noble
prize in medicine for their discoveries concerning “nitric
oxide as a signaling molecule in the cardiovascular system”
in 1998, more and more attention has been paid to the
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Table 1: The studies in this review.

Organs or
systems

Animal models Reference Mechanism

Liver

(1) Carbon tetrachloride-induced
acute liver injury

Yao et al. [16]

MS may activate the PI3K-AKT-GSK-3β pathway to induce IL-10
expression and produce anti-inflammatory effects via the NF-κB

and MAPK pathways
Inflammatory cytokine: IL-6\TNF-α\IL-1β\IFN-γ\ICAM-

1\CXCL1 ↓
IL-10 ↑

Inflammatory signal pathway: NF-κB\p65\ERK\JNK\MAPK\P38
↓

(2) Concanavalin A-induced
autoimmune hepatitis

He et al. [19]

Oxidant: MDA\8-OHdG ↓
Antioxidant: SOD\CAT ↑

Inflammatory cytokine: TNF-α\IFN-γ\IL-6\IL-1β ↓
IL-10 ↑

Inflammatory signal pathway: IκB\NF-κB\P38\MAPK ↓

(3) Hepatic ischemia/reperfusion
injury

Ye et al. [24]

Oxidant: MDA\8-OHdG ↓
Antioxidant: SOD ↑

Inflammatory cytokine: TNF-α\IL-6 ↓
Apoptosis: caspase-3 ↓

Lung
(4) Lipopolysaccharide-induced

acute lung injury
Sun et al. [27]

Oxidant: MDA ↓
Antioxidant: SOD ↑

Inflammatory cytokine: TNF-α\IL-6 ↓
Apoptosis: TUNEL staining cells ↓

Central nervous
system

(5) Spinal cord
ischemia-reperfusion injury

Wang et al.
[35]

MS increases the expression of Nrf2 and downstream HO-1, SOD,
catalase, and GSH, inhibiting the production of inflammatory

cytokine, oxidative products, and glial activation.
Oxidant: MDA\3-NT\GSSG\H2O2 ↓

Antioxidant: HO-1\SOD\catalase\GSH ↑
Inflammatory cytokine: TNF-α\IL-1β\ICAM-1\CXCL1\MPO ↓

Inflammatory signal pathway: NF-κB\p65 ↓
Apoptosis: caspase-9\caspase-3\MMP9 ↓

Nrf2 ↑

(6) Acute carbon monoxide
poisoning injury

Shen et al.
[30]

Oxidant: MDA\3-NT\8-OHdG ↓
Antioxidant: SOD ↑

Inflammatory cytokine: TNF-α\IL-1β ↓
Apoptosis: caspase-9\caspase-3\MMP9 ↓

(7) Spinal cord injury
Wang et al.

[10]

Oxidant: MDA ↓
Antioxidant: SOD ↑

Inflammatory cytokine: TNF-α\IL-6\IL-1β ↓
Apoptosis: TUNEL staining cells\caspase-3 ↓

Immune system

(8) Endotoxin shock
Bacteria-induced sepsis
dextran-sulfate-sodium-
induced colitis in mice

Zhang et al.
[36]

MS limits LPS-induced NF-κB/MAPK signal in macrophages and
suppress immune response in mice by enhancing PI3K/AKT/GSK-

3β-mediated IL-10 expression
Inflammatory cytokine: TNF-α\IL-6\IL-1β ↓

IL-10 ↑

Eye

(9) Retinal ischemia/reperfusion
injury

Liu et al. [41]

Oxidant: MDA\4-HNE\8-OHdG ↓
Antioxidant: SOD\CAT\GPX ↑
Apoptosis-related genes: bcl2 ↑

Bax ↓
Apoptosis: caspase-9\caspase-3\MMP9 ↓

(10) Diabetic retinopathy Wu et al. [61]
Inflammatory cytokine: TNF-α\IL-1β\VEGF\GFAP ↓

Apoptosis-related miRNA: miR-192-5p ↓
Oxidant-related miRNA: miR-335 ↓

Motor system (11) One-time exhaustive exercise Xin et al. [47]

Injury-related biomarker: CK\UN ↓
Antioxidant: T-AOC ↑

Inflammatory cytokine: TNF-α\IL-1β\IL-6 ↓
IL-10 ↑
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biological function of endogenous gases and lots of studies
have confirmed that there are still many gases of important
role in physiology in addition to nitric oxide (NO).

Carbon monoxide (CO) and hydrogen sulfide (H2S), two
small molecules produced by human cells, are considered to
have the similar function with NO in relaxation of vascular
smooth muscle. NO can bind with the iron atom in the

heme-containing protein and then change the protein to cata-
lyze the guanosine triphosphate into the cyclic guanosine
monophosphate which is also called the “second messenger”
[67, 68]. The activation effect of CO is related with large-
conductance calcium-activated potassium. However, the
mechanism behind the activation of H2S is not so clear and
adenosine triphosphate-sensitive potassiumchannel in vascu-
lar smooth muscle cells may be involved in the process [69].

Although NO, CO, and H2S have been regarded as the
“star molecule” and has been studied most commonly, its
chemical property is quite different from methane. Methane
is quite unreactive and needs a critical condition, such as high
temperature or ultraviolet. On the other hand, methane is a
simple nontoxic asphyxiant for its unreactive characteristic
but NO, CO, and H2S have more active property in biological
field; in other words, they can be toxic sometimes.

In many aspects, hydrogen (H2) functions are in similar
ways with methane. As a mild molecule, hydrogen can hardly
disturb the normal reaction in the cell and also have a biolog-
ical advantage by anti-inflammatory, antioxidant, and antia-
poptosis [11, 70–72]. However, as more advanced researches
about hydrogen have been done in past decades, hydrogen
was found with more biological effects than methane and
the mechanism of these effects is clearer than methane. Here,
we list the comparison of methane and hydrogen (Table 3)
and hope that more studies can be taken about methane in
the future. As shown in Table 3, the delivery methods of
hydrogen varied more. And the protective properties of
methane in renal system and metabolic disease need to be
demonstrated in the future. What is more, the mechanism
behind these effects also needs to be clarified in the future.

4.5. Prospects of Methane. The study of biological function of
methane develops rapidly. Methane, the most abundant
organic compound on earth, was ignored in the medical field
for decades. However, it has become a hotspot in therapeutic
gas field. Recently, researchers have discovered some protec-
tive effect of methane and focus on the therapeutic function
in I/R injury and inflammation disorder. Although lots of
work has been done recently, there are still many problems
unsolved. Firstly, the mechanism of several protective effects

Table 1: Continued.

Organs or
systems

Animal models Reference Mechanism

Cardiovascular
system

(12) Myocardial ischemia injury Chen et al. [9]

Oxidant: MDA\8-OHdG ↓
Antioxidant: SOD\GSH ↑

Inflammatory cytokine: TNF-α\IL-1β\MPO ↓
Apoptosis-related pathways: Bcl-2/Bax\ASK-1/JNK

Apoptosis: caspase-9\caspase-3\Bax ↓

Skin
(13) Skin flap ischemia/reperfusion

injury
Song et al.

[50]

Apoptosis-related pathways: Bcl-2/Bax\ASK-1/JNK
Apoptosis: caspase-9\caspase-3\Bax\JNK\ASK-1 ↓

Bcl-2 ↑

Gastrointestinal
system

(14) Intestinal ischemia/reperfusion
injury

Boros et al. [8]
Oxidant: MPO\SOX ↓

NOx ↑

(15) Acute pancreatitis Xie et al. [58]
Inflammatory cytokine: TNF-α\IL-6\IFN-γ\IL-10 ↓

Oxidant: MDA ↓
Antioxidant: SOD ↑

Table 2: The indicators that are used to identify the properties
of methane.

Pathology Makers Trend

Antioxidase
SOD
CAT
GSH

Increase

Oxidative stress

MDA
4-HNE
8-OHdG
MPO
3-NT
DAO

Decline

Inflammation factor

IL-1β
IL-6

ICAM-1
IL-12
TNF-α
IFN-γ
CCL2
CXCL1

Decline

Inflammation signal

MAPK
Lyn-P
JNK
ERK
NF-κB

Decline

Apoptosis

TUNEL
Caspase-3
Caspase-9
Caspase-12

Bcl-2

Decline

Nuclear factor Nrf2 Activation
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is still unclear despite different scholars have made different
hypotheses. More pathways need to be detected. Secondly,
since methane is effective in terms of being against inflamma-
tion, oxidative stress, and apoptosis, will methane become a
potential medicine in cancer and other more diseases?
Thirdly, according to the characteristic that methane is able
to penetrate the cell membrane, can methane act as a signal
molecule such as NO? Additionally, we also need to do a
lot of research to formulate a standard that can provide the
optimum dose, timing, and delivery methods. What is more,
the disadvantage and toxicity of methane should be studied
carefully before application.
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