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Gastric cancer is one of the commonmalignant tumors worldwide. Increasing studies have indicated that circular RNAs (circRNAs)
play critical roles in the cancer progression and have shown great potential as useful markers and therapeutic targets. However, the
precise mechanism and functions of most circRNAs are still unknown in gastric cancer. In the present study, we performed a
microarray analysis to detect circRNA expression changes between tumor samples and adjacent nontumor samples. The miRNA
expression profiles were obtained from the National Center of Biotechnology Information Gene Expression Omnibus (GEO). The
differentially expressed circRNAs and miRNAs were identified through fold change filtering. The interactions between circRNAs
and miRNAs were predicted by Arraystar’s home-made miRNA target prediction software. After circRNA-related miRNAs and
dysregulated miRNAs were intersected, 23 miRNAs were selected. The target mRNAs of miRNAs were predicted by TarBase
v7.0. Gene ontology (GO) enrichment analysis and pathway analysis were performed using standard enrichment computational
methods for the target mRNAs. The results of pathway analysis showed that p53 signaling pathway and hippo signal pathway
were significantly enriched and CCND2 was a cross-talk gene associated with them. Finally, a circRNA-miRNA-mRNA regulation
network was constructed based on the gene expression profiles and bioinformatics analysis results to identify hub genes and
hsa circRNA 101504 played a central role in the network.

1. Introduction

Gastric cancer is one of the commonmalignant tumors in the
clinic, with the second leading cause of cancer-related death
worldwide [1, 2]. Although the treatment of gastric cancer
has gradually improved, cure rate of gastric cancer is still low.
With a lack of obvious clinical symptoms at early stage, most
patients have lost the opportunity of surgical therapy when
gastric cancer is detected at advanced stage [3]. Recurrence
is the chief cause of gastric cancer-related death. According
to recent statistics, more than 30% of patients suffering
from stage III gastric cancer who undergo surgical resection
develop recurrence or distant metastasis with a 14-month
median recurrence-free survival time [4, 5]. Therefore, pre-
vention and cure of gastric cancer are still challenged in the
clinic and the search for new molecular markers to monitor
and intervene in gastric cancer carcinogenesis is urgent.

Recent research has shown that circular RNAs (circR-
NAs) play a critical role in the initiation and progression of
human diseases especially in tumors and may function as
potential molecular markers for disease diagnosis and treat-
ment [6]. Circular RNAs are a class of endogenous noncoding
RNAs, characterized by their covalently closed-loop struc-
tures without a 5󸀠 cap or a 3󸀠 Poly(A) tail. Previous studies
demonstrated that circRNAs existed widely in all kinds of
organizations [7–9] and played a strong regulatory function
in cancer [10, 11]. For example, circRNAs are dysregulated in
epithelial tumors, such as laryngeal cancer and digestive sys-
tem cancers [12–14], and in stromal tumors, such as gliomas
[15]. Compared with mRNAs, circRNAs are more stable due
to the existence of ring structure. Thus, circRNA can serves
as a convenient tool for qRT-PCR measurements in cancer.

CircRNAs have been investigated for more than 40 years
[16], but they have been considered as a result of splicing
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errors for several decades and their biological functions are
largely unknown. With the development of RNA sequenc-
ing (RNA-seq) technologies and bioinformatics, circRNAs
have been extensively explored in recent years and several
functions of circRNA have been revealed, such as acting as
scaffolds in the assembly of protein complexes [17], seques-
tering proteins from their native subcellular localization [18],
modulating the expression of parental genes [19], regulating
alternative splicing [20] and RNA-protein interactions [21],
and functioning as microRNA (miRNA) sponges [8].

Our study aimed to establish the expression profile of gas-
tric cancer through circRNA microarray chip detection. Our
results revealed the potential role of circRNAs in gastric can-
cer. We also aimed to identify the hub circRNAs involved in
gastric cancer through bioinformatics analysis. The miRNA
expression profiles from the National Center of Biotech-
nology Information Gene Expression Omnibus (GEO) were
used to identify circRNA-related dysregulated miRNAs in
gastric cancer. Gene ontology (GO) enrichment analysis and
pathway analysis revealed the potential biology function
of miRNA target genes. Finally, a circRNA-miRNA-mRNA
regulation networkwas constructed to selected hub genes and
we found that hsa circRNA 101504 played a central role in the
network.

2. Methods

2.1. Clinical Samples. Six pairs of tumor and adjacent nontu-
mor tissues were obtained from patients with gastric cancer
who underwent surgery at the Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, between May 2011
andMay 2014. None of the patients had received neoadjuvant
therapy, and the samples were pathologically confirmed
postoperatively as gastric cancer. The samples were taken
within 10min after tumor excision, immediately immersed
in RNAlater� stabilization solution (Thermo Fisher Scien-
tific, Carlsbad, CA, USA) and then stored at −80∘C until
being used in the experiments. The study was performed in
accordance with the ethical standards of the Declaration of
Helsinki andwas approved by the Ethics Committee of Ruijin
Hospital. Informed consent was obtained from all patients
participating in the present study.

2.2. circRNA Microarray Analysis. Total RNA from each
sample was quantified using the NanoDrop ND-1000. The
sample preparation and microarray hybridization were per-
formed based on Arraystar’s standard protocols. Briefly, total
RNA from each sample was amplified and transcribed into
fluorescent cRNA utilizing random primer according to
Arraystar’s Super RNA Labeling protocol (Arraystar Inc.).
The labeled cRNAs were hybridized onto the Arraystar
Human circRNA Array (6x7K, Arraystar). After having
washed the slides, the arrays were scanned by the Axon
GenePix 4000B microarray scanner. Scanned images were
then imported into GenePix Pro 6.0 software (Axon) for
grid alignment and data extraction. Quantile normalization
and subsequent data processing were performed using the
R software package. Differentially expressed circRNAs with
statistical significance between two groups were identified

through volcano plot filtering. Differentially expressed cir-
cRNAs between two samples were identified through fold
change filtering. Hierarchical clustering was performed to
show the distinguishable circRNAs expression pattern among
samples.

2.3. Annotation for circRNA/miRNA Interaction. Recent evi-
dences have demonstrated that circular RNAs play a crucial
role in fine tuning the level of miRNA mediated regula-
tion of gene expression by sequestering the miRNAs. Their
interaction with disease associated miRNAs indicates that
circRNAs are important for disease regulation. The cir-
cRNA/microRNA interaction was predicted with Arraystar’s
home-made miRNA target prediction software based on
TargetScan [22] and miRanda [23], and the differentially
expressed circRNAs within all the comparisons were anno-
tated in detail with the circRNA-miRNA interaction informa-
tion.

2.4.miRNADatasets andDataAnalysis. TheoriginalmiRNA
expression profile of GSE23739 used in the present study
was downloaded from the National Center of Biotechnology
Information Gene Expression Omnibus (GEO). MicroRNA
expression of twenty pairs of tissue samples collected from
patients diagnosed with gastric cancer was determined by
miRNA microarrays (platform was GPL19071) in this data.
Each pair included resected primary tumor and corre-
sponding healthy gastric mucosa. There were no replicates.
Differentially expressed miRNAs were identified by using
GEO2R.The target genes of differentially expressed miRNAs
were predicted by using TarBase v7.0 [24] with a prediction
score ≥0.8 and all the miRNA-mRNA interactions were
experimentally supported.

2.5. Gene Function Analysis. Gene ontology (GO) enrich-
ment analysis of miRNA target genes was implemented with
DAVID (http://david.abcc.ncifcrf.gov/). GO terms (molecu-
lar function, biological processes, and cellular components)
with 𝑃 value less than 0.05 were considered significantly
enriched by differential expressed genes. Kyoto Encyclopedia
of Genes and Genomes (KEGG) is a database resource for
understanding high-level functions and effects of the biolog-
ical system (http://www.genome.jp/kegg/). DAVID was also
used to test the statistical enrichment of genes or target genes
of miRNA with differential expression in KEGG pathways.
The networks of the pathways and pathway-related genes
were constructed by using Cytoscape (version 3.4.0) plugin
ClueGO [25] + Cluepedia [26] app.

2.6. Construction of the circRNA-miRNA-mRNA Regulation
Network. Significantly expressed circRNAs andmiRNAs and
predicted mRNAs were superimposed onto the circRNA-
miRNA-mRNA network. The network was constructed by
using Cytoscape (version 3.4.0) and the network topology
was analyzed by using CentiScaPe app [27].

2.7. Statistical Analysis. Statistical analysis was performed
using SPSS 22.0 (Chicago, IL, USA). Significant differential
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expression levels of circRNAs or miRNAs were analyzed by
Student’s 𝑡-test and FDR filtering was used for comparative
analysis. The 𝑃 value ≤ 0.05 and absolute fold change ≥2.0
were considered statistically significant.

3. Results

3.1. Screening of Differentially Expressed circRNAs and miR-
NAs. Expression profiling data of 2070 circRNAs were
obtained by using circRNAmicroarray analysis.The circRNA
expression levels were normalized to the same order of
magnitude prior to the statistical analysis. As shown in
a box plot (Figure 1(a)), the median of different samples
was almost on the same line after normalization, which
showed a great degree of standardization. The scatter plot
was used to assess the circRNA expression variation between
the two compared groups of samples (Figure 1(b)). With
a threshold of 𝑃 value ≤ 0.05 and absolute value of fold
change ≥2.0, a total of 440 differentially expressed circRNAs
(176 significantly upregulated circRNAs and 264 significantly
downregulated circRNAs) were screened (Table S1). Volcano
plot was used to visualize differential expression between
tumor group and adjacent nontumor group (Figure 1(c)).
Hierarchical clustering was performed based on differentially
expressed circRNAs to hypothesize the relationships between
samples and the result of hierarchical clustering showed a
distinguishable circRNA expression profiling among samples
(Figure 1(d)). The miRNA expression profile of GSE23739
was analyzed by using the online tool GEO2R. The box plot
showed a great degree of standardization (Figure 2). With a
threshold of 𝑃 value ≤ 0.05 and absolute value of fold change
≥2.0, a total of 111 differentially expressed miRNAs including
20 upregulatedmiRNAs and 91 downregulatedmiRNAs were
identified (Table S2).

3.2. Prediction of circRNA-miRNA and miRNA-mRNA Inter-
action. Differentially expressed circRNAs contain corre-
spondingmiRNAbinding sites. To facilitate the investigation,
the interactions between miRNAs and circRNAs were pre-
dicted by Arraystar’s home-made miRNA target prediction
software.The circRNAs with an absolute value of fold change
≥5.0 were selected for further analysis and 260 interactions
between 53 circRNAs and 187 miRNAs were screened. 23
miRNAs were selected after differentially expressed miRNAs
and circRNA-related miRNAs were intersected (Figure 3).
The target genes of the 23 miRNAs were predicted by using
TarBase v7.0 and 206 interactions between the 23 miRNAs
and 150 mRNAs were obtained.

3.3. 
e GO and KEGG Enrichment Analysis of the Target
Genes. GO and KEGG enrichment analysis were performed
for the selected 150 mRNAs to investigate the biological
function of the circRNAs. In GO analysis, all the results were
ranked by enrichment score (− log(𝑃 value)) and top 10 of
every category were displayed in Figure 4. In the biologi-
cal process analysis, anterior/posterior pattern specification,
liver development and transcription, and DNA-templated
were the top 3 enriched terms. In the cellular component
analysis, cytoplasmic stress granule, cytosol, andnucleoplasm

were the top 3 enriched terms. In themolecular function anal-
ysis, protein binding, protein kinase binding, and sequence-
specific DNA binding were the top 3 enriched terms. Results
of KEGG pathway analysis were also ranked by enrichment
score and the top 10 pathways associated with the mRNAs
were listed in Figure 5(a). The network composed of the
most enriched pathways and their related genes (Figure 5(b))
showed that PARD6B, GSK3B, CCND2, CCNE1, PPP2CA,
and CDC27 were cross-talk genes associated with at least two
pathways.

3.4. Construction of the circRNA-miRNA-mRNA Regula-
tion Network. A circRNA-miRNA-mRNA network was con-
structed to reveal the interactions in circRNA, miRNA, and
mRNA. As shown in Figure 6, hsa-miR-27a-3p had the most
degrees and has circRNA 101504 had the most interactions
with miRNAs, indicating that they were hub genes in the
regulation network. Dramatically, hsa-miR-93-5p and hsa-
miR-20b-5p and hsa-miR-454-3p and hsa-miR-301a-3p were
coupled miRNAs which had almost the same target genes.
These coupled miRNAs might coregulate the target genes
in the network. In graph theory, betweenness centrality is
a measure of centrality in a graph based on shortest paths
and devised as a general measure of centrality. A node with
higher betweenness centrality would have more control over
the network, becausemore informationwill pass through that
node.The DEGs involved in the PPI network (betweenness >
4000) were listed in Table 1.

4. Discussion

Gastric cancer is one of the deadliest solid tumors character-
ized by complex molecular and cellular heterogeneity. Over
the past few decades, great efforts have been made to provide
novel insights into the molecular mechanisms underlying
gastric cancer, but the focus has been on protein-coding genes
or miRNAs [28, 29]. Recently, circRNAs has been widely
reported to participate in a wide range of biological processes
and their dysregulated expression is associated with many
complicated human disease phenotypes including cancers
[30, 31].

In this study, microarray analysis was performed to
obtain the expression profiles of circRNAs in gastric cancer
samples and nonmalignant pancreas samples.The expression
profiles of miRNAs were obtained from GEO databases and
analyzed by using GEO2R. With a threshold of 𝑃 value <
0.05 and absolute fold change ≥2.0, dysregulated circRNAs
and miRNAs were identified separately. After the circRNA-
related miRNAs dysregulated miRNAs were intersected, 23
miRNAs were selected for further study. Gene function
analysis including GO analysis and KEGG pathway analysis
was conducted for the targetmRNAs of the selectedmiRNAs.
The results of KEGG pathway analysis indicated that p53
signaling pathway and hippo signaling pathway were signifi-
cantly enriched. P53 is a well-known tumor suppressor gene
and the p53 mutations have been reported in many cancers
[32, 33]. In gastric cancer, He et al. [34] found that Fra-1 was
upregulated in gastric cancer tissues and played its function
by affecting the PI3K/Akt and p53 signaling pathway. Hippo
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Figure 1: Differentially expressed circRNAs in tumor tissues and adjacent nontumor tissues from gastric cancer patients. The box plot shows
the variations in circRNA expression (a). The scatter plot (b) and the volcano plot (c) illustrate the distributions of the data in the circRNA
profiles.The result from hierarchical clustering shows a distinguishable circRNA expression profiling among samples.The heatmap shows the
differentially expressed circRNAs in tumor and adjacent nontumor tissues (d). Each group consists of six samples. Gene expression profiles
are shown in rows. “Red” indicates high relative expression, and “blue” indicates low relative expression.
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Figure 2: Differentially expressed miRNAs in tumor tissues and adjacent normal tissues from gastric cancer patients.The box plot shows the
variations in miRNA expression. Each group consists of twenty samples.

Differentially expressed miRNAs circRNA-related miRNAs

Selected miRNAs

88
(32%)

23
(8.4%)

164
(59.6%)

Figure 3: Based on differentially expressed miRNAs and circRNA-
related miRNAs, the overlapped 23 miRNAs were selected using
Venn graphing.

signaling pathway is a newly discovered and conserved
signaling cascade, first identified in drosophila [35]. Hippo
signal pathway regulates organ size control by governing cell
proliferation and apoptosis and is reported to be a tumor-
suppressive signal pathway. As shown in Figure 5(b), CCND2
is an important cross-talk gene associated with cell cycle, p53
signaling pathway, and hippo signal pathway. CCND2 also
has a high betweenness centrality in the PPI network, indicat-
ing that CCND2might be a bridge of a lot of interactions. For
example, CCND2 is a bridge of the target genes of hsa-miR-
15a-5p and hsa-miR-93-5p. Zhang et al. [36] have reported

thatmiR-206 could inhibit gastric cancer proliferation in part
by repressing CCND2. Meanwhile, another study showed
that dysregulation of miR-206-CCND2 axis might contribute
to the aggressive progression and poor prognosis of human
gastric cancer in clinical settings. Combined detection of
their expressionmight be particularly helpful for surveillance
of disease progression and treatment stratification [37]. How-
ever, the relationship between circRNA and CCND2 is still
unknown. In the circRNA-miRNA-mRNA regulation net-
work (Figure 6), we revealed that CCND2might be regulated
by hsa circRNA 105039 and hsa cirRNA 104682 through
hsa-miR-15a-5p and hsa circRNA 105039 separately. We also
found that hsa circRNA 101504 played a central role in the
regulation network. As circRNAs can serve as a competitive
endogenous RNA (ceRNA) to spongemiRNAs to regulate the
target mRNAs [38, 39], upregulation of hsa circRNA 101504
might affect several mRNAs by downregulating hsa-miR-
454-3p and hsa-miR-301a-3p. In chondrosarcoma, increasing
hsa-miR-454-3p can downregulate Stat3 and Atg12 to inhibit
chondrosarcoma growth [40]. But, in human glioma, hsa-
miR-454-3p has the opposite effect that the prognosis of
glioma with high hsa-miR-454-3p expression is significantly
worse compared with that of glioma with low hsa-miR-454-
3p expression [41]. Therefore, more studies of hsa-miR-454-
3p involved in gastric cancer are needed.

5. Conclusion

In conclusion, we have screened several dysregulated cir-
cRNAs through microarray analysis and annotated their
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function in gastric cancer by bioinformatics analysis. We will
gather more clinical samples and validate our findings in
future work.
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Table 1: The list of differentially expressed genes involved in the PPI network (betweenness > 4000).

Gene name Betweenness Degree Stress Closeness
hsa-miR-27a-3p 13195.50 24 46060 0.0015
hsa-miR-15a-5p 12039.50 19 30488 0.0015
NUFIP2 7258.59 2 1440 0.0015
hsa-miR-148a-3p 7016.86 18 67106 0.0013
hsa-miR-17-5p 6342.49 13 156 0.0014
BTG2 6116.00 2 160 0.0013
hsa-miR-21-5p 6060.00 7 42 0.0011
DCP2 5609.67 2 5090 0.0014
ARAP2 5387.24 4 4698 0.0013
hsa-miR-301a-3p 5168.47 22 52418 0.0013
hsa circRNA 104682 4380.00 2 16344 0.0013
YOD1 4380.00 2 160 0.0010
hsa-miR-196a-5p 4298.00 15 14042 0.0009
CCND2 4280.22 2 1440 0.0014
hsa-miR-652-5p 4166.00 4 7722 0.0011
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Figure 6: The visualization of the circRNA-miRNA-mRNA regulation network. The circular blue nodes represent mRNAs, the diamond
nodes represent the miRNAs, and round rectangle nodes represent the circRNAs. “Red” indicates high relative expression, and “green”
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Table S1: differentially expressed circRNAs between tumor
andnormal tissues. Table S2: differentially expressedmiRNAs
between tumor and normal tissues. (Supplementary Materi-
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