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Multiple correlated traits are often collected in genetic studies. By jointly analyzing multiple traits, we can increase power by
aggregating multiple weak effects and reveal additional insights into the genetic architecture of complex human diseases. In this
article, we propose a multivariate linear regression-based method to test the joint association of multiple quantitative traits. It is
flexible to accommodate any covariates, has very accurate control of type I errors, and offers very competitive performance.We also
discuss fast and accurate significance 𝑝 value computation especially for genome-wide association studies with small-to-medium
sample sizes. We demonstrate through extensive numerical studies that the proposed method has competitive performance. Its
usefulness is further illustratedwith application to genome-wide association analysis of diabetes-related traits in the Atherosclerosis
Risk in Communities (ARIC) study.We found some very interesting associations with diabetes traits which have not been reported
before. We implemented the proposed methods in a publicly available R package.

1. Introduction

Over the past ten years, many epidemiologic studies have
used genome-wide association studies (GWAS) to identify
genetic components of many complex human diseases.These
large cohort studies often collected a broad array of correlated
traits that often reflect common physiological processes. By
jointly analyzing these correlated traits, we can often gain
more power by aggregating multiple weak effects and shed
light on themechanisms underlying complex human diseases
[1].

There have been many methods proposed recently to
detect SNP association with multiple correlated traits (see,
e.g., [2–13]). A direct approach is based on the minimum
trait 𝑝 value [6], which typically requires permutations to
compute significance 𝑝 value. A related approach is the trait-
based association test using an extended Simes procedure
(TATES; [10]) that combines the univariate trait 𝑝 values
while correcting for the correlations among the multivariate
traits. Various dimension reductionmethods that summarize
the multivariate traits into a univariate outcome are also

proposed, which then apply the traditional univariate associ-
ation test. Examples include the principal component analysis
(PCA) [2], principal components of heritability (PCH) [3],
and averaging longitudinally observed traits [7, 14]. PCA is
an unsupervised dimension reduction and the top PC may
not necessarily reflect the association signal. Sample splitting
is typically used in PCH for significance calculations andmay
lead to loss of power.

Multivariate trait testing methods generally perform
better than univariate analysis-based approach [15]. Among
the multivariate testing methods, a popular approach is the
canonical correlation analysis (CCA) [4, 16, 17], which is fast
to compute but not flexible and is unable to accommodate
covariates. Liu et al. [5] proposed the GEE model [18] to
jointly analyze one continuous and one binary trait. In Avery
et al. [19] and He et al. [11], GEE-based marginal generalized
linear modeling of multivariate traits is adopted for efficient
multitrait association testing. Schifano et al. [20] proposed
a closely related GEE-based scaled marginal association test
of multiple secondary continuous traits. Sitlani et al. [13]
explored the GEEmodeling of longitudinally measured traits
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for association test. These GEE-based methods typically
explicitly avoidedmodeling the trait correlations. Another set
ofmultivariate approaches is based on the inverted regression
of genotypes to test the overall trait effects. For example,
the proportional odds regression modeling of genotypes
was proposed as a convenient approach to testing multitrait
associations [8, 21, 22]. A related adjacent category logistic
regression of genotypes was proposed by Wu and Pankow
[12]. Inverted regression approach does not easily accommo-
date imputed SNPs and has generally used the “best-guess”
genotypes, which is known to be leading to a loss of power.
In contrast, the multivariate trait regression approach can
easily test imputed SNPs by using the imputation dosage as
covariate.

In this article, we explore an alternative multivariate
regression framework to explicitly model the trait correlation
and adjust for covariates to test multitrait associations. We
compute the analytical 𝑝 values for the proposed tests based
on the 𝐹-distributions that offer very accurate type I error
control with good finite sample performance.We also exploit
the parallel nature of genome-wide association test to develop
very efficient numerical algorithms that are extremely scal-
able to genome-wide association tests of millions of SNPs.
We demonstrate through extensive numerical studies that
the proposed methods have very competitive performance
compared to existing methods. We further illustrate the
usefulness of the proposedmethods through an application to
genome-wide association study of multiple diabetes-related
glycemic traits.

2. Methods

We first discuss a multivariate linear regression-based frame-
work for modeling the multiple quantitative traits and then
derive the Wald type statistics for testing multitrait associa-
tions.

2.1. Multivariate Linear Regression Model. Consider 𝑚 con-
tinuous traits 𝑌 = (𝑦1, . . . , 𝑦𝑚)𝑇, a covariate vector 𝑋 =
(𝑥1, . . . , 𝑥𝑝)𝑇 of length 𝑝 (which could contain an ancestry
indicator or principal components), and a genotype score 𝐺
coding the number of minor alleles. Consider the multivari-
ate normal trait model:

𝑌 = 𝛽0 + 𝛽𝑋𝑋 + 𝐺𝛽1 + 𝜖, (1)

where 𝛽0 is a vector of length 𝑚, 𝛽𝑋 is an 𝑚 × 𝑝 matrix, 𝛽1
is a vector of length 𝑚, and the random error 𝜖 is of length
𝑚 and is assumed to follow a zero mean multivariate normal
distribution with covariance Σ, 𝜖 ∼ 𝑁(0, Σ). Multivariate
trait association amounts to testing 𝐻0 : 𝛽1 = 0. Here we
have assumed the same covariates for all traits, which is the
case for our ARIC study GWAS example (see Application to
ARICGWAS of Glycemic Traits) andmany typical GWAS. In
the supplementary materials (available here), we discuss the
possible scenario with different covariates for each trait. The
trait model (1) is a multivariate linear model (MLM; see, e.g.,
[23, chapter 8] and [24, chapter 9]).

Given observations for 𝑛 unrelated individuals, for indi-
vidual 𝑖, denote 𝑌𝑖 as the outcome, 𝑋𝑖 as the covariate, and

𝐺𝑖 as the genotype score. Denote Y = (𝑌1, . . . , 𝑌𝑛)𝑇, X =
(𝑋1, . . . , 𝑋𝑛)𝑇, G = (𝐺1, . . . , 𝐺𝑛)𝑇, and design matrix Z =
(1𝑛,X,G) of dimension 𝑛 × (𝑝 + 2), where 1𝑛 = (1, . . . , 1)𝑇
is a column vector of 𝑛 ones.

Denote the𝑚×(𝑝+2) parameter matrix 𝛽 = (𝛽0, 𝛽𝑋, 𝛽1).
We can check that the maximum likelihood estimators
(MLEs) are (see, e.g., [23, p. 294])

𝛽̂ = Y𝑇Z (Z𝑇Z)−1 ,
Σ̂ = 1𝑛 (Y − Z𝛽̂

𝑇)𝑇 (Y − Z𝛽̂𝑇) .
(2)

2.2. Conducting Multivariate Association Tests. Denote the
vector operator vec(), which stacks the columns of a matrix
into a vector. DenoteA = Z𝑇Z. For theMLEs (2) of theMLM
model (1), we can check that (see, e.g., [23, p. 296])

𝐸 [vec (𝛽̂)] = vec (𝛽) ,
Cov [vec (𝛽̂)] = A−1 ⊗ Σ,

(3)

where ⊗ denotes the Kronecker product and 𝑛Σ̂ indepen-
dently follows a Wishart distribution,𝑊𝑚(Σ, 𝑛 − 𝑝 − 2), with𝑛 − 𝑝 − 2 degrees of freedom (DFs) and scale matrix Σ.

Define the 𝑛 × (𝑝 + 1) design matrix Z0 = (1𝑛,X) and
the corresponding 𝑛 × 𝑛 hat matrix 𝐻 = Z0(Z𝑇0Z0)−1Z𝑇0 . Let
P = I−𝐻 and𝐺𝑒 = P𝐺. Here I is an 𝑛×𝑛 identity matrix. We
can check that

𝛽1 = Y𝑇𝐺𝑒
𝐺𝑇𝑒 𝐺𝑒 ,

Cov (𝛽1) = (𝐺𝑇𝑒 𝐺𝑒)−1 Σ.
(4)

We test the multitrait association with the following Wald
statistic:

𝑄 = (𝐺𝑇𝑒 𝐺𝑒) 𝛽𝑇1 Σ̂−1𝛽1. (5)

Note that 𝛽1 and Σ̂ are independent. Under the null hypoth-
esis, ((𝑛 − 𝑝 − 1 − 𝑚)/𝑚𝑛)𝑄 follows the 𝐹-distribution with
(𝑚, 𝑛 − 𝑝 − 1 − 𝑚) DFs (see, e.g., [25, p. 541]).

In the supplementary materials, we analytically show
that the CCA test approach [4] is equivalent to a Score
test statistic under the MLM model (1) when there are no
covariates other than the genotype. Therefore, the proposed
MLM-basedWald test can be treated as a natural and flexible
generalization of the CCA: (I) it can accommodate any
covariates; (II) it is based on the more powerful Wald test
instead of the Score test for an association test of quantitative
traits; (III) it has an exact 𝐹-distribution for the multivariate
normally distributed traits and hence has very accurate
control of type I errors for any sample sizes without the
need of asymptotic approximation; and (IV) it is very fast to
compute (see next section for details) and extremely scalable
to genome-wide association tests of millions of SNPs.

When genetic effects are similar across traits, we can
further improve the multivariate association test power using
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a test statistic with 1-DF following the lines of O’Brien [26],
which performed a Wald test of linear combinations of 𝛽1.
We can derive similar Wald tests under the MLM (1) (see
supplementary materials for technical details). When the
genotype effects are the same across different traits, we study
the following test statistic:

𝑇 = 1𝑇𝑚Σ̂−1𝛽1
√1𝑇𝑚Σ̂−11𝑚

, (6)

where 1𝑚 is an𝑚×1 column vector of ones. When the scaled
genotype effects are the same across different traits, we study
the following test statistic:

𝑇󸀠 = 𝑆
𝑇Σ̂−1𝛽1
√𝑆𝑇Σ̂−1𝑆 , (7)

where 𝑆 is a column vector of estimated standard errors: 𝑆 =
√diag(Σ̂).

Under the null hypothesis, both 𝑇 and 𝑇󸀠 follow the
asymptotic standard normal distribution. To improve the
finite sample performance, we can compare ((𝑛 − 𝑝 − 1 −
𝑚)/𝑛)𝑇 and ((𝑛 − 𝑝 − 1 − 𝑚)/𝑛)𝑇󸀠 to a 𝑡-distribution with
(𝑛 − 𝑝 − 1 − 𝑚)-DF.
2.3. Efficient Computation of GWAS Wald Test Statistics. For
a typical GWAS with millions of SNPs, rather than fitting a
MLM for each SNP, we developed very efficient algorithm to
estimate the MLMs for all SNPs using matrix decomposition
tricks following the line of Voorman et al. [27] as follows.
For Z0, denote its singular value decomposition (SVD) as
Z0 = UDV𝑇, whereU is an 𝑛×(𝑝+1)matrix with orthogonal
columns, D is a (𝑝 + 1) × (𝑝 + 1) diagonal matrix, and V is a
(𝑝+1)× (𝑝+1) orthogonal matrix.The null MLM hat matrix
can then be computed as𝐻 = UU𝑇, and 𝐺𝑒 = 𝐺 − U(U𝑇𝐺).
Denote the null MLM residual matrix as E = Y − U(U𝑇Y),
and let V0 = E𝑇E. In (4), we have shown that the genotype
effect can be efficiently computed as 𝛽1 = Y𝑇𝐺𝑒/(𝐺𝑇𝑒 𝐺𝑒).
We can then compute the covariance matrix MLE as Σ̂ =
V0/𝑛 − (𝐺𝑒𝐺𝑇𝑒 )𝛽1𝛽𝑇1 /𝑛. Here both V0 and U just need to
be precomputed once and can be stored for use with all
SNPs. Operationally we can also apply the popular PLINK
tool [28] to test multitrait association. We first obtain the
residuals of multivariate traits and genotypes adjusting for all
covariates. We then input the residuals into the PLINK CCA
test approach [4]. Technically, we need to adjust the PLINK
output𝑝 value using an𝐹-distributionwith different DFs (see
supplementary materials for technical details).

3. Results

3.1. Simulation Studies. We consider three forms of Wald
statistics: 𝑄 is the omnibus test, and 𝑇 and 𝑇󸀠 are the 1-DF
test assuming common or common scaled effects. The GEE-
based approaches of He et al. [11] are computationally very
efficient, have been shown to appropriately control the type I
errors, and have the overall best detection power compared to

the other methods (e.g., TATES of [10] and other univariate
test-based methods) in extensive numerical studies. Here we
compared the proposed methods to their GEE score tests,
denoted as (𝑄𝑠, 𝑇𝑠, 𝑇󸀠𝑠 ), which are the 𝑚-DF omnibus test
and 1-DF tests assuming a common effect or common scaled
effect.

We consider a standard normal covariate 𝑋1 and a
Bernoulli covariate 𝑋2 with probability of 0.5. The SNP
genotype score 𝐺 is simulated from a Binomial distribution,
Binom(2, 𝑓0), where the minor allele frequency (MAF) 𝑓0 =𝑝0 + 𝑝1𝑋2. Here 𝑋2 is essentially a population indicator and
we have simulated SNPs under population stratification.

We conducted simulations for testing 𝑚 = 2, 4, 8
related traits of 1,000 unrelated individuals, respectively. Each
time, we simulate the 𝑚 traits from a multivariate normal
distribution with a compound symmetry correlation matrix
with correlation 𝜌. The first trait has a variance of 2 and all
the other traits have unit variance. We set 𝐸(𝑌𝑖) = 1+0.5𝑋1 +0.5𝑋2 + 𝛾𝑖𝐺 for 𝑖 = 1, 3, . . . , 𝑚 − 1, and 𝐸(𝑌𝑘) = 1 +𝑋1 +𝑋2+𝛾𝑘𝐺 for 𝑘 = 2, 4, . . . , 𝑚.

We used 10 million experiments to evaluate the type I
error and 105 experiments to evaluate the power under vari-
ous combinations of (𝛾1, . . . , 𝛾𝑚). We conducted simulations
for 𝑝0 = (0.1, 0.3), 𝑝1 = 0.1, and 𝜌 = 0, 0.2, 0.5, 0.8. Here
we report the results for 𝑚 = 2, 8, 𝜌 = 0, 0.5, and 𝑝0 = 0.1.
The conclusions remain the same for other settings (data not
shown).

Tables 1 and 2 summarize the estimated type I errors.
Overall, the type I errors are well controlled for the proposed
methods, while the GEE score tests are conservative, espe-
cially for large number of traits (𝑚 = 8). In general, the
proposed Wald tests follow the exact 𝐹-distribution under
the null hypothesis and hence the type I errors are well
controlled under all settings. The GEE tests rely on the large-
sample asymptotic distribution and therefore generally we
need large sample size to have better control of type I errors,
especially for a larger number of traits (containing more
model parameters).

Tables 3 and 4 summarize the power for 𝑚 = 2 and
𝑚 = 8, respectively. 𝑇 is the most powerful when 𝛾𝑗 are
close to each other, and 𝑇󸀠 is the most powerful when 𝛾𝑗/𝜎𝑗
are close to each other. In general, the proposed MLM-based
Wald tests perform better than the correspondingGEE-based
score tests, especially when testing a large number of traits.
This agrees with the general principle that the Wald test is
typically more powerful than the GEE-based test.

The chi-square statistic ((𝑛−𝑝−1)/𝑛)𝑄 is commonly used
in practice and referred to an 𝑚-DF chi-square distribution
to compute multitrait association test’s 𝑝 values, which can
lead to significantly inflated type I errors at stringent genome-
wide significance levels. Figure 1 shows the ratio of actual
significance level of Wald test’s 𝑝 values computed using the
chi-square distribution and 𝐹-distribution, respectively. We
can see that the type I error based on the chi-square distri-
bution is inflated: more so for larger number of traits, smaller
significance level, and smaller sample size. For example, when
testing 𝑚 = 8 traits with 𝑝 = 2 covariates and 𝑛 = 500
samples, under genome-wide significance level 5 × 10−8, the
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Table 1: Type I error of multitrait tests (𝑚 = 2, 𝑝0 = 0.1) divided by the nominal significance level 𝛼. The MAFs of SNP are 0.1 and 0.2 in the
two populations, respectively. 𝑄 is the 𝑚-DF omnibus Wald test; 𝑇 and 𝑇󸀠 are the 1-DF Wald tests assuming a common or common scaled
effect. (𝑄𝑠, 𝑇𝑠, 𝑇󸀠𝑠 ) are the corresponding GEE-based𝑚-DF omnibus test and 1-DF tests assuming a common effect or common scaled effect.

𝛼 𝜌 = 0 𝜌 = 0.5
10−5 10−4 10−3 10−5 10−4 10−3

𝑄𝑠 0.69 0.79 0.89 0.67 0.79 0.89
𝑇𝑠 0.74 0.85 0.93 0.71 0.83 0.92
𝑇󸀠𝑠 0.74 0.85 0.89 0.71 0.83 0.92
𝑄 1.04 1.00 1.00 1.03 1.01 1.00
𝑇 0.98 0.99 1.01 0.97 0.99 1.00
𝑇󸀠 0.96 0.98 1.00 0.96 0.98 0.99

Table 2: Type I error divided by the nominal significance level 𝛼 for multitrait tests (𝑚 = 8, 𝑝0 = 0.1).
𝛼 𝜌 = 0 𝜌 = 0.5

10−5 10−4 10−3 10−5 10−4 10−3
𝑄𝑠 0.43 0.62 0.75 0.44 0.60 0.75
𝑇𝑠 0.74 0.84 0.93 0.77 0.85 0.93
𝑇󸀠𝑠 0.74 0.84 0.93 0.78 0.85 0.93
𝑄 0.94 0.99 1.00 0.94 1.00 1.00
𝑇 1.03 1.03 1.02 1.05 1.04 1.03
𝑇󸀠 1.03 1.03 1.03 1.03 0.99 0.99

Table 3: Power of multitrait tests for𝑚 = 2 continuous traits (𝑌1, 𝑌2) under significance level 𝛼 = 10−4. The MAFs of SNP are 0.1 and 0.2 in
the two populations, respectively. 𝑄 is the𝑚-DF omnibus Wald test; 𝑇 and 𝑇󸀠 are the 1-DFWald tests assuming common or common scaled
effect. (𝑄𝑠, 𝑇𝑠, 𝑇󸀠𝑠 ) are the corresponding GEE-based𝑚-DF omnibus test and 1-DF tests assuming a common effect or common scaled effect.
𝜎𝑖 is the standard error of 𝑌𝑖 and 𝛾𝑖 is the SNP coefficient, 𝑖 = 1, 2. The highest powered tests are bold-faced.

(𝛾1, 𝛾2) ( 𝛾1𝜎1 ,
𝛾2
𝜎2 ) 𝑄 𝑇 𝑇󸀠 𝑄𝑠 𝑇𝑠 𝑇󸀠𝑠

𝜌 = 0.5
(0.3, 0) (0.21, 0) 0.375 0.001 0.024 0.334 0.001 0.019
(0.3, 0.1) (0.21, 0.1) 0.206 0.047 0.146 0.177 0.039 0.126
(0.25, 0.18) (0.18, 0.18) 0.180 0.221 0.258 0.154 0.194 0.233
(0.3, 0.25) (0.21, 0.25) 0.523 0.617 0.619 0.476 0.573 0.582
(0.2, 0.2) (0.14, 0.2) 0.179 0.257 0.215 0.154 0.23 0.193
(0.2, 0.25) (0.14, 0.25) 0.410 0.501 0.369 0.367 0.466 0.333
(0.25, 0.25) (0.18, 0.25) 0.449 0.560 0.492 0.403 0.521 0.455
(0, 0.25) (0, 0.25) 0.638 0.278 0.052 0.59 0.247 0.040
(0, 0.3) (0, 0.3) 0.893 0.525 0.121 0.865 0.477 0.093
(0.1, 0.25) (0.07, 0.25) 0.465 0.485 0.372 0.418 0.448 0.330
(0.1, 0.3) (0.07, 0.3) 0.744 0.726 0.590 0.700 0.688 0.534
(0.2, 0.3) (0.14, 0.3) 0.845 0.891 0.842 0.810 0.870 0.810

𝜌 = 0
(0.3, 0) (0.21, 0) 0.206 0.026 0.063 0.178 0.020 0.051
(0.3, 0.1) (0.21, 0.1) 0.316 0.249 0.337 0.278 0.215 0.304
(0.25, 0.18) (0.18, 0.18) 0.419 0.510 0.530 0.376 0.471 0.494
(0.3, 0.25) (0.21, 0.25) 0.830 0.891 0.892 0.796 0.868 0.870
(0.2, 0.2) (0.14, 0.2) 0.375 0.486 0.462 0.333 0.449 0.427
(0.2, 0.25) (0.14, 0.25) 0.631 0.727 0.677 0.584 0.692 0.636
(0.25, 0.25) (0.18, 0.25) 0.734 0.820 0.801 0.690 0.792 0.771
(0, 0.25) (0, 0.25) 0.405 0.249 0.134 0.36 0.217 0.107
(0, 0.3) (0, 0.3) 0.701 0.485 0.29 0.657 0.437 0.235
(0.1, 0.25) (0.07, 0.25) 0.451 0.385 0.165 0.406 0.356 0.140
(0.1, 0.3) (0.07, 0.3) 0.769 0.639 0.301 0.728 0.605 0.257
(0.2, 0.3) (0.14, 0.3) 0.700 0.743 0.545 0.655 0.713 0.500
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Table 4: Power of multitrait tests for𝑚 = 8 continuous traits under significance level 𝛼 = 10−4. The MAFs of SNP are 0.1 and 0.2 in the two
populations, respectively. 𝑄 is the 𝑚-DF omnibus Wald test; 𝑇 and 𝑇󸀠 are the 1-DF Wald tests assuming common or common scaled effect.
(𝑄𝑠, 𝑇𝑠, 𝑇󸀠𝑠 ) are the corresponding GEE-based 𝑚-DF omnibus test and 1-DF tests assuming a common effect or common scaled effect. The
highest powered tests are bold-faced.

(𝛾1, . . . , 𝛾8) 𝑄 𝑇 𝑇󸀠 𝑄𝑠 𝑇𝑠 𝑇󸀠𝑠
𝜌 = 0.5

𝛾1 = 0.3, 𝛾𝑖>1 = 0 0.303 0.001 0 0.229 0 0
(.3, .2, .1, .05, 0, . . . , 0) 0.696 0 0.008 0.599 0 0.005
𝛾1 = 0.2, 𝛾𝑖>1 = 0.15 0.045 0.201 0.220 0.030 0.169 0.195
𝛾𝑖 = 0.15 0.048 0.237 0.193 0.032 0.204 0.170

𝜌 = 0
𝛾1 = 0.3, 𝛾𝑖>1 = 0 0.063 0.001 0.004 0.043 0.001 0.002
(.3, .2, .1, .05, 0, . . . , 0) 0.467 0.156 0.224 0.372 0.102 0.152
𝛾1 = 0.2, 𝛾𝑖>1 = 0.15 0.934 0.996 0.997 0.887 0.992 0.993
𝛾𝑖 = 0.15 0.912 0.995 0.994 0.855 0.989 0.988
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Figure 1: Ratio of the actual significance levels of𝑚-DF chi-square test versus the F-test with (𝑚, 𝑛 − 𝑝 − 1 −𝑚)DFs. The 𝑥-axis is the type I
error rate. (a) Shows the results for testing 𝑚 = 4 traits with 𝑝 = 2 covariates based on 𝑛 individuals. (b) Shows the results for testing𝑚 = 8
traits with 𝑝 = 2 covariates.

actual significance level of chi-square distribution 𝑝 value is
3.42×5×10−8 = 1.7×10−7. Using the chi-square distribution
to compute 𝑝 values will lead to very small inflation only
when the sample size is large, such as in the meta-analysis
of multiple GWAS studies. For typical GWAS with small-to-
medium sample sizes, we recommend using the appropriate
𝐹-distribution to compute significance 𝑝 values to reduce
false positive findings.

3.2. Application to ARIC GWAS of Glycemic Traits. The
Atherosclerosis Risk in Communities (ARIC) study [29] is
a population-based, multicenter prospective investigation of

cardiovascular disease. Men and women aged 45–64 years at
baseline were recruited from four US communities: Forsyth
County, North Carolina; Jackson, Mississippi; suburban
areas of Minneapolis, Minnesota; and Washington County,
Maryland. A total of 15,792 individuals participated in the
baseline examination during the period of 1987–1989. The
vast majority of ARIC participants are of European (73%)
or African (26%) ancestry. We conducted two analyses of
diabetes-related glycemic traits in ARIC GWAS data, which
has been imputed to around 2.5 million HapMap SNPs using
MaCH [30].We included in the analysis those common SNPs
with MAF ≥ 0.05 and imputation score 𝑅2 ≥ 0.3.
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Table 5: Six novel SNPs identified in the ARIC joint association test, which were not significant in the corresponding MAGIC consortium
meta-analyses of fasting glucose (FG), fasting insulin (FI), and 2-hour fasting glucose (2hFG) but were significant in the MAGIC meta-
analysis of fasting proinsulin (FP). We listed the ARIC joint test’s 𝑝 values (the proposed MLM Wald test and the GEE chi-square test) and
the corresponding MAGIC consortium meta-analyses’ 𝑝 values for FG, FI, 2hFG, and FP.

SNP Chr bp ARIC joint test’s 𝑝 value MAGIC meta-analysis’ 𝑝 value
Wald GEE FG FI 2hFG FP

rs4502156 15 62383155 5.4𝐸 − 09 7.9𝐸 − 09 8.4𝐸 − 08 6.7𝐸 − 01 8.2𝐸 − 05 3.8𝐸 − 11
rs7163757 15 62391608 1.4𝐸 − 08 1.8𝐸 − 08 4.2𝐸 − 07 5.7𝐸 − 01 1.9𝐸 − 05 3.9𝐸 − 11
rs8037894 15 62394264 1.2𝐸 − 08 1.6𝐸 − 08 4.1𝐸 − 07 4.8𝐸 − 01 3.5𝐸 − 05 8.7𝐸 − 11
rs6494307 15 62394690 1.7𝐸 − 08 2.1𝐸 − 08 3.3𝐸 − 07 4.9𝐸 − 01 2.7𝐸 − 05 4.1𝐸 − 11
rs7167878 15 62396189 1.7𝐸 − 08 2.1𝐸 − 08 4.6𝐸 − 07 4.5𝐸 − 01 2.4𝐸 − 05 4.1𝐸 − 11
rs7172432 15 62396389 1.7𝐸 − 08 2.2𝐸 − 08 6.5𝐸 − 07 3.3𝐸 − 01 1.9𝐸 − 05 4.3𝐸 − 11

As a proof of concept, we first analyzed four fasting
glucose levels in 5947 nondiabetic ARIC white participants
measured at four visits (visits 1–4) conducted approximately
three years apart. The average correlation of glucose levels
is 0.55. We applied an additive genetic model with imputed
dosage as a covariate and adjusted for age, gender, and study
center in all tests. By analyzing four fasting glucose measures
jointly, 𝑇󸀠 identified 104 significant SNPs, 𝑇 identified 103,
𝑇󸀠𝑠 identified 102, 𝑇𝑠 identified 101, and 𝑄 and 𝑄𝑠 identified
the same set of 95 SNPs at the genome-wide significance
level 5 × 10−8. Analyzing each glucose measure separately
identified 34, 84, 37, and 64 genome-wide significant SNPs
at visits 1, 2, 3, and 4, respectively. All the identified SNPs by
differentmethods are genome-wide significant in theMAGIC
Consortium, a meta-analysis of 21 fasting glucose GWAS
which together included 46,186 nondiabetic participants [31].

Compared to 𝑇󸀠𝑠 , the two additional SNPs identified by
𝑇󸀠, rs780093 and rs780094, had 𝑝 values of 4.8 × 10−8 and
4.8 × 10−8 using 𝑇󸀠. Their respective MAGIC meta-analysis’
𝑝 values were 2.9 × 10−13 and 2.5 × 10−12. Compared to
𝑇𝑠, the two additional SNPs identified by 𝑇, rs1260326 and
rs11688384, had 𝑝 values of 4.7 × 10−8 and 4.0 × 10−8 using 𝑇.
Their respective MAGIC meta-analysis’ 𝑝 values were 4.3 ×
10−13 and 4.1 × 10−10.

Second, we jointly analyzed three distinct diabetes-
related glycemic traitsmeasured at visit 4 in 5068 nondiabetic
white participants measured at visit 4 in ARIC: fasting
glucose, fasting insulin, and glucose level 2 hours after an oral
glucose challenge.We applied an additive genetic model with
imputed dosage as a covariate and adjusted for age, gender,
and study center. To account for the skewed distribution
of fasting insulin, we adopted the Box-Cox transformation
with an estimated power of 0.35 [32]. The three traits had an
average pairwise correlation of 0.31. When analyzing fasting
insulin or 2-hour glucose levels individually, we did not
identify any significant SNPs at the genome-wide significance
level (5×10−8). For joint testing of all three traits, 𝑇𝑠, 𝑇󸀠𝑠 , 𝑇, 𝑇󸀠
identified none, 𝑄𝑠 identified 139, and 𝑄 identified 140
genome-wide significant SNPs, among which 61 and 61 SNPs
were reported as genome-wide significant in the MAGIC
meta-analyses of fasting glucose, fasting insulin, or 2-hour
glucose levels [31, 33].

Compared to 𝑄𝑠, 𝑄 identified two additional genome-
wide significant SNPs, rs4665987 and rs853780, with 𝑝 values
of 4.9 × 10−8 and 4.9 × 10−8, respectively. MAGIC meta-
analysis of fasting glucose reported a 𝑝 value of 2.1 × 10−38
for rs853780. Its MAGICmeta-analyses of fasting insulin and
2-hour glucose 𝑝 values are 0.054 and 0.477, respectively.
For rs4665987 (near GCKR on chromosome 2:27755825),
MAGIC meta-analysis’ 𝑝 values for the fasting glucose,
fasting insulin, and 2-hour glucose levels are 4.6 × 10−6,
0.04, and 9.3×10−5, respectively.This SNP was genome-wide
significantly associated with human serum metabolite levels
in a GWAS of 8330 Finnish individuals [34] and several other
GWAS [35–38]. Compared to 𝑄, 𝑄𝑠 reported one additional
genome-wide significant SNP, rs17540154, with 𝑝 value of
4.3 × 10−8. The MAGIC meta-analysis of fasting glucose
reported a 𝑝 value of 8.7 × 10−38 for rs17540154. Its MAGIC
meta-analyses of fasting insulin and 2-hour glucose 𝑝 values
are 0.101 and 0.720, respectively.

Among the identified significant SNPs by joint testing,
there were 79 novel genome-wide significant SNPs that have
not been reported as significantly associated with diabetes-
related fasting glucose and insulin levels before. Among them,
one SNP, rs4665987, is located on chromosome 2:27755825
and 78 other SNPs are clustered on chromosomes 15:62132921
to 15:62396389. Interestingly, six of them (listed in Table 5)
were genome-wide significant in the MAGIC meta-analysis
of proinsulin level [39]. The list of all identified SNPs with
detailed analysis’ results is available in the supplementary
materials.

4. Discussion

So far typical effect sizes of most identified genetic variants
for many diseases or traits are very small and they have
only explained a very small proportion of the overall disease
heritability or trait variation. It is commonly accepted that
there are many more common variants with relatively small-
to-medium effect sizes or rare variants with larger effect sizes
yet to be discovered. To identify these additional variants,
very large sample sizes will be needed. One approach is to
form a consortium to facilitatemeta-analysis ofmany studies,
but development of these genetics consortia is generally
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time-consuming and logistically challenging. Meanwhile the
recently studied joint association test of multiple correlated
traits offers an alternative approach to boost power in that
it can often dramatically improve the association test power
by “enlarging the sample size” through the incorporation of
many correlated traits that are typically collected in most
large genetic studies and may share genetic determinants.
Another strategy to further improve the detection power is
to use a variant-set association test, which has been proven to
be very useful (see, e.g., [16, 17, 40–42]). It is worthwhile to
generalize the proposed Wald tests to develop more accurate
and powerful association tests of variant sets across multiple
traits.

Here we have focused on testing a relatively small number
of correlated quantitative traits, which have enabled us to
develop accurate and powerful association tests without any
asymptotic approximations as adopted in the more general
though conservative GEE approach, which can be applied
to any mix of quantitative and discrete traits. It will be
interesting to extend the proposed methods to the phenome-
wide association studies (PheWAS) with a large collection
of phenotypes [43–45] and develop more powerful joint
association test of quantitative and discrete traits.

In the previous discussions, we have assumed the same
set of covariates across all traits. With differing covariates,
we provide technical details regarding model estimation and
extensive simulation studies to confirm that the proposed
methods accurately control type I errors and perform favor-
ably compared to existing methods (see the supplementary
materials for complete results). In summary, we recommend
the proposed multivariate linear regression-based test as a
complementary approach to enhancing the power of ana-
lyzing multiple quantitative traits in unrelated individuals.
Our numerical studies have suggested that the omnibusWald
test generally has robust and good performance. The 1-DF
Wald tests can perform well due to reduced DFs, but they
could be sensitive to the underlying assumptions. It will be
worthwhile to develop adaptive and powerful tests. We have
implemented the proposedmethods in anRpackage available
at http://www.github.com/baolinwu/MTAR. We pro-
vide some sample R codes to install and use the package in the
supplementary materials. The developed algorithms are very
efficient and extremely scalable to genome-wide association
test.
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