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ABSTRACT: How birds sense the variations in Earth’s magnetic field for navigation is
poorly understood, although cryptochromes, proteins homologous to photolyases, have
been proposed to participate in this magnetic sensing. Here, in electrochemical studies with
an applied magnetic field, we monitor the repair of cyclobutane pyrimidine dimer lesions in
duplex DNA by photolyase, mutants of photolyase, and a modified cryptochrome. We find
that the yield of dimer repair is dependent on the strength and angle of the applied
magnetic field even when using magnetic fields weaker than 1 gauss. This high sensitivity to
weak magnetic fields depends upon a fast radical pair reaction on the thymines leading to
repair. These data illustrate chemically how cyclobutane pyrimidine dimer repair may be
used in a biological compass informed by variations in Earth’s magnetic field.

■ INTRODUCTION

Migratory birds and other animals can detect Earth’s magnetic
field to guide navigation, though the mechanisms underlying
this magnetic sensing are unclear.1 The two mechanisms
proposed to explain the phenomenon of avian magneto-
reception are not mutually exclusive and involve sensing using
(i) magnetically sensitive radical pairs or (ii) magnetic iron-
containing nanoparticles.2 Photolyases are enzymes that repair
UV-induced lesions and contain a highly conserved core
structure that could be involved in such magnetosensitive
radical pair chemistry,3 although experiments exploring the
magnetosensitivity of DNA-bound photolyase have not been
reported previously. The conserved region contains a redox-
active flavin adenine dinucleotide (FAD) cofactor, which
absorbs blue light, and carries out electron transfers with
pyrimidine dimer lesions via a cavity in the center of a DNA-
binding groove.4,5

We have developed electrochemical methods to monitor the
repair of cyclobutane pyrimidine dimer (CPD) lesions by
photolyase.6 Escherichia coli photolyase repairs a cyclobutane
pyrimidine dimer in a reductive catalytic cycle upon irradiation
of the fully reduced flavin cofactor (FADH−) with blue light.
CPD lesions form as a result of a photoinduced [2 + 2]
cycloaddition between two adjacent pyrimidines, typically
thymines, on the same DNA strand and significantly kink
duplex DNA. We employ DNA-modified electrodes immersed
in aqueous buffer using DNA charge transport (DNA CT) to
monitor repair of the CPD lesion within a DNA oligonucleo-
tide duplex. DNA CT relies on charge moving through the
internal base pair stack of the DNA duplex, and the efficiency of
DNA CT is extremely sensitive to disruptions in base stacking
such as those that arise with a CPD lesion.7 Upon repair of the
CPD by photolyase, DNA regains its well-stacked structure and

is able to support efficient DNA CT to the flavin cofactor. As a
result, the repair of CPD lesions by photolyase is monitored as
an increase in electrochemical response, because the repair
directly improves the yield of DNA-mediated CT between the
electrode and flavin. Figure 1 illustrates this electrical
monitoring of repair through cyclic voltammetry (CV)
performed on one set of gold electrodes modified with duplex
DNA containing a CPD, bound by photolyase and irradiated
with blue light. When bound to the CPD, the redox-active
flavin is apparent at −120 mV versus AgCl/Ag, though the
signal is small, owing to the presence of the intervening CPD;
upon irradiation, the photolyase repairs the CPD and the signal
increases.
We can explore directly how a magnetic field affects the

DNA repair reaction carried out by photolyase using this
electrochemistry in the presence of a magnetic field. Indeed, the
electrode serves to orient the DNA and DNA reaction relative
to the magnetic field. Previous experiments have monitored
changes in the transient absorption spectra of photolyase in the
presence of a magnetic field,8 but in the absence of DNA; it is
therefore unclear from these experiments how photolyase
activity on its DNA substrate is affected by a magnetic field.
Indeed, we find a remarkable sensitivity to low strength
magnetic fields in this reaction to repair cyclopyrimidine dimers
and not only by photolyase but also by a truncated
cryptochrome, the protein family thought to be responsible
for magnetoreception generally.
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■ RESULTS AND DISCUSSION

Effects of Magnetic Fields on the Photolyase
Reaction. Multiplexed chips consisting of 16 separate DNA-
modified gold electrodes allow for the simultaneous or
sequential comparison of four distinct monolayers created
under identical conditions with 4-fold redundancy,9 and thus
these multiplexed chips allow the evaluation of the effects of
magnetic fields on the photolyase reaction in a well-controlled
system. Figure 2 shows representative data from a single
multiplexed chip where two quadrants were incubated with the
same thiolated duplex DNA containing a thymine dimer
(T□T); the third quadrant contains duplex DNA with a C:A
mismatch intervening between the T□T and the gold surface,
and the last quadrant contains duplex DNA with no dimer or
mismatches. When photolyase is added to a monolayer of
duplex DNA, containing a T□T (29 bp duplexes, ∼8 pmol/
cm2) in the absence of an applied magnetic field, irradiation
with blue light (405 ± 10 nm) leads to the increase in current
for the FADH− redox couple. Importantly, the gold surface
uniformly orients the DNA as well as the DNA-bound
photolyase. Shining light on an identical monolayer but in
the presence of an applied magnetic field, however, leads to a
significant decrease in the yield of charge transferred over the
same period of time. The lack of signal on the electrode
modified with DNA but without the T□T shows that the
photolyase binds specifically to its substrate CPD lesion.

Furthermore, incorporating a single mismatch significantly
decreases the yield of charge transferred to the flavin, indicating
that the flavin is reduced and oxidized by charge transferred
through the DNA duplex; perturbations to the base stack as
occurs with a mismatch are sufficient to decrease DNA CT.
Control experiments show that the protein is still active after

multiple hours of incubation in a magnetic field and that the
protein binds competitively to CPD-containing duplex DNA
(Figure S1). There is also no distinguishable difference when
adding this CPD-containing duplex DNA in the presence or
absence of a magnetic field, suggesting that the magnetic field
does not cause a significant change in photolyase affinity for
CPD. Assays with a SQUID magnetometer furthermore show
that there is no magnetite on the electrode surface that is
influencing this chemistry (Figure S2).
The magnetic field influence on the yield of DNA CT

depends upon when the magnetic field is applied during the
reaction. The presence or absence of an externally applied
magnetic field during flavin photoreduction, before the
incubation of the protein with the duplex DNA substrate,
does not influence the signal during repair (Figure S3).
Importantly, removing the magnetic field during repair restores
the yield of charge transfer (Figure 3). After repair has been
completed, adding a magnetic field has no influence on the
yield of charge transferred. Randles−Sevcik analysis (Figure S4)
demonstrates that photolyase diffuses away from surface of the
DNA-modified electrode when there is no applied magnetic

Figure 1. Cyclic voltammetry of thymine dimer repair by photolyase. (Top) Reductive catalytic cycle of the flavin cofactor in photolyase to repair
thymine dimers. (Bottom) Cyclic voltammetry on multiplexed chip electrodes modified with 29 bp dsDNA and backfilled with mercaptohexanol.
The reaction cartoon on the electrode is shown above with corresponding CV below. (Left) Monolayer of duplex DNA (29 bp), each with a single
thymine dimer (red T□T), is scanned anaerobically at 100 mV/s in Tris buffer (50 mM Tris-HCl, 50 mM KCl, 1 mM EDTA, 10% glycerol, pH 7.5).
(Center) Addition of E. coli photolyase (50 μM) shows a small flavin redox peak centered around −100 mV vs AgCl/Ag, which is consistent with the
fully reduced flavin. (Right) Irradiation with blue light repairs the thymine dimer over time and increases the yield of charge transferred through the
DNA duplex to and from the flavin. After subtracting the background current (dotted line), the area under the reductive peak can be integrated to
give the total charge transferred to the flavin.
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field, associated with repair of the CPD and lowering of the
protein affinity, but the photolyase stays bound to the surface
with an applied magnetic field. Together, these data indicate
that the presence of the magnetic field during repair directly
inhibits the efficiency of repair.
Figure 4 illustrates how the repair efficiency varies with

magnetic field strength and angle. Significantly, at weak
magnetic fields, the magnetic field strength plays an important

role in the efficiency of dimer repair. The background magnetic
field during our experiments was measured to be 0.4 G and
resulted in the highest yield of repair. However, applying an
additional magnetic field perpendicular to the surface as weak
as 0.2 G results in diminished yield. Increasing the field strength
further decreases the yield, but eventually the effect is saturated;
applied fields of 30 and 6000 G result in the same magnitude
decrease in yield. As a control, we also examined the enzymatic
restriction of an oligonucleotide by HincII; as expected, this
reaction is not influenced by the presence of a magnetic field,
nor by irradiation (Figure S14).
Moreover, the angle of the magnetic field relative to the

plane of the electrode significantly influences the yield. A
magnetic field perpendicular to the plane of the electrode
exhibits the largest effect. Changing the angle of inclination to
45° diminishes the effect, as does applying a field parallel to the
plane of the surface. Interestingly, there is no difference in yield
observed for a magnetic field pointing perpendicularly up
versus perpendicularly down (Figure S5), which suggests that
only the angle of the field and not the polarity direction of the
field is important.10

These results clearly illustrate that the CPD reaction is
sensitive to low magnetic field strengths and field direction.
These data are reminiscent of experiments carried out by N. J.
Turro, who established conditions critical for observation of
reactions controlled by weak magnetic fields.11 What is required
is a competition between two processes: one that is magnetic
field dependent and one that is magnetic field independent.
Figure 5 illustrates the CPD repair reaction carried out by
photolyase.12 Here radical pair formation followed by electron
transfer leads either to separation of the two repaired thymines
or to futile back electron transfer without repair. Thus, the
magnetic field dependent radical pair affects the efficiency of
the subsequent bond-breaking repair reaction.

Mutations in Photolyase and the CPD Lesion. To
examine the factors governing this reaction in more detail, we
tested mutants of photolyase that perturb the internal electron
transfer pathways. In particular, we would expect mutations that
affect the lifetime of the CPD radical pair to be most sensitive
to magnetic field effects. Radical pairs that involve both the

Figure 2. Integrated cyclic voltammetry measurement of a
representative multiplexed chip over time irradiated. (Top)
Representation of the multiplexed chip and the different duplex
DNA monolayers and experimental conditions that were tested.
(Bottom) Plot of the area under the reductive peak, which gives the
total amount of charge transferred to the flavin, over time irradiated.
The color of traces corresponds to the quadrants shown in the
representation above. In each case, 50 μM photolyase was added and
irradiated with blue light at t = 0 anaerobically in Tris buffer (50 mM
Tris-HCl, 50 mM KCl, 1 mM EDTA, 10% glycerol, pH 7.5). In the
green quadrant, the 29 bp dsDNA contained no thymine dimer. In the
red quadrant, the 29 bp dsDNA contained a thymine dimer and a C:A
mismatch between the dimer and the electrode surface. In the black
quadrant, the 29 bp dsDNA contained a thymine dimer. In the blue
quadrant, the same 29 bp dsDNA containing a thymine dimer was
used as was tested in the black quadrant, but the entire experiment was
conducted with a 560 G magnetic field pointing perpendicularly up
intersecting the plane of the electrode. Standard error was plotted with
n = 4.

Figure 3. Total amount of charge transferred over time irradiated with
varying magnetic field conditions. First, 50 μM photolyase was added
to a monolayer of 29 bp dsDNA with T□T and irradiated with blue
light (t = 0) anaerobically in the absence (black) or presence (blue) of
a 30 G magnetic field applied perpendicularly up intersecting the plane
of the electrode. At the time indicated by the dotted line the magnetic
field was either applied (gray) or removed (light blue) to switch the
magnetic field conditions in a given experiment. Standard error was
plotted with n = 4.
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flavin and dimer radical anion could serve also as magnetically
sensitive intermediates in the repair reaction. Photoactivation of
FAD initiates electron transfers along a conserved triad of

tryptophan residues that gives a flavin radical (FAD•) and a
tryptophan radical (TrpH+•) that have been shown through
transient absorption spectroscopy to be sensitive to weak

Figure 4. Total amount of charge transferred over time irradiated with varying magnetic field strengths and angles. In all experiments photolyase (50
μM) was added to 29 bp dsDNA-modified electrodes containing T□T and then irradiated with blue light (t = 0) anaerobically in Tris buffer (50 mM
Tris-HCl, 50 mM KCl, 1 mM EDTA, 10% glycerol, pH 7.5). (Top left) The background magnetic field was 0.4 G, and the applied field was added to
give the total field strength listed to the right of the plot. (Top right) The magnetic field was applied perpendicularly up intersecting the plane of the
electrode surface. The magnetic field angle was varied by applying a 30 G field (top right) or 0.4 G field (bottom right) at either a 0°, 45°, or 90°
angle relative to the plane of the electrode surface. (Bottom left) The approximate angles at which the magnetic fields intersect thymine dimers are
illustrated. The redox potential of the flavin lies negative of the potential of zero charge of the working electrode. At this potential the duplexes line
up approximately normal to the electrode surface, meaning that the thymines are approximately parallel to the surface.9 The largest magnetic field
effect occurs when the field intersects the dimer perpendicular to the plane of the bases, and the weakest effect occurs when the field is parallel to the
plane of the bases. Standard error was plotted with n ≥ 4.

Figure 5. Radical repair scheme for cyclobutane pyrimidine dimers (CPD) based on previous work.11 Forward electron transfer from the fully
reduced flavin results in a radical residing on the CPD. First the C5−C5′ bond splits, followed by either C6−C6′ bond splitting or futile back
electron transfer to the CPD state. Following bond splitting, either the radical residing on the pyrimidine can undergo electron return to the flavin,
resulting in the completion of the repair process, or the radical can facilitate CPD formation and undergo futile back electron transfer.
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applied magnetic fields (in the range of 30−390 G); this range
is, however, stronger than the earth’s magnetic field (0.25−0.65
G).3 Multiple photolyase active site mutants were previously
characterized using ultrafast spectroscopy to determine the
rates of electron transfer and bond breaking steps in CPD
repair in the absence of a magnetic field.12−15 The mutant
N378C interacts with the flavin and displays slow forward
electron transfer from the flavin to the dimer and only slightly
reduced electron return from the thymine radical to the flavin.
M345A interacts with both the dimer and the flavin and shows
increased rates for forward electron transfer and electron
return. E274A also interacts with both the flavin and the dimer
and has faster electron return but slower forward electron
transfer. As shown in Figure 6, we find that both of the

mutations near the dimer eliminate magnetosensitivity. In
contrast, the N378C mutant retains magnetosensitivity despite
having a destabilized flavin radical, which has its redox potential
shifted −100 mV relative to WT (Figure S6). The magneto-
sensitivity of these mutants correlates with slower electron
return and does not correlate with forward electron transfer or
quantum yield of CPD repair.13 Importantly, these results point

to the radical pair on the pyrimidine dimer as the critical player
rather than radical pairs that involve the flavin.
Repair of uracil-containing dimers further reveal the

underlying basis for magnetosensitivity. In these experiments
the repair of T□T, U□T, T□U, and U□U dimers were
monitored with and without an applied magnetic field and are
presented in Figure 6. The U□U dimer has diminished but
significant magnetosensitivity. Both the U□T and T□U
dimers show no significant magnetosensitivity, despite the
T□U having a radical lifetime on par with the U□U, and the
U□T having a longer radical lifetime than any of the other
dimers.14 Together these data argue further that perturbation in
the uracil/thymine radical pairs most affect the magneto-
sensitivity of CPD repair.
These data thus allow us to pinpoint the likely source of

magnetosensitivity in photolyase repair: the pyrimidine dimer.
Active site mutations near the CPD as well as changes in the
CPD structure eliminate magnetosensitivity, but the N378C
mutation near the flavin and away from the CPD retains
magnetosensitivity. The crucial condition for observation of
magnetic field effects is a competition between two processes,
and the magnetic field changes their relative favorability.11 As
illustrated in Figure 5, our data show that the competition
either to maintain or to repair the CPD is shifted toward
maintenance with an externally applied magnetic field. The
magnetosensitive chemistry serves to perturb the favorability of
C6−C6′ splitting that results in repaired CPD and futile back
electron transfer that maintains the CPD.13 Rapid singlet−
triplet interconversion, as has been observed in biradical
species, can change the favorability of bond cleavage versus
reformation.16 A second competition occurs after the C6−C6′
splitting because the radical resides on one of the pyrimidines
long enough that it may recreate the dimer before it safely
returns to the flavin.13,17 However, the limited influence of the
N378C mutant on magnetosensitivity suggests that this second
process is unlikely to be the primary source of competition.
Weak magnetic fields on the order of 10−100 G can influence
the equilibrium between singlet and triplet states and change
the reaction products of biradical species,18 similar to what
occurs during CPD repair on the thymine dimer. It is not
immediately clear why CPD repair is still more sensitive than
these reactions, but the short radical lifetimes and very fast
equilibration between singlet and triplet states may be critical
factors. The confinement of the thymine dimer within the
photolyase binding pocket may further aid the magneto-
sensitivity of the radical pair by constraining conformation,
thereby stabilizing the relative energy of the singlet and triplet
states and minimizing energy changes caused by conforma-
tional motion that has previously been shown to overwhelm
magnetic field effects. Certainly these data serve to highlight
that it is the radical pair on the thymines that leads to the
magnetosensitivity.

Reaction of a Truncated Cryptochrome in the
Absence and Presence of a Magnetic Field. If it is the
radical pair of the thymine dimer that is critical to the biological
compass, the relevance to magnetoreception by the homolo-
gous cryptochromes becomes difficult to understand. Crypto-
chromes have been implicated in magnetosensitive processes in
both animals and plants.19 Cryptochromes are essentially
defined by their homology to photolyases but also by their
inability to carry out CPD repair.1,20 Explanations for this
inability to repair CPD lesions range from structural differences
in the domains of cryptochromes versus photolyases to the

Figure 6. Effect of structural perturbations on magnetosensitivity.
(Top) Cartoon showing placement of thymine dimer relative to flavin
cofactor and three active site residues in photolyase. Positions of
residues adapted from DNA-bound photolyase crystal structure.15

(Middle) Comparison of the yield of charge transferred to different
active site mutants with and without 30 G magnetic field
perpendicularly intersecting the plane of the electrode surface after
60 min of irradiation with blue light anaerobically in Tris buffer (50
mM Tris-HCl, 50 mM KCl, 1 mM EDTA, 10% glycerol, pH 7.5).
(Bottom) Comparison of the yield of charge transferred to different
cyclobutane pyrimidine dimers with and without 30 G magnetic field
perpendicularly intersecting the plane of the electrode surface after 60
min of irradiation with blue light. For these dimers U = uracil, T =
thymine, and the 5′ position is listed first with the 3′ position second.
Standard error was included with n ≥ 6. *Lifetimes of thymine radicals
with mutant photolyase were obtained from C. Tan et al.13

**Lifetimes of different dimer radicals were obtained from Z. Liu et
al.14
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possibility that their inability to repair CPD is reliant on special
conditions. In cryptochromes, C-terminal extensions appear to
block the DNA-binding pocket and could prevent CPD repair
except under conditions where the extensions are released.21,22

Few crystal structures of cryptochromes are available, however
a crystal structure of Arabidopsis CRY1 photolyase-homologous
region, a model of Arabidopsis CRY2 photolyase-homologous
region, and a crystal structure of Drosophila cryptochrome show
partial conservation of the positively charged groove of
photolyase that could allow for DNA to associate with the
active site if the C-terminal extension were released from this
region.22−26 It is important to note that Arabidopsis CRY2-GFP
fusion proteins bind to chromosomes within mitotic cells.12 It is
also noteworthy that a single amino acid substitution has
previously revealed photolyase activity in Arabidopsis cry1
attributed to stabilization of the reduced flavin; here poor DNA
binding was cited as a possible reason for its very low
efficiency.27

We therefore tested a truncated Arabidopsis thaliana
cryptochrome 1 lacking the C-terminal extension (AtCRY1ΔC)
for CPD repair in the presence and absence of an applied
magnetic field. The truncated cryptochrome is 509 amino acids
in length and lacks the entire C-terminal tail (172 amino acids).
The crystal structure of AtCRY1ΔC has also been reported,28

and while it has been shown specifically that the wild type
protein does not repair dsDNA,29 there are no reports
describing the ability of this truncated protein to repair
dsDNA. We therefore tested repair by the truncated protein
both in solution and electrochemically. The truncated protein,
AtCRY1ΔC, was first incubated with dsDNA containing T□T
and irradiated with blue light in aqueous solution. HPLC traces
of the DNA before and after incubation show that AtCRY1ΔC
repairs T□T similarly to the photolyase (Figure S7). We used
matrix assisted laser desorption ionization time-of-flight mass
spectroscopy (MALDI-TOF) to characterize the mass of the
CPD-containing oligonucleotide before and after incubation
with AtCRY1ΔC and found that while the HPLC mobility had
changed, the m/z did not shift, as would be expected with
dimer repair. We then used a phosphodiesterase to digest the
DNA before and after incubation with AtCRY1ΔC. The peak
characteristic of the thymine dimer dinucleotide, distinct from
the individual nucleotides, was identified using HPLC
combined with time-of-flight mass spectrometry, and this
peak decreased upon incubation with AtCRY1ΔC, but only in
the presence of blue light; this result chemically confirms that
the CPD is being repaired by irradiation of the cryptochrome
(Figures S12 and S13).
Thymine dimer repair by AtCRY1ΔC was then monitored

both electrochemically and in solution in the presence and
absence of a magnetic field (Figure 7). When the cryptochrome
is added to a monolayer of duplex DNA containing T□T in the
absence of an applied magnetic field, irradiation with blue light
leads to the increase in current for the FAD redox couple
(Figures 7, S8). Shining light on an identical monolayer in the
presence of an applied magnetic field, however, leads to a
significant reduction in the yield of charge transferred over the
same period of time, consistent with the change observed for
photolyase. In solution, where the protein bound to DNA is
randomly oriented, quantitation of the DNA by digestion
following irradiation shows a decrease in the T□T dinucleotide
in the absence of a magnetic field, consistent with repair upon
irradiation, but a similar decrease is evident also in the presence
of the magnetic field (Figure 7). Thus, repair in solution

requires irradiation but is insensitive to magnetic field direction.
This result contrasts experiments conducted on the DNA-
modified electrode, consistent with the idea that protein
orientation is needed for magnetosensitivity. Whether such
orientation is provided biologically on chromatin requires
examination. It should be noted also that the diminished signal
on the electrode modified with DNA without thymine dimers
shows that AtCRY1ΔC binds preferentially to the CPD lesion
(Figure S9). Binding of AtCRY1ΔC to dsDNA containing a
CPD lesion was further confirmed using electrophoretic
mobility shift experiments (Figure S10).
Importantly, and consistent with the experiments on

photolyase, the angle of the magnetic field relative to the
plane of the electrode significantly influences the yield of dimer

Figure 7. Monitoring CPD repair by cryptochrome (AtCRY1ΔC).
(Top) Electrochemical experiments show the total amount of charge
transferred to the flavin of AtCRY1ΔC over time irradiated with
varying magnetic field angles. 50 μM cryptochrome was added to a
monolayer of 29 bp dsDNA with T□T and irradiated with blue light (t
= 0) anaerobically in Tris buffer (50 mM Tris-HCl, 50 mM KCl, 1
mM EDTA, 10% glycerol, pH 7.5). The background magnetic field
was 0.4 G, and the applied field was added to this to give the total field
strength of 30 G. The magnetic field angle was varied by applying the
magnetic field at either a 0°, 45°, or 90° angle relative to the plane of
the electrode surface. Standard error was plotted with n = 4. (Bottom)
Monitoring CPD repair with AtCRY1ΔC by HPLC. Duplex DNA
containing T□T was incubated under anaerobic conditions in solution
for 1 h at ambient temperature with AtCRY1ΔC with and without a
6600 G magnetic field, and in the presence or absence of blue light.
Phosphodiesterase I was then used to digest the DNA, and the HPLC
peak characteristic of the thymine dimer (inset) was quantified and
compared.
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repair by the cryptochrome (Figure 7). A magnetic field
perpendicular to the plane of the electrode exhibits the largest
effect. Changing the angle of inclination to 45° diminishes the
effect, as does applying a field parallel to the plane of the
surface. Thus, a cryptochrome with its C-terminal domain
removed can in fact serve as a compass by carrying out the
CPD repair reaction. Indeed, binding of the C-terminal domain
may prevent DNA from accessing the flavin and provide a
regulatory element for the reaction.

■ CONCLUSIONS
These experiments illustrate the design of a biological compass
that functions at weak magnetic field strengths. Weak magnetic
fields significantly affect the repair of CPD lesions by E. coli
photolyase and by A. thaliana cryptochrome with removal of its
C-terminal domain. This magnetosensitivity is dependent on
the magnetic field strength and direction. What is central to the
magnetosensitivity we observe with photolyase and crypto-
chrome is the CPD repair reaction, a reaction involving a short-
lived radical pair that governs a subsequent bond-breaking
reaction, the dimer repair. Experiments with photolyase active
site mutants and uracil-containing lesions point to radical pair
chemistry on the CPD as the source of magnetosensitivity.
These experiments offer insight into a plausible way that nature
could use radical pair chemistry to sense the angle of magnetic
fields as weak as Earth’s and certainly suggest the need to
examine more closely whether CPD repair plays any role in vivo
in magnetic sensing.
Data Availability. The data that support the findings of this

study are available from the corresponding author upon
reasonable request.
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