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It is normal for hosts to be co-infected by parasites. Interactions among

co-infecting species can have profound consequences, including changing

parasite transmission dynamics, altering disease severity and confounding

attempts at parasite control. Despite the importance of co-infection, there is

currently no way to predict how different parasite species may interact with

one another, nor the consequences of those interactions. Here, we demon-

strate a method that enables such prediction by identifying two nematode

parasite groups based on taxonomy and characteristics of the parasitological

niche. From an understanding of the interactions between the two defined

groups in one host system (wild rabbits), we predict how two different nema-

tode species, from the same defined groups, will interact in co-infections in a

different host system (sheep), and then we test this experimentally. We show

that, as predicted, in co-infections, the blood-feeding nematode Haemonchus
contortus suppresses aspects of the sheep immune response, thereby facilitat-

ing the establishment and/or survival of the nematode Trichostrongylus
colubriformis; and that the T. colubriformis-induced immune response nega-

tively affects H. contortus. This work is, to our knowledge, the first to use

empirical data from one host system to successfully predict the specific

outcome of a different co-infection in a second host species. The study there-

fore takes the first step in defining a practical framework for predicting

interspecific parasite interactions in other animal systems.
1. Introduction
Co-infecting parasite species can interact with one another, potentially altering

both within-host infection dynamics [1–3] and between-host transmission (e.g.

by increasing or decreasing parasite reproductive output or by altering host sus-

ceptibility) [2,4–7]. In turn, changes in infection dynamics within hosts can alter

host disease severity and/or duration [8–10] and may directly or indirectly con-

found attempts to control parasite infection [3,11,12]. In most cases, whether or

not particular parasite species interact, and the nature of such interactions are

unknown. Despite the important consequences of co-infection, the potential

interactions among parasites are, therefore, rarely considered in either clinical

settings or during the design of infection control programmes. One possible

solution to this problem would be to discover and define rules that determine

when and how parasites interact. Such a concept has been explored at a broad

scale for macroparasite–microparasite interactions using a meta-analysis of

different infection combinations in mice [13]. This meta-analysis demonstrated

that macroparasite–microparasite co-infection would normally result in

increased numbers of microparasites owing to helminth-induced impairment

of the anti-microparasite immune response, but that such effects would be mod-

erated where resource competition was also present. This was a seminal
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contribution to the field of co-infection biology, highlighting

the potential to predict co-infection using easily obtained

parasite traits. However, because of the necessarily broad cat-

egorizations in this analysis, and the focus on a single model

host system, application of these findings in a clinical or

public health setting is difficult. Two key questions therefore

follow logically from this meta-analysis: (i) can predictions

also be made at a species-specific scale appropriate for use

in clinical and public health settings? and (ii) can patterns

of parasite interspecific interaction be robustly predicted

across different host species?

In earlier work, we demonstrated, using previously pub-

lished data, that if parasites were grouped according to both

the immune responses they stimulate and those which affect

them [14], it was possible to predict the result of a co-infection.

This approach was limited, however, by the necessity for

detailed immunological data for each of the co-infecting para-

sites. Here, we develop and extend this approach by using

taxonomic and parasite niche traits (i.e. resource use, site of

infection) to assign parasite species to groups, making the

assumption that organisms assigned to these groups will

interact with the host immune system in a similar manner to

one another. Subsequently, we infer what the immune inter-

action of each parasite group will be with its host, and hence

the likely immune relationship between the groups, based

on a known example of a co-infection interaction between

representative species from those groups.

In a previous study of the parasite community of wild

rabbits (Oryctolagus cuniculus), we described a range of inter-

specific interactions, including the interaction between two

gut nematodes; the blood-feeding stomach worm Graphidium
strigosum and the intestinal worm Trichostrongylus retortaeformis,
a mucosal browser [3]. We showed that an increasing abun-

dance of G. strigosum was associated with increased infection

intensity of T. retortaeformis but, conversely, that the presence

of T. retortaeformis was associated with a reduced intensity of

G. strigosum. We further proposed that these effects occurred

because (i) G. strigosum downregulated anti-worm immune

response in the host, and T. retortaeformis was given an advan-

tage by this suppression, while (ii) T. retortaeformis induced an

immune response which, though reduced in co-infection,

acted against G. strigosum [3]. In sheep, there are parasite species

that are taxonomically and functionally equivalent to the para-

site groups found in the rabbit; specifically, the nematode

Haemonchus contortus, which lives in the abomasum (stomach)

of the sheep and feeds on host blood, and Trichostrongylus
colubriformis, which lives downstream in the small intestine

and feeds on the host mucosa. We predict that these two para-

sites of sheep will interact with the same pattern, and by the

same process, as the functionally equivalent parasite species

in the rabbit. This is, to our knowledge, the first empirical

attempt to predict the consequences of a hitherto untested inter-

specific interaction and to do so using data from different host

and parasite species.

Not all parasitic nematodes are equal in the immune

responses that they stimulate, or that affect them [15,16].

While the immune control of the majority of gut nematodes

is associated with a T-helper cell 2 (Th2) immune response

[17,18], many nematodes are able to subvert this response to

varying degrees. Such immunomodulation may be particu-

larly important for blood-feeding species. These nematodes

are usually very harmful to their host, causing both tissue

damage and anaemia, with heavy infections sometimes
proving fatal [19]. In addition, blood-feeding nematodes are

frequently found at a high prevalence in their host popula-

tions [20,21]. Therefore, it would be reasonable to expect

hosts to evolve strong immune responses against blood-

feeding nematodes. Yet age-prevalence and age-intensity

curves for these parasites show that they cause chronic infec-

tions and/or repeatedly reinfect the host [20], suggesting

that immune responses are functionally unsuccessful against

them. Furthermore, many blood-feeding nematode species

have been shown to have wide-ranging immunomodulatory

capacities (e.g. Ancylostoma duodenale, Ancylostoma caninum,
Necator americanus, Angiostrongylus cantonensis, H. contortus
[22–26]). While these species do induce a strong Th2

response [23,27], many simultaneously subvert that response

through a range of mechanisms [28]. These immunomodula-

tory effects may have consequences for other co-infecting

parasite species. In contrast to blood-feeding nematode

species, Trichostrongylus spp. browses on intestinal mucosa

and bacteria, and shows limited invasion and penetration

into host tissues [29]. These nematodes tend to produce

shorter-lived infections than those of blood-feeding species,

being more rapidly and effectively controlled by the host

[30,31]. While there is evidence that Trichostrongylus spp.

may have some immunomodulatory capacity, it does not

appear to be as immunologically broad ranging as that

observed among the blood-feeding species [16,32]. Further

evidence of the different immune responses to these parasite

groups is seen in rabbits, where the temporal pattern of natu-

ral and laboratory infections suggests that T. retortaeformis is

effectively removed by the host, while G. strigosum is not

[3,33]. In summary, we therefore propose that how these two

parasite groups interact with their hosts’ immune responses

will result in predictable interspecific interactions.

Here, we test our hypothesis in sheep experimentally

co-infected with H. contortus and T. colubriformis (comparing

them to sheep mono-infected with each species, and with

uninfected controls), by measuring nematode intensity and

the host immune response. We specifically predict that in

co-infections (i) the blood-feeding H. contortus will suppress

aspects of the host immune response, thereby facilitating the

establishment and/or survival of T. colubriformis, and (ii) the

T. colubriformis-induced immune response will negatively

affect H. contortus.
2. Material and methods
(a) Pre-infection protocol
Following approval by the FD McMaster Laboratory, Chiswick,

Animal Ethics Committee, at weaning, 132 Merino wethers

(castrated rams) were brought into CSIRO Livestock Industries

animal house where faecal samples were analysed using a modi-

fied McMaster technique (as in [34]) to diagnose any helminth

infection. Animals were then treated with a mixture of Abamec-

tin and Praziquantel, Levamisole and Benzimidazole, using the

manufacturers’ recommended doses. Twelve days later a second

faecal screen for helminth infection was performed to confirm that

animals were helminth-free. All animals were blood-sampled via

jugular venepuncture to provide a pre-infection baseline immune

and health status measure. Animals were then assigned to one of

four treatment groups using a stratified random assignment

(where groups were balanced for body mass, body condition

and original faecal egg count). The four treatment groups were:

(i) control, uninfected (n ¼ 12), (ii) H. contortus mono-infected
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(n ¼ 40), (iii) T. colubriformis mono-infected (n ¼ 40), or

(iv) H. contortus and T. colubriformis co-infected (n ¼ 40) (figure 1).

(b) Infections and sampling
An overview of the experimental protocol is shown in figure 1.

Animals in the co-infected and mono-infected groups were

each infected twice weekly for 10 weeks with 300 larvae of

H. contortus and/or 1500 larvae of T. colubriformis. For animals

in the co-infection groups, doses of both parasite species were

given simultaneously as an additive dose. Differential dosing

was used because of the different size and pathogenicity of the

two helminth species, T. colubriformis being considerably smaller

and less pathogenic than H. contortus [35]. Animals in the control,

uninfected group, were handled in the same manner as other ani-

mals. Throughout the experiment animals were maintained on

raised slatted floors to prevent self-reinfection, provided fresh

water ad libitum, and fed daily with a ration of 700 g of standard

pellets consisting of lucerne (500 g kg21), wheat (100 g kg21),

pollard (200 g kg21), bran (160 g kg21), salt (20 g kg21) and

ammonium chloride (20 g kg21), the quantity of which was set

for normal growth.

At weeks 6, 10, 14 and 18 post-initial infection (where initial

infection indicates the first day of larval dosing), all animals were

blood-sampled, as above, and body mass and body condition

(assessed using the industry-standard scale of 0–5, www.lifeti-

mewool.com.au/conditionscore.aspx) were recorded. At each

of these four sample points, a subset of animals (10 for each infec-

tion group, and three for the control, uninfected group) was

humanely slaughtered and tissue collected, and processed as

described below.

(c) Worm counts
From killed animals, the abomasum and small intestine were

sampled in sections, placed into separate dissecting trays, the

tissue opened and the contents gently washed into collecting

jars to remove all adult nematodes. The number of worms in

subsamples was then counted to determine the total number of

worms of each species infecting each animal. Samples of aboma-

sal and jejunal tissues (4 cm2 squares) were fixed in Bouin’s

solution for later histological analysis. Haemonchus contortus
larvae can developmentally arrest within the host at the L4

stage, a form of diapause known as hypobiosis. Hypobiosis

does not occur in the strain of T. colubriformis used in our

study. Remaining abomasal tissue was, therefore, digested in

phosphate-buffered saline containing 10% v/v HCl to release

any arrested H. contortus fourth-stage larvae, which were

then counted.
(d) Measures of immune response
We measured the number of immune cells in the fixed abomasal

and jejunal tissue, which, following standard sectioning, were

stained with haematoxylin and eosin, and toluidine blue [36].

For both tissue samples, cell counts and scores were estimated

per villus–crypt unit (i.e. from the tip of one villus to the

next). For the abomasal tissue, we determined the number of glo-

bule leucocytes, mast cells and eosinophils, and scores for

lymphocyte infiltration (0 ¼ no infiltration, to 4 ¼ heavy infiltra-

tion). For jejunal tissue the same cell counts and scores were

made, but in addition the number of goblet cells and a score of

the proportion of goblet cells containing granules (0 ¼ no cells

contained granules, to 5 ¼most cells contained granules) were

also recorded, together with a score of the thickness of the

smooth muscle layer (0 ¼ very thin, to 4 ¼ thick).

We determined the concentration of IgG1 antibodies against

H. contortus and against T. colubriformis L3 antigens using

previously described enzyme-linked immunosorbent assays

(ELISAs) [36,37].

(e) Statistical analyses
One animal was removed from the control group prior to infec-

tion because of ill health, leaving a control group sample size of

11 animals. One animal was also removed from each of the co-

infection and H. contortus mono-infection groups prior to the

6-week sample point, due to ill health unrelated to the helminth

infections, leaving a sample size of 39 sheep for each of these two

groups. A small number of other sampling losses owing to pro-

cessing problems are detailed in the electronic supplementary

material, S1, which provides an overview of sample size by

sample point for all analyses.

Analyses were conducted in R v. 3.1.2 [38]. The effect of

infection treatment group on the number of adult T. colubriformis
worms, the number of adult H. contortus worms and the number

of H. contortus arrested larvae were assessed in three general

linear models (GLMs). Infection group (mono- or co-infected),

days post-initial infection (i.e. cull day; included as a categorical

variable) and their interaction were included as independent

variables. In addition, the faecal egg count pre-anthelminthic

treatment and animals’ total gain in mass were also accounted

for by inclusion as independent terms. Following preliminary

model assessments, the number of arrested larvae of H. contortus
was square root transformed (sqrt(x þ 1)) to normalize the

residuals of that GLM. Neither Poisson nor negative binomial

error distributions provided better model fits for any model

(electronic supplementary material, S2).

We used two steps to determine how treatment group

affected the measures of immune responses in the abomasum

and jejunum. First, two principal components (PCs) analyses

were conducted separately on the abomasal and jejunal measures

of immune responses, using a singular value decomposition of

the centred and scaled data matrix [39]. All scores were treated

as numeric data and scaling was applied. The measures of the

abomasal immune responses were compared between the

H. contortus mono- and co-infection groups; and measures of

the jejunal immune responses were compared between

T. colubriformis mono- and co-infection groups; in both cases,

this separation reflects the location of these species within the

animals. The PC explaining the majority of the variation in

each analysis was then used as the dependent variable in a

GLM where treatment group, time of sampling and their inter-

action were the explanatory variables. Models were refined in a

stepwise manner by evaluating the F statistics (terms were

rejected when p . 0.05). Where the GLM analyses showed sig-

nificant differences in PC values between treatment groups, the

second step in the analysis was undertaken. In these second ana-

lyses, the bootstrapped mean value was calculated for each

individual measure of immune response, to qualitatively explore

http://www.lifetimewool.com.au/conditionscore.aspx
http://www.lifetimewool.com.au/conditionscore.aspx
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the effect of treatment group on these individual measures. For

the treatment groups, bootstrapped mean values were calculated

for each time of sampling. For the uninfected control animals, the

data were pooled across sample points due to the smaller sample

size in this group.

The effect of treatment group on anti-H. contortus and anti-

T. colubriformis IgG1 titres were assessed in two general linear

mixed models (GLMMs using the R package ASReml-R v3.0) in

which each animal’s individual identification number was

included as a random term to control for pseudo-replication.

The titres of IgG1 were transformed to normalize residuals in

the model, as ((x þ 1)0.12) for anti-T. colubriformis and ((x þ 1)0.18)

for anti-H. contortus responses. Results shown here are back-

transformed. In these models, treatment group, time of sampling

(included as a categorical variable) and their interaction

were included as fixed effects. This fixed-effect model was refined

in a stepwise manner using the Wald test and evaluation of the

conditional F statistics (terms were rejected when p . 0.05).

Where treatment group was found to be a significant effect, differ-

ences between treatment groups were assessed by within-model

contrasts.
3. Results
(a) Co-infection affects Trichostrongylus colubriformis

and Haemonchus contortus
Trichostrongylus colubriformis was a more successful parasite

of sheep when it was in a co-infection with H. contortus (the

number of adult T. colubriformis differed between the co-

infection and mono-infection groups through time post-initial

infection F3,69¼ 3.38, p ¼ 0.023; figure 2). There were more

adult T. colubriformis worms in co-infected sheep than in

T. colubriformis-only infections at 14 and 18 weeks post-initial

infection (t69 ¼ 22.08, p ¼ 0.041; t69 ¼ 23.96, p , 0.001,

respectively). A total of 30 000 T. colubriformis infective

larvae were given to each sheep, which by week 14 could

all have developed into adult worms. In the co-infected ani-

mals a mean of 23 380 adults were present (78%), whereas

only 16 761 (56%) were found in the T. colubriformis-only
infections (see the electronic supplementary material, S3 for

mean and s.d. of raw counts through time).

Haemonchus contortus was also affected by co-infection,

but differently compared with T. colubriformis. To assess the

H. contortus infection, we analysed both the number of

arrested L4-stage larvae in the host tissues along with adult

worms (see the electronic supplementary material, S3 for

mean and s.d. of raw counts through time). There were

fewer H. contortus arrested larvae in co-infections, compared

with H. contortus-only infections (F1,71¼ 4.15, p ¼ 0.045;

figure 2); the number of these larvae was also affected by

the time post-initial infection (F3,71¼ 9.79, p , 0.001; elec-

tronic supplementary material, S4). By contrast, the number

of adult H. contortus was not affected by co-infection,

though numbers did vary through time post-initial infection

(F3,72 ¼ 14.73, p , 0.001; electronic supplementary material,

S5). As the number of adults show no evidence of being bol-

stered by larvae leaving the arrested state in the co-infection

group, together these data mean that in co-infections there are

overall fewer H. contortus worms.
(b) Co-infection affects host cellular immune responses
Trichostrongylus colubriformis infects the jejunum and to

measure the immune responses in this site, we used a PC

analysis of jejunal immune measures. All immune measures

positively loaded onto PC axis 1 (PC1), which explained

49% of the variance in these components (electronic sup-

plementary material, S6). PC1 was subsequently used in the

GLM analysis and transformed (Ln(PC1 þ 3)), resulting in a

normal distribution of the model residuals; the results

shown in the figures are back-transformed. The PC1 scores

significantly differed between the co-infection and mono-

infection groups, through time post-initial infection (GLM

analysis of PC1 scores F3,71¼ 3.84, p ¼ 0.013; figure 3). The

PC1 scores for the co-infected group did not vary with time

post-initial infection, whereas those of the mono-infected

group increased through time. The predicted PC1 values in

the co-infected animals were significantly lower than in the
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T. colubriformis-only infection group (significant difference

between co-infected and mono-infected group at weeks 14

and 18 post-initial infection t71 ¼ 2.32, p ¼ 0.023, t71 ¼ 4.50,

p , 0.001). Together, this means that the jejunal immune

response induced by T. colubriformis was suppressed in co-

infected animals. Analysis of the individual cell types in the

jejunum also showed that the greatest responses were in the
T. colubriformis-only infection group and lower in the

co-infected animals, presumably owing to the immunosup-

pressive effect of H. contortus (figure 4; electronic

supplementary material, S7). In animals mono-infected with

H. contortus, the jejunal immune responses were often as

low as those in the control (uninfected) animals, which is

unsurprising given that H. contortus is not present in the
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jejunum. Haemonchus contortus infects the abomasum, and to

measure the immune responses in this site we used a PC

analysis of the abomasel immune measures. All abomasel

immune measures loaded positively onto PC1 explaining

62% of the variance (electronic supplementary material, S8).

PC1 was subsequently used in the GLM analysis and trans-

formed (Ln(PC1 þ 3)), resulting in a normal distribution of

the model residuals; the results shown in the figures are

back-transformed. GLM analyses of the abomasal PC1

scores showed that they did not differ significantly between

the co-infected and mono-infected animals, nor did they

vary through time post-initial infection.

(c) Co-infection increases anti-Haemonchus contortus
larval immune responses

The concentration of anti-H. contortus IgG1 was significantly

different between co-infected and H. contortus-only infected

animals (effect of treatment group excluding the T. colubrifor-
mis mono-infection group F8,300¼ 3.31, p ¼ 0.001; figure 3).

The response was significantly greater in the co-infected

animals, compared with the H. contortus-only infected and

control animals, which did not differ from one another

(figure 3). In the co-infected animals at 18 weeks post-initial

infection the IgG1 response was reduced, coinciding with a

reduced number of arrested H. contortus larvae (electronic

supplementary material, S4).

The concentration of anti-T. colubriformis IgG1 was signifi-

cantly affected by treatment group (effect of treatment group,

excluding the H. contortus mono-infection group, F8,300¼ 3.09,

p ¼ 0.002; electronic supplementary material, S9). Specifically,

these responses were significantly higher in the co-infected

and T. colubriformis-only infection groups compared with the

control, uninfected group. The co-infected and T. colubriformis-
only infection groups were not significantly different from one

another (electronic supplementary material, S9).

4. Discussion
We hypothesized that, by defining parasite groups using

taxonomy and parasite traits, we could infer the host

response to those groups and hence the expected interaction

among co-infecting parasites. Our hypothesis was supported.

Specifically, we demonstrate that immune suppression by the

blood feeder H. contortus had a positive effect upon the num-

bers of mucosal browser T. colubriformis, while the immune

response promoted by the mucosal browser negatively

affected the numbers of the blood feeder.
5. Effect of the blood feeder on the mucosal
browser

The presence of H. contortus resulted in comparatively more

T. colubriformis adult worms in co-infected sheep. The

trajectory of adult worm numbers in the T. colubriformis
mono-infected sheep shows a classic convex age-intensity

curve, indicative of host immune responses removing adult

worms [30,40,41]. In the co-infection treatment group the

number of worms reached an asymptote, suggesting that

adult worms were not being removed by the host immune

response. There was, however, some evidence of a reduction

in the larval establishment in this co-infection group (though
less than in the mono-infected group), probably indicating

that an anti-T. colubriformis response was beginning to

develop. This is consistent with previous studies that have

shown the anti-T. colubriformis immune response acts first

against incoming larvae [42].

As we hypothesized, the difference in the number of

T. colubriformis adults between co-infection and mono-infection

groups appears to be immune-mediated. Our data demon-

strate that there was a reduced immune response in the

jejunum in the co-infected animals, compared to the T. colubri-
formis mono-infected animals, and most pronounced in the

latter time points (weeks 14 and 18 post-initial infection;

figures 3 and 4 and electronic supplementary material, S7).

This differentiation between the infection groups suggests

that the immune suppression we observe is dependent on

the adult H. contortus (since by week 14 all larvae would

have developed to adulthood or arrested their development).

We use the presented immune measures as general indicators

of anti-helminth immune responses, rather than implicating

individual immune components. Nevertheless, all these

immune components have been associated with the immune

response against helminths in sheep [43–45].
6. Effect of the mucosal browser on the blood
feeder

There was no evidence of an effect of co-infection on the

number of H. contortus adults, nor on the abomasal cellular

immune response. However, the significantly fewer arrested

larvae in the co-infected animals demonstrate that co-

infection still has a negative effect on H. contortus (figure 2).

In natural infections, arrested larvae resume development

to adulthood during periods of host stress [36]. There are sig-

nificantly less arrested larvae in the co-infection group but no

more adults. These missing larvae must, therefore: (i) be lost

to the system entirely, or (ii) have replaced adults that have

been lost. Thus, these larvae either (a) never established in

the arrested state in the first place, (b) were destroyed in, or

expelled from, the tissues, or (c) following a period in the

arrested state, resumed their development and either replaced

lost adults, or failed to establish as adults. The difference in

the number of larvae found in the arrested state between

singly and co-infected groups of sheep is relatively small,

approximately 40 larvae, and is thus unlikely to be of clinical

significance in these sheep. We highlight, however, that this

study is not focused upon clinical significance per se, but

upon the ability of our predictive framework to establish

the form and direction of the parasite interactions, which we

have achieved. Nevertheless, even these few larvae, as adults,

could contribute substantially to the potential infectious

burden on pasture under natural conditions. Assuming an

average daily fecundity of 4700 eggs per female [46] and a

sex ratio of 1 : 1, 20 adult female worms could be adding

more than 94 000 eggs per day to pasture.

As predicted, the loss of H. contortus arrested larvae

appears to be immune-mediated. Although the abomasal

immune components do not differ among infection groups,

the concentration of anti-H. contortus IgG1 was significantly

higher in co-infected animals (figure 3). Haemonchus contortus
larvae were the source antigen for the IgG1 assay and it is

likely that this antibody response reduces larval development,

as has been previously been reported [47].
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7. Is the observed interaction robust?
The host immune response to T. colubriformis and H. contortus
in mono-infections is well documented [48–51]. A feature of

these responses is that they differ in strength depending on

host species (sheep or goat), breed [17], [52–54], age [30],

[55] and diet [56], although the same immune components

are implicated in helminth control among these host

groups. An important consideration, then, is whether the

interactions we have described between the co-infecting para-

site groups would be robust to such host differences. As the

immune components involved in the host response are the

same, we suggest that while there may be quantitative differ-

ences in intensity of infection owing to variation in the

strength of the immune response, the qualitative result (i.e.

positive consequences for a mucosal-browsing nematode

and negative for the blood-feeding group) will probably per-

sist. This view is further supported by the identical pattern of

interaction seen in the rabbit co-infection system between its

blood-feeding and mucosal-browsing nematode parasites. It

should be noted that one laboratory study of co-infection

with the same rabbit helminths did not find this pattern of

interaction during co-infection [33]. That laboratory study,

however, used a single, high-dose infection (rather than the

trickle infections we used), which can dramatically alter the

form of the elicited immune response [57], in turn altering

the nature of the interspecific interactions.

Our hypothesis for the interaction between the sheep

nematodes was based on data from a different host and differ-

ent parasite species, where we defined parasite groups based

on their taxonomic and parasitological (i.e. resource use, site

of infection) traits. We suggest that this novel approach can

be more generally applied to other host and parasite systems.

While we have successfully applied this approach here,

we acknowledge that this is a single test and that further

work is required to confirm that the approach could be applied

beyond our defined parasite groupings. However, we note that

our predictive ability crossed host species (rabbits and sheep)

that are distinct taxonomically, behaviourally and physiologi-

cally, suggesting that host similarity does not underlie our

successful prediction. Regarding the parasites, we also empha-

size that our hypothesis of how the sheep parasites would

interact came solely from our predictive framework. Specifi-

cally, despite extensive prior study of these parasites in sheep,

the interactions we correctly predicted had never previously

been hypothesized. Together this suggests that our predictive

framework is neither host nor parasite species-specific. Future

exploration of this topic could include a meta-analysis to deter-

mine whether parasite traits can represent patterns of immune

function across multiple host types and different forms of

parasite (i.e. beyond helminths).

Notably, the parasite species in our study all belong to

the superfamily Trichostrongyloidea and it is possible that

the interaction observed would be restricted to species within

this superfamily – though this would still be an important

result. Nevertheless, we have described here the common

immunomodulatory features of several blood-feeding nema-

tode species, which further supports this parasite grouping

and also proposes a mechanism (i.e. suppression of the intesti-

nal cellular immune response) for this groups’ potential

interaction with other parasite groups. There is less informa-

tion available to support the grouping of mucosal-browsing

nematodes, as the host immunological response to this group
has been less well studied. Even if we narrow this group to

mucosal-browsing Trichostrongylus spp., the only immune

function studies conducted appear to be on T. colubriformis
and T. retortaeformis, the species involved in our studies. It

will therefore be interesting to determine whether other mem-

bers of the group also stimulate, and are controlled by, a classic

Th2 response, which underlies the mechanism of their inter-

action with the blood feeders and, further, whether the

group could be expanded to other helminth species displaying

similarly low levels of tissue invasion, i.e. browsing nematodes

beyond Trichostrongylus spp.

We propose that the form of acquisition of a given resource

is likely to be an important indicator of how the host will

respond to any parasite. For example, while nematodes and

malaria both use the host blood as a resource, they acquire

that resource in a different way. We suggest that taxonomically

more related parasites are also more likely to evolve related

mechanisms of resource acquisition and therefore that a com-

bined grouping strategy involving location, resource use and

parasite taxonomy may be a good indicator of host immune

response, the ultimate mechanism of the interspecific parasite

interaction in our study. Our classification mechanism requires

that the resource use of the parasite is known. For some species,

this will not be the case. However, using physical location in

conjunction with taxonomic similarity to other known species

will often be a suitable proxy.
8. Implications for parasite control and economic
losses

Haemonchus contortus and T. colubriformis are both economically

important parasites, causing substantial production losses in

both sheep and goats [58]. Production losses owing to

T. colubriformis are likely to be greater in sheep co-infected

with H. contortus, because of the higher worm burdens and pro-

longed infection in such co-infections. Notably, the condition

and mass of co-infected animals did not significantly differ

from the other treatment groups. However, pasture-reared

sheep, not provisioned with the high-quality maintenance

diet provided in our experiment, would probably experience

more severe effects during co-infection. Transmission of

T. colubriformis in co-infected sheep could be substantially

higher owing to the higher worm burdens and prolonged infec-

tion during H. contortus co-infection, meaning potentially

higher worm burdens at a population level, requiring the use

of anthelmintics. However, density-dependent reduction in

per capita worm fecundity has been observed for T. colubriformis
[59], which may ameliorate such effects. Nevertheless, host

immune response appears to play a role in this density-

dependent restriction of fecundity [17], and thus such immune

effects may be reduced during H. contortus co-infection. A

change in H. contortus-induced production losses during co-

infection are unlikely, as adult worm burdens of this species

were not affected by the co-infection. The economic implications

of this co-infection are, therefore, principally a consequence of

the altered dynamics of the T. colubriformis infection.
9. Conclusion
This work represents, to our knowledge, a first experimental

proof-of-principle that groups of parasites can be identified
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and thereafter used to predict the outcome of a previously

unexplored interspecific parasite interaction in a different

host species. Given the ubiquity and multiplicity of co-infection

in nature, it is important that we derive such grouping mechan-

isms. In previous work, we suggested grouping parasites by an

immunological profile [14]. A problem with this idea is that

immune profiling is complex and expensive, and reagents

may not be available for a novel or lesser-studied hosts. How-

ever, the current study offers an alternative mechanism for

classification by using taxonomy and more easily identified

parasitological traits, to act as a proxy for the immune traits.

Further, we have demonstrated that we can successfully use

these traits to predict the immunologically based interaction

of two parasite groups. This work therefore proposes a general

framework for predicting the relationships between other para-

site groups, and next steps should be to determine how widely

applicable such a framework can be.
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