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Antibiotic resistance constitutes one of the most pressing public health concerns.

Antimicrobial peptides (AMPs) of multicellular organisms are considered part

of a solution to this problem, and AMPs produced by bacteria such as colistin

are last-resort drugs. Importantly, AMPs differ from many antibiotics in their

pharmacodynamic characteristics. Here we implement these differences

within a theoretical framework to predict the evolution of resistance against

AMPs and compare it to antibiotic resistance. Our analysis of resistance evol-

ution finds that pharmacodynamic differences all combine to produce a much

lower probability that resistance will evolve against AMPs. The finding can

be generalized to all drugs with pharmacodynamics similar to AMPs. Pharma-

codynamic concepts are familiar to most practitioners of medical microbiology,

and data can be easily obtained for any drug or drug combination. Our theor-

etical and conceptual framework is, therefore, widely applicable and can help

avoid resistance evolution if implemented in antibiotic stewardship schemes

or the rational choice of new drug candidates.
1. Introduction
Antibiotic resistance is prevalent [1] and evolves quickly. It takes only a few years

from the introduction of a new antibiotic to the clinic until resistant strains emerge

[2]. Prudent use and the introduction and development of novel antibiotics are

currently considered to be the most effective ways to tackle resistance evolution

[3]. The prediction of when and how antibiotic resistance evolves and spreads

is notoriously difficult, but would be extremely informative for antibiotic

stewardship and the development of new drugs.

Among the new drugs under development are antimicrobial peptides

(AMPs) [4]. AMPs are peptides that have spatially explicit hydrophobic and cat-

ionic residues [5]. Note that, for example, polymixins (including colistin) are

usually subsumed under antibiotics, also fall into this category as they are

AMPs of bacterial origin [6,7]. One of the alleged advantages of AMPs is that

bacterial resistance would evolve much more slowly than against antibiotics

[5,8], a highly desirable property [9].

We have recently demonstrated that AMPs from multicellular organisms

affect growing bacterial populations differently from antibiotics, i.e. they differ

in the pharmacodynamics (or dose–response relationship) [10]. A similar obser-

vation has been reported for colistin, a last-resort drug to treat Pseudomonas
infections [11]. Pharmacodynamic characteristics of susceptible and resistant bac-

terial strains can be used to illustrate the selection of resistance under treatment

with a range of dosage [12]. Such application is based on the concept of the

‘mutant selection window’ (MSW, figure 1) [13,14]. The MSW has been success-

fully applied in animal models, demonstrating its value to understanding

resistance emergence in vivo [16].

The width of the MSW is partly determined by the steepness of the pharma-

codynamic curve (figure 1). Importantly, the concentration range between no
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Figure 1. The revised mutant selection window (MSW) and pharmacodynamic parameters. (a) The MSW is defined as the antimicrobial concentration range in
which resistant mutants are selected [13]. Following [14], we determine the MSW using net growth curves of a susceptible strain S and a resistant strain R.
Mathematically, net growth is described with the pharmacodynamic function c(a) ([15], see Material and methods and the electronic supplementary material,
figure S3 for details). In short, the function consists of the four pharamcodynamic parameters: net growth in the absence of antibicrobials cmax, net growth
in the presence of a dose of antimicrobials, which effects the growth maximal, cmin, the minimum inhibitory concentration (MIC) and the parameter k,
which describes the steepness of the pharamcodynamic curve. Here, the two pharmacodynamics functions cS(a) (continuous pink line) and cR(a) (dotted
black line) describe the net growth of the S and R, respectively, in relation to the drug concentration a. Cost of resistance c is included as a reduction of the
maximum growth rate of the resistant strain cmax,R, with c ¼ 1 2 cmax,R/cmax,S. Note that with this definition, cost of resistance is expressed as reduction
in net growth rate in the absence of antimicrobials (a ¼ 0). The lower bound of the MSW is the concentration for which the net growth rate of the resistant
strain is equal to the net growth rate of the sensitive strain and is called the minimal selective concentration (MSC) (see Material and methods for analytic solution;
see the electronic supplementary material, figure S1 for how the MSC is influenced by pharamcodynamic parameters of the sensitive strain). The upper bound is
given by the MIC of the resistant strain MICR. We calculate the size of the MSW as: sizeðMSWÞ ¼ MICR=MSC. (b) Following the original approach to define
the MSW [13], the boundaries of the MSW can also be applied to the pharmacokinetics of the system. The black line represents the change in antimicrobial
concentration over time due to input (increase) and decay (decrease). The lower and upper boundaries of the shaded area indicate the MSW.
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killing and maximal killing is much narrower for AMPs than

antibiotics, resulting in a much steeper curve. The maximum

killing rate of AMPs is much higher than of antibiotics,

as reflected in quicker killing time [17]. These differences

between AMPs and antibiotics with respect to their

pharmacodynamic parameters determine the size of the

MSW and enable us to assess the influence of the MSW on

resistance evolution. Another difference relevant to the evol-

ution of resistance is the finding that many antibiotics

increase mutation rates of bacteria [18–20], but the AMPs

tested so far do not show such an effect as they do not

elicit bacteria DNA repair responses [18,19].

Here we use a pharmacodynamics approach that has been

widely used to describe sigmoid dose–response relationships

[15,21–23] to study the evolution of resistance in a homo-

geneous population. Our work uses the formulation of

pharmacodynamic function from Regoes et al. [15]. We particu-

larly explored how the steepness of the pharmacodynamic

curve (described by the Hill coefficient k), together with

other pharmacodynamic parameters determine the probability

of resistance emergence [15]. The potential importance of the

Hill coefficient k is often overlooked in many pharmaco-

dynamic models, where it is simply set to 1 for all drugs [24].

Recent work includes the Hill coefficient [25,26], indicating

the importance of this pharmacodynamic parameter.

We use this approach with different parameter values for k,

derived from empirical data [10], as this allows us to calculate

the size of the MSW that generalizes over all possible resistant

strains. Gullberg et al. demonstrated [14] that resistant mutants

are already under positive selection below the minimum inhibi-

tory concentration (MIC) of the susceptible strain. We, therefore,

use the minimal selective concentration (MSC, figure 1a) as the
lower boundary, not the MIC of the sensitive strain that was

used previously [12,13]. Using empirical parameter estimates

for AMPs and antibiotics, we show that the probability of resist-

ance evolution against AMPs (or any drug with similar

pharmacodynamics properties) is much lower than for anti-

biotics. We, therefore, provide a robust and generalizable

predictive framework for studying the evolution of drug resist-

ance. This is particularly useful to apply when new drugs are

introduced, i.e. before resistance has evolved.
2. Methods
For the parametrization of the predictive models, we used two

main sources. The pharmacodynamic parameters were taken

from our own studies that determine pharmacodynamics for

AMPs and antibiotics under standardized conditions [10]. In

short, time-kill experiments with different AMP concentrations

were conducted and the slopes of the linear regressions were

used to calculate the parameters of the pharmacodynamic func-

tion. Here, we only took into account the initial kill rates and

assumed a homogeneous population structure. The estimates of

mutation rates again are from our own comparative study on

mutagenesis under AMP and antibiotic treatment [18].

(a) Calculation of the size of the mutant selection
window

The size of the MSW depends on the lower and upper bound of the

MSW and is calculated as ratio, due to the logarithmic scale that is

used to plot dose–response relationships (figures 1a and 2a):

sizeMSW ¼
MICR

MSC
, ð2:1Þ
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Figure 2. The mutant selection window (MSW) for arbitrary mutant strains. The two boundaries of the MSW, MSC and MICR, are influenced differently by the phar-
macodynamic parameters of the sensitive strain S and the resistant strain R. (a) The lower boundary of the MSW (MSC) depends primarily on the pharmacodynamic
parameters of the sensitive strain, assuming that the net growth rate of the resistant strain below the MSC is approximately at the same level as without antimicrobials:
cR(a) � cmax,S(1 2 c) ¼ cR,approx, for 0 , a , MSC (cR: dotted black line; cR,approx: continuous black line) (see Material and methods for details). The effect of
each of the four pharamcodynamic parameters and of the cost of resistance on the MSC is depicted in the electronic supplementary material, figure S1. We plotted the
pharmacodynamic function cS(a) of two sensitive strains with varying k values: cS,1(a) representative for antibiotics with a small k (k ¼ 1.5, pink) and cS,2(a)
representative for AMPs with a large k (k ¼ 5, blue). Increasing the k value results in increasing the MSC (MSC1 ( pink) ,MSC2 (blue)). (b) The upper boundary
of the MSW is per definition the MICR, which is linked to its fitness cost, i.e. the upper boundary MICR increases with costs c (data from [27]). Here, the log-linear
regression and the 95% confidence interval (CI) are plotted. See Materials and methods for details of the statistics. (c) The relationship between the cost of resistance,
other pharmacodynamic parameters and the size of the MSW is complex. We show that because both boundaries of the MSW—the MSC and the MICR—are influenced
by costs of resistance c, the lowest MSW window size is achieved at intermediate cost of resistance c. Note that although the data plotted in (b) shows that resistance
mutation can also be advantageous in terms of fitness (c , 0), the size of the MSW can only be determined for 0 � c � 1, because lim

c!0
sizeMSW ¼ 1.We plotted

the size of the MSW (line) and the 95% CIs for both AMP-like and antibiotic (AB)-like pharmacodynamics, with cmax,S ¼ 1, MICS ¼ 1, cmin,S,AB ¼ 25,
cmin,S,AMP ¼ 250, kS,AB ¼ 1.5 and kS,AMP ¼ 5. cmax,R was calculated using the relationship log10(MICR/MICS) ¼ 2.59c þ 1.65.
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The lower bound of the MSW is the concentration for which the net

growth rate of the resistant strain is equal to the net growth rate

sensitive strain and is called the MSC. The upper bound of the

MSW is the MIC of the resistant strain (MICR) (figure 1a).

To analytically describe the MSW, we use the pharmaco-

dynamic function c(a), which mathematically describes the net

growth rate with a Hill function:

cðaÞ ¼ cmax � dðaÞ

¼ cmax �
ðcmax � cminÞða=MICÞk

ða=MICÞk � cmin=cmax
, ð2:2Þ

[10,15,21]. Here, a is the antimicrobial drug concentration. The net

growth rate in the absence of drugs c(a ¼ 0) is equal to cmax

(cmax� 0), d(a) is the effect of the antimicrobial with the dose a,
and c(a!1)¼ cmin. Therefore, the maximal effect Emax is Emax ¼

cmax 2 cmin. The parameter MIC denotes the concentration that

results in zero net growth (this definition differs from the ‘official’
MIC definition by Mouton et al. [28]). The Hill coefficient k describes

the steepness of the curve; functions with higher k describe steeper

curves (figure 2a). For illustration of the pharamcodynamic

parameters, see the electronic supplementary material, figure S3.

Cost of resistance c is included as a reduction of the maximum

growth rate of the resistant strain in the absence of antimicrobials

with c¼ 1 2 cmax,R/cmax,S (figures 1a and 2a). The pharamcody-

namic function can be described for both a drug susceptible strain

S and a drug-resistant strain R, with cS(a) and cR(a), respectively.

The MSC is calculated as cS(a) ¼ cR(a). We assume that the net

growth rate of the resistant strain below the MSC is, for any given

concentration a, with 0 , a , MSC, approximately at the same

level as without antimicrobials and, therefore, we set cR(a) �
cR,approx (illustrated in figure 2a). With cR,approx¼ cmax,R¼ cmax,S

(1 2 c), we are able to describe the net growth rate of the resistant

strain with the net growth rate of the sensitive strain cmax,S and

the costs of resistance c: cR(a) � cR,approx¼ cmax,S (1 2 c). This is

valid because MICR �MICS and assumingkR . �kS. The analytic
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solution of the MSC is

MSC ¼MICs
ccmin ,S

cmax ,Sðc� 1Þ þ cmin ,S

� �1=ks

, 0 � c � 1: ð2:3Þ

After our publication [29] another paper reported the same

solution [30].

(b) Analysis of the relationship between cost
of resistance c and MICR

Data [27] determining relationship between fitness of resistant

strains and MICR/MICS were re-analysed. The dataset contained

information about increase of MIC due to resistance and fitness

of the resistant strain and summarizes cases of bacterial resist-

ance to antibiotics. Similar data for AMPs have been compiled

recently [31] but are yet too scarce to include in the following

analysis. We, therefore, assumed similar relationships for both

antibiotics and AMPs.

Fitness and MICR/MICS are significantly correlated (p ¼
5.716 � 10209, Spearman’s r ¼ 0.4866908, figure 2b). We then calcu-

lated cost of resistance c as c ¼ 1 – fitness, using n ¼ 128

observations compiled in the mentioned dataset. Fitting a log10

transformed linear regression to the data resulted in the parame-

trized function log10 (MICR/MICS) ¼ 2.59c þ 1.65. We use the

coefficient of determination R2 ¼ 0.22 (p ¼ 1.518 � 10208) as the

measure of goodness of fit.

The data were then resampled with using bootstrapping to:

(i) determine the 95% confidence interval (CI) of log-linear

regression of the data as interval. This was done by determining

in which interval 95% of the bootstrapped regressions fall into

(figure 2b); and (ii) to include the variance of the data when deter-

mining the size of the MSW (figure 2c). For the latter, the given

dataset was fitted to the mentioned log-linear regression 200

times, resulting in 200 parameter sets for the regression. Each par-

ameter set was then used to calculate the size of the MSW

depending on the cost of resistance. The 95% CI was then calcu-

lated as the interval, in which 95% of the calculated size of the

MSW are in for a given cost.

(c) Model of evolution and prediction of resistance
To study resistance evolution, we used a mathematical model that

incorporates pharmacodynamics and pharmacokinetics and cap-

tures population dynamics of bacterial populations under

treatment with antimicrobial drugs [15]. We ran stochastic simu-

lations to calculate the probability of resistance emergence, the

probability of takeover by a resistant strain, the time to resistance

emergence and the risk of resistance (the resistance hazard [32]).

To simulate treatment, we consider a patient harbouring 106

susceptible bacteria. We assume a homogeneous population and

a uniform environment. Bacterial mutation rates are assumed to

depend on the antimicrobial used for treatment (antibiotics or

AMPs). When a resistant strain arises, it is assumed to have an

MIC that is correlated with its fitness cost (figure 2c). For simpli-

city, we only consider one type of mutant. Antimicrobials are

administered every day (see the electronic supplementary

material, figure S2) and treatment lasts one week.

The population dynamics of the susceptible and resistant

strains is captured in the following system of differential equations:

dS
dt
¼ rSð1� mÞS 1� Sþ R

K

� �
� ½ds þ dn�S

and
dR
dt
¼ rRR 1� Sþ R

K

� �
þ mrSS 1� Sþ R

K

� �
� ½dR þ dn�R:

9>>>=
>>>;

ð2:4Þ

where S represents the wild-type strain and R represents the resist-

ant strain. The maximum net growth rate cmax is the difference
between the replication rate r and the intrinsic death rate dn:
cmax ¼ r 2 dn. m is the mutation rate. Note that we only consider

one-step de novo resistance evolution.

To include the change of antimicrobial concentrations over

time (pharmacokinetics) into our model, we define the death

rate to be dependent on the time-dependent antimicrobial

concentration a(t):

diðaðtÞÞ ¼
ðcmax � cminÞðaðtÞ=MICÞk

ðaðtÞ=MICÞk � cmin=cmax

, i ¼ S, R: ð2:5Þ

We assume a time-dependent pharmacokinetic function a(t)
of the following form (see also the electronic supplementary

material, figure S2):

aðtÞ ¼
X

n

Dka

ka � ke
ðe�ke ½t�ðn�1Þt� � e�ka ½t�ðn�1Þt�Þ, n ¼ 1, 2, 3, . . . :

ð2:6Þ

Here, ka is the absorption rate and ke is the decay rate. D is

the dose given each time, n is the number of doses and t is the

dosing frequency. We define the treatment dose as the average

concentration during the course of treatment:

�a ¼ 1

t

ð
aðtÞ dt: ð2:7Þ

We implemented the model in equation (2.4) stochastically

using the Gillespie algorithm [33], which allowed us to monitor

how frequently mutants arise. Parameters were selected based on

empirical data as stated above. The net growth rate of wild-type

in the absence of antimicrobials was set as 1. Mutants suffer

resistant-level related costs (figure 2c). k of AMPs and antibiotics

were set as 5 and 1.5, respectively [10]. cmin for AMPs is fixed as

250 h21; and for antibiotics is fixed as 25 h21. Mutation rates in

AMPs are assumed to be three times lower than in antibiotics, in

accordance with our empirical estimates [18]. All the parameters

and their values are listed in the electronic supplementary

material, table S1. All the pharmacokinetic parameters are the

same in different simulations (see the electronic supplementary

material, figure S2). For each set of parameters, cohorts of 500

infected individuals were simulated. Successful treatment is

defined as complete clearance of both sensitive and resistant

strains at the end of the one-week treatment. For each cohort,

we calculate the probability of treatment success as the pro-

portion of individuals in whom treatment was successful, i.e. a

complete clearance of both resistant and sensitive strains. In

each individual, we score the time of emergence of resistance

strains, and estimate the resistance hazard based on the average

probability of treatment success and the population size of

bacteria over time. The hazard function can be written as

Hða, tÞ ¼ 1

Kt

ð
Sða, tÞpS!RðaÞcRðaÞdt, ð2:8Þ

where K is the capacity, S denotes population size of sensitive

strain and pS!R is probability of a treatment developing resist-

ance, which is calculated from the results of simulations, cR is

the growth rate of resistant strain. Our hazard function calculates

the average proportion of resistant population under certain

treatment dose and duration.

The analysis was performed in R (v. 3.1.3 and v. 3.2.2) [34]

using RSTUDIO (v. 0.98.1103 and 0.99.903). The code is available

upon request.
3. Results
The MSW (figure 1) shows the concentration of an anti-

microbial under which susceptible strains are suppressed,

but resistant strains can still grow in the framework of
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pharmacodynamics (figure 1a) [14] and pharmacokinetics

(figure 1b) [13]. We show that the lower bound of the MSW

can be calculated based solely on the pharmacodynamics of

the susceptible strains and the costs of resistance (figures 1a
and 2a, equation (2.3)). The cost is defined here as the reduction

of growth rate in a drug-free environment.

The pharmacodynamics of AMPs and antibiotics differ

significantly [10]: the pharmacodynamic curves of AMPs are

much steeper as captured by a higher Hill coefficient k

(figure 2a); the step from a concentration with no effect to a kill-

ing concentration is, therefore, much smaller. This feature is

probably owing to a higher number of ‘hits’ that AMPs need

to deliver to bacteria to kill them and perhaps cooperative bind-

ing of AMP molecules to the cell membrane [35]. This results in

a narrower MSW for AMPs than antibiotics. The MSW opens at

lower concentrations when the costs of resistance are low. Our

re-analysis of data on antibiotic resistance against a variety of

antibiotics in a number of different bacterial species (data

from [27]) shows that the upper bound of the MSW correlates

with the cost of resistance (figure 2b). Taken together we are

now in a position to estimate the size of the MSW for

any drug, if estimates of pharmacodynamic parameters

based on the sensitive strains, including the MIC, the maxi-

mum effect and the steepness of the pharmacodynamics

curve are available (figures 1a and 2c).

Next, we wanted to explore if the differences between

AMPs and antibiotics in the width of the MSW correlated

with different probabilities of drug resistance evolution

within a host. A further difference between AMPs and anti-

biotics is that some antibiotics increase mutagenesis but

AMPs do not [18,19]. We incorporated this difference in

addition to the difference in the steepness of the pharmaco-

dynamics relationship into a stochastic model describing

bacterial replication and evolution under selection pressure

from AMPs. We consider two cases here: (i) do resistant

mutants emerge, and (ii) do resistant mutants drive the

susceptible strains to extinction?

To answer these questions, we ran stochastic simulations

varying the pharmacokinetic and pharmacodynamic par-

ameter values at a given average antimicrobial concentration

(e.g. runs, figure 3a). Stochastic models allow assessment of

resistance evolution for a given MSW under temporally varying

antimicrobial dosage. We find that resistance emerges with a

much higher probability for the parameter settings of anti-

biotics (figure 3b, top row) than for AMPs in our simulations

(figure 3b, bottom row). All intermediate cases, where we simu-

lated changes in one or two of the parameters k mutation rate

and maximum effect, also reduce the probability of resistance

emergence compared to ‘pure’ antibiotics. These differences

are also robust under very low fitness costs (electronic

supplementary material, figure S4).

We also find that resistant mutants are much more likely to

drive the susceptible bacterial populations to extinction under

antibiotic than under AMP treatment (figure 3b). Again, this

result also holds when we study intermediate cases. In sum-

mary, our results show that the application of drugs with

low k, mutation elevation and low maximum effect, i.e. charac-

teristics found in most common antibiotics, inherently bears a

high risk of causing the evolution of resistance.

We have shown before [10] that combinations of AMPs have

higher k and lower MICs than individual AMPs. This also

results in differences in resistance selection and the extinction

of susceptible strains, consistent with the results above.
Day et al. [32] provided an approach to calculate a resistance

hazard: a measure that combines the time of resistance emer-

gence and its selection within a host. We calculated similar

resistance hazard for AMPs in comparison to antibiotics. The

simulation results show (figure 3c) that the hazard is much

higher and the concentration range much wider under anti-

biotic treatment than under AMP treatment. Also, when

resistance evolves, it emerges earlier in the antibiotic scenario

than in the AMP scenario at low concentrations (figure 3d). In

certain concentrations (e.g. around MIC in our simulation),

resistance emerges earlier in AMPs than in antibiotics

(figure 3d). While the time of emergence is mostly independent

of cost of resistance, MIC of the resistant strain and the maxi-

mum effect Emax, it is strongly affected by k and mutation

rate: higherkand lower mutation rate, the latter more important

when population sizes are small, confer delayed resistance

emergence (electronic supplementary material, figure S5).
4. Discussion
Our predictions suggest that AMPs, or in fact any anti-

microbial drug with similar pharmacodynamics, are much

less likely to select drug-resistant mutants than antimicrobials

with antibiotic-like characteristics. Our theory is blind to the

molecular mechanism of action but captures the dynamically

relevant aspects of action.

We assume that pharmacodynamics and mutagenic

properties of AMPs are significantly different from anti-

biotics. This assumption is based on limited data of AMPs

in the literature [10,18]. More experiments with a variety of

AMPs are needed to determine if AMP-like characteristics

can be indeed generalized and if these characteristics are

significantly different from antibiotics.

In the light of our results, increasing k and/or the

maximum effect are desirable for any drug as well as advan-

tageous to hosts managing their microbiota using AMPs. Our

model, therefore, provides useful information for the develop-

ment of new antimicrobial drugs: higher k and maximum

effect will impose much weaker selection on the bacteria to

evolve resistance in lower concentrations, and clear the bac-

terial population more quickly in higher concentration which

will, in turn, reduce the probability of resistance emergence.

Currently, mostly AMPs display these properties, but it is

likely that new antibiotics that target the cell membrane or

wall display similar pharmacodynamics.

The smaller MSW under AMPs is a direct consequence of

the steeper pharmacodynamic functions [10]. It is important

to note that this relationship hinges on the realization that the

window opens at the concentration at which the resistant

strains have a higher growth rate than the sensitive strain,

well below the MIC of the sensitive strain [14]. Thus, a high

Hill coefficient (k) would constitute a promising characteristic

of new antimicrobials. The other characteristics in which AMPs

differ from antibiotics—mutagenesis and maximum effect—

affect mostly the time until resistance emerges, but not the

size of the MSW. Because this time becomes shorter with

higher population sizes, these characteristics may have less sig-

nificance for clinical infections [31]. Very few experimental

evolution studies investigate selection for drug resistance in

the context of the pharmacodynamic MSW. But work by

Firsov and co-workers in Staphylococcus aureus shows that the

size of the MSW correlates positively with selection for
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Figure 3. Evolution of drug resistance determined by pharmacodynamics. (a) At high dose (D ¼ 400; all other parameters see below (AB)) antimicrobials achieve
maximal effects and rapidly kill most of the population, preventing resistance evolution (right). At medium dose (D ¼ 45), the sensitive strain will not be eliminated
immediately, and resistant mutants emerge (central). At low dose (D ¼ 5), the sensitive strain will not be removed, the mutants also emerge, but will not quickly
reach equilibrium owing to substantial fitness costs (left, resistant: pink, susceptible: blue). (b) Simulations comparing the range from ‘pure’ antimicrobial peptides
(AMP) to ‘pure’ antibiotics (AB) by altering m, cmin and k. We find that the probabilities of treatment failure (left), of failure caused by resistant strains (middle)
and of resistance emergence are always higher under the AB-scenario than the AMP-scenario. A successful treatment requires less AMP than AB. (c) Following [32],
we calculate the resistance hazard as the time-averaged proportion of mutants in a patient under a particular treatment dose. We find that AMPs are much
less likely to select for resistance across concentrations than antibiotics (inset graph: a log-scale view). (d ) Time to resistance is much longer under AMP
than AB treatment when the average concentration is below MIC, but shorter around MIC and equal in higher concentrations (inset graph). The parameters
for all simulations of this figure are: cmax,S ¼ 1, cmax,R ¼ 0.8, kAB ¼ 1.5, kAMP ¼ 5, cmin,AB ¼ 25, cmin,AMP ¼ 250, MICS ¼ 10,
MICR ¼ MICs � 10½2:59ðcmax, S�cmax, RÞ þ 1:65�, mAB ¼ 10�6, mAMP ¼ 3 � 1027, ka ¼ 0.5, ke ¼ 0.2, dn ¼ 0.01, t ¼ 1/24.
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resistance in fluoroquinolones [36] and also in a comparison

between the last-resort drugs vancomycin and daptomycin

[37]. These findings are highly consistent with our predictions.

In E. coli, all else being equal resistance evolves against a panel

of antibiotics but not against the AMP colistin [38].

We find that time to resistance emergence in AMPs is

longer than in antibiotics when the concentration is low

(subMIC) (figure 3d ). Around MIC resistance against AMPs

seems to emerge quicker than against antibiotics (figure 3d,

inset). This result is explained by the fast removal of sensitive

strains due to AMPs’ high k and low cmin. Overall, the prob-

ability of resistance emergence is lower for AMPs as higher

concentrations quickly remove the sensitive population.

Chevereau et al. [39] reached a different conclusion using a

different modelling approach regarding the steepness of the

pharmacodynamic curve. In contrast to our approach, that cap-

tures the whole pharmacodynamics curve, they modelled the

pharmacodynamics only for positive growth. Also, they con-

tinuously adjusted the drug concentration to maintain the

overall growth rate at half of the maximal in the simulation.

In this scenario, drugs with sensitive dose–response would

facilitate evolution owing to the wide distribution of fitness, a

scenario that seems unlikely in real antimicrobial treatment

with fluctuating pharmacokinetics and as implemented here.

One recommendation derived from our modelling

approach is that drugs which show pharmacodynamics

resembling AMPs should be good candidates for slowing

the evolution of resistance. It is often argued that combi-

nation therapy reduces resistance evolution (but also, see

[40]), as it is supposedly more difficult to evolve resistance

against more than one mechanism at a time. We speculate

that combination therapy might even prove effective, as com-

binations of AMPs result in increased k, which our model

predicts to bear lower risks of evolution of resistance [10].

It has been proposed that bacterial resistance evolution

against AMPs is highly unlikely [5,8]. Yet, in vitro experimen-

tal evolution has demonstrated that resistance to AMPs can

arise [41–43] and AMP-resistance mechanisms have been

characterized [44]. Against antibiotics, resistance can increase

the MIC by 2–3 orders of magnitude in a relatively small

bacterial population [45], a range that has not been observed

for AMPs. Though AMPs provide promising leads for drug

development [4], their conserved killing mechanisms also

argue for caution. In their paper ‘arming the enemy’, Bell &

Gouyon [46] discussed the high likelihood of cross-resistance

against, for example, human AMPs. This problem has hardly

been studied. Our analysis suggests how one could reap the

benefits of AMPs without arming the enemy: we should rely

on agents with AMP-like pharmacodynamics. This, in

principle, can be adopted without using AMPs themselves.

Pharmacodynamic estimates can be easily and routinely

obtained from time-kill curves. This can also be achieved for
drug combinations [10]. A report by the Leopoldina, the

German National Academy of Sciences, recently rec-

ommended use of new drugs only in combination to avoid

fast resistance evolution [47]. The scientific support for this

notion is limited and controversial [40,48,49]. In clinical situ-

ations, pharmacodynamic approaches can provide a first

informed guess. Also, the risk of resistance evolution based

on the pharmacodynamics of drug candidates will be a

useful additional criterion to develop new drugs. We also

note that the concept of the MSW has been applied to under-

stand antiviral-resistance evolution [50], and hence our

approach has the potential to inform antiviral-resistance

research and also ultimately treatment.

In order to generate predictions on resistance evolution

based on pharmacodynamics, one of our main goals of the

project, we made a number of simplifying assumptions.

The pharmacodynamics are based on data of initial killing

only. Moreover, we assume homogeneous populations over

time and space. We implemented costs of resistance, without

considering whether resistance mutations per se are costly or

mitigated by compensatory mutations. Our simulations (elec-

tronic supplementary material, figures S4 and S5) suggest

though that costs or resistance are of limited importance in pre-

dicting resistance evolution based on pharmacodynamics.

Expanding the framework to integrate tolerance and resistance

is possible but would require pharmacodynamic estimates and

additional functions. Another possible extension of our work

would be to include pharmacodynamic estimates of resistant

strains that change over time owing to compensatory

mutations and to cross-resistance or collateral sensitivity

when exposed to combinations of antimicrobials. Finally, we

assumed the same pharmacokinetics for all cases in our

study. As AMPs are currently rarely used (colistin being the

notable exception), future empirical work will inform realistic

parameter estimates for pharmacokinetics. In all cases, how-

ever, the basis of any analysis concerning resistance evolution

is the influence of individual pharmacodynamic parameters,

for which we provide a framework.
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39. Chevereau G, Dravecká M, Batur T, Guvenek A,
Ayhan DH, Toprak E, Bollenbach T. 2015 Quantifying
the determinants of evolutionary dynamics leading
to drug resistance. PLoS Biol. 13, e1002299. (doi:10.
1371/journal.pbio.1002299)

40. Pena-Miller R, Laehnemann D, Jansen G, Fuentes-
Hernandez A, Rosenstiel P, Schulenburg H,
Beardmore R. 2013 When the most potent
combination of antibiotics selects for the greatest
bacterial load?: the smile-frown transition. PLoS
Biol. 11, e1001540. (doi:10.1371/journal.pbio.
1001540)

41. Perron GG, Zasloff M, Bell G. 2006 Experimental
evolution of resistance to an antimicrobial peptide.
Proc. Biol. Sci. 273, 251 – 256. (doi:10.1098/rspb.
2005.3301)

42. Habets MGJL, Brockhurst M . 2012 Therapeutic
antimicrobial peptides may compromise natural
immunity. Biol. Lett. 8, 416 – 418. (doi:10.1098/
rsbl.2011.1203)

43. Dobson AJ, Purves J, Kamysz W, Rolff J. 2013
Comparing selection on S. aureus between
antimicrobial peptides and common antibiotics.
PLoS ONE 8, e76521. (doi:10.1371/journal.pone.
0076521)

44. Joo H-S, Fu C, Otto M. 2016 Bacterial strategies
of resistance to antimicrobial peptides. Phil. Trans.
R. Soc. B 371, 20150291. (doi:10.1098/rstb.2015.
0291)

45. Barbosa C, Trebosc V, Kemmer C, Rosenstiel P,
Beardmore R, Schulenburg H, Jansen G. 2017
Alternative evolutionary paths to bacterial antibiotic
resistance cause distinct collateral effects. Mol. Biol.
Evol. 34, 2229 – 2244. (doi:10.1093/molbev/
msx158)

http://dx.doi.org/10.1038/nbt1267
http://dx.doi.org/10.1038/ncomms13002
http://dx.doi.org/10.1038/nrd3591
http://dx.doi.org/10.1038/nrd3591
http://dx.doi.org/10.1038/nature14303
http://dx.doi.org/10.1093/jac/dkt520
http://dx.doi.org/10.1128/AAC.00578-13
http://dx.doi.org/10.1128/AAC.00578-13
http://dx.doi.org/10.1086/511642
http://dx.doi.org/10.1371/journal.ppat.1002158
http://dx.doi.org/10.1371/journal.ppat.1002158
http://dx.doi.org/10.1128/AAC.48.10.3670-3676.2004
http://dx.doi.org/10.1128/AAC.48.10.3670-3676.2004
http://dx.doi.org/10.1086/508752
http://dx.doi.org/10.1038/nnano.2010.29
http://dx.doi.org/10.1038/nnano.2010.29
http://dx.doi.org/10.1371/journal.ppat.1004445
http://dx.doi.org/10.1371/journal.ppat.1004445
http://dx.doi.org/10.1371/journal.pgen.1005546
http://dx.doi.org/10.1016/j.molcel.2010.01.003
http://dx.doi.org/10.1016/j.molcel.2010.01.003
http://dx.doi.org/10.1038/nm1777
http://dx.doi.org/10.1038/nm1777
http://dx.doi.org/10.1128/AAC.46.11.3574-3579.2002
http://dx.doi.org/10.1128/AAC.46.11.3574-3579.2002
http://dx.doi.org/10.1086/516284
http://dx.doi.org/10.1124/pr.111.005769
http://dx.doi.org/10.1124/pr.111.005769
http://link.springer.com/10.1007/978-1-4939-1304-6
http://link.springer.com/10.1007/978-1-4939-1304-6
http://link.springer.com/10.1007/978-1-4939-1304-6
http://dx.doi.org/10.1111/eva.12196
http://dx.doi.org/10.1093/jac/dki079
http://dx.doi.org/10.1093/jac/dki079
http://dx.doi.org/10.1101/138107
http://dx.doi.org/10.1128/AAC.01686-17
http://dx.doi.org/10.1128/AAC.01686-17
http://dx.doi.org/10.1016/j.drup.2016.04.002
http://dx.doi.org/10.1371/journal.pcbi.1004689
http://dx.doi.org/10.1371/journal.pcbi.1004689
http://dx.doi.org/10.18637/jss.v025.i12
http://dx.doi.org/10.18637/jss.v025.i12
http://dx.doi.org/10.1128/AAC.47.5.1604-1613.2003
http://dx.doi.org/10.1128/AAC.47.5.1604-1613.2003
http://dx.doi.org/10.1093/jac/dkl387
http://dx.doi.org/10.1093/jac/dkl387
http://dx.doi.org/10.1038/ncomms6792
http://dx.doi.org/10.1038/ncomms6792
http://dx.doi.org/10.1371/journal.pbio.1002299
http://dx.doi.org/10.1371/journal.pbio.1002299
http://dx.doi.org/10.1371/journal.pbio.1001540
http://dx.doi.org/10.1371/journal.pbio.1001540
http://dx.doi.org/10.1098/rspb.2005.3301
http://dx.doi.org/10.1098/rspb.2005.3301
http://dx.doi.org/10.1098/rsbl.2011.1203
http://dx.doi.org/10.1098/rsbl.2011.1203
http://dx.doi.org/10.1371/journal.pone.0076521
http://dx.doi.org/10.1371/journal.pone.0076521
http://dx.doi.org/10.1098/rstb.2015.0291
http://dx.doi.org/10.1098/rstb.2015.0291
http://dx.doi.org/10.1093/molbev/msx158
http://dx.doi.org/10.1093/molbev/msx158


rspb.royalsocietypu

9
46. Bell G. 2003 Arming the enemy: the
evolution of resistance to self-proteins.
Microbiology 149, 1367 – 1375. (doi:10.1099/
mic.0.26265-0)

47. Akademie der Wissenschaften Hamburg. 2013
Antibiotika-Forschung: probleme und perspektiven.
Berlin, Germany: Walter de Gruyter.
48. Imamovic L, Sommer MOA. 2013 Use of collateral
sensitivity networks to design drug cycling
protocols that avoid resistance development. Sci.
Transl. Med. 5, 204ra132. (doi:10.1126/scitranslmed.
3006609)

49. Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M,
Regmi S, Karkey A, Guerin PJ, Piddock LJV. 2016
Understanding the mechanisms and drivers of
antimicrobial resistance. Lancet 387, 176 – 187.
(doi:10.1016/S0140-6736(15)00473-0)

50. Rosenbloom DIS, Hill AL, Rabi SA, Siliciano RF,
Nowak MA. 2012 Antiretroviral dynamics determines
HIV evolution and predicts therapy outcome. Nat.
Med. 18, 1378 – 1385. (doi:10.1038/nm.2892)
b
lish
ing.org
Proc.R.Soc.B

285:20172687

http://dx.doi.org/10.1099/mic.0.26265-0
http://dx.doi.org/10.1099/mic.0.26265-0
http://dx.doi.org/10.1126/scitranslmed.3006609
http://dx.doi.org/10.1126/scitranslmed.3006609
http://dx.doi.org/10.1016/S0140-6736(15)00473-0
http://dx.doi.org/10.1038/nm.2892

	Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics
	Introduction
	Methods
	Calculation of the size of the mutant selection window
	Analysis of the relationship between cost of resistance c and MICR
	Model of evolution and prediction of resistance

	Results
	Discussion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


