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RNA-sequencing (RNA-seq) is commonly used to identify genetic
modules that respond to perturbations. In single cells, transcrip-
tomes have been used as phenotypes, but this concept has
not been applied to whole-organism RNA-seq. Also, quantify-
ing and interpreting epistatic effects using expression profiles
remains a challenge. We developed a single coefficient to quantify
transcriptome-wide epistasis that reflects the underlying interac-
tions and which can be interpreted intuitively. To demonstrate our
approach, we sequenced four single and two double mutants of
Caenorhabditis elegans. From these mutants, we reconstructed
the known hypoxia pathway. In addition, we uncovered a class
of 56 genes with HIF-1–dependent expression that have oppo-
site changes in expression in mutants of two genes that coop-
erate to negatively regulate HIF-1 abundance; however, the dou-
ble mutant of these genes exhibits suppression epistasis. This
class violates the classical model of HIF-1 regulation but can be
explained by postulating a role of hydroxylated HIF-1 in transcrip-
tional control.
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Genetic analysis of molecular pathways has traditionally been
performed through epistatic analysis. If the mutants of two

distinct genes have a quantifiable phenotype and the double
mutant has a phenotype that is not the sum of the phenotypes
of the single mutants, this nonadditivity is referred to as gener-
alized epistasis and indicates that these genes interact function-
ally. Such interactions can occur at the biochemical level between
their products or as a consequence of their functions (1). Epista-
sis analysis remains a cornerstone of genetics today (2).

Recently, biological studies have shifted in focus from studying
single genes to studying all genes in parallel. In particular, RNA-
sequencing (RNA-seq) (3) enables biologists to identify genes
that change expression in response to a perturbation. RNA-seq
has been used to identify genetic modules involved in a vari-
ety of processes, such as in the Caenorhabditis elegans linker cell
migration (4), planarian stem cell maintenance (5, 6). The role of
transcriptional profiling has been restricted to target gene iden-
tification, and so far there are only a few examples where
transcriptomes have been used to generate quantitative genetic
models of any kind. In quantitative genetics, expression quan-
titative trait loci (eQTL) studies have established the power
of transcriptomes for genetic mapping (7–10). Genetic path-
way analysis via epistasis has been performed in Saccharomyces
cerevisiae (11, 12) and in Dictyostelium discoideum (13). Recently,
Dixit et al. described a protocol for epistasis analysis in den-
dritic and K562 cells using single-cell RNA-seq (14). Epista-
sis analysis of single cells or single-celled organisms is popular
because of the concern that whole-organism sequencing will mix
information from multiple cell types, preventing the accurate
reconstruction of genetic interactions. Using whole-organism
transcriptome profiling, we have recently identified a develop-
mental state of C. elegans caused by loss of a single cell type
(sperm cells) (15), which suggests that whole-organism tran-
scriptome profiling contains sufficient information for epistatic

analysis. To investigate the ability of whole-organism transcrip-
tomes to serve as quantitative phenotypes for epistatic analy-
sis in metazoans, we sequenced the transcriptomes of four well-
characterized loss-of-function mutants in the C. elegans hypoxia
pathway (16–19).

Metazoans depend on the presence of oxygen in sufficient con-
centrations to support aerobic metabolism. Hypoxia inducible
factors (HIFs) are an important group of oxygen-responsive
genes that are highly conserved in metazoans (20). A common
mechanism for hypoxia-response induction is heterodimeriza-
tion between a HIFα and a HIFβ subunit; the heterodimer then
initiates transcription of target genes (21). The number and com-
plexity of HIFs varies throughout metazoans. In the roundworm,
C. elegans, there is a single HIFα gene, hif-1 (19), and a single
HIFβ gene, ahr-1 (22).

Levels of HIFα proteins are tightly regulated. Under condi-
tions of normoxia, HIF-1α exists in the cytoplasm and partakes
in a futile cycle of protein production and rapid degradation (23).

Significance

Transcriptome profiling quantitatively measures gene expres-
sion genome-wide. There is widespread interest in using
transcriptomic profiles as phenotypes for epistasis analy-
sis. Though epistasis measurements can be performed using
individual transcripts, this results in many scores that must
be interpreted independently. We developed a statistic that
summarizes these measurements, simplifying analysis. More-
over, epistasis analysis has previously only been performed
on cDNA extracted from single cells. We show that whole-
organism RNA-sequencing (RNA-seq) can be used to character-
ize interactions between genes. With the advent of genome
engineering, mutants can be created easily in many organ-
isms. Thus, phenotyping is now the rate-limiting step toward
reconstructing interaction networks. Our work potentially
represents a solution to this problem because RNA-seq is sen-
sitive to a variety of genetic perturbations.
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Fig. 1. Genetic and biochemical representation of the hypoxia pathway in
C. elegans. Red arrows are arrows that lead to inhibition of HIF-1, and blue
arrows are arrows that increase HIF-1 activity or are the result of HIF-1 activ-
ity. EGL-9 is known to exert VHL-1–dependent and –independent repression
on HIF-1 as shown in the genetic diagram. The VHL-1–independent repres-
sion of HIF-1 by EGL-9 is denoted by a dashed line and is not dependent
on the hydroxylating activity of EGL-9. RHY-1 inhibits CYSL-1, which in turn
inhibits EGL-9, but this interaction was abbreviated in the genetic diagram
for clarity.

In C. elegans, HIF-1α is hydroxylated by a proline hydroxylase
(EGL-9) (24). HIF-1 hydroxylation increases its binding affinity
to Von Hippel–Lindau tumor suppressor 1 (VHL-1), which in
turn allows ubiquitination of HIF-1, leading to its degradation.
In C. elegans, EGL-9 activity is inhibited by binding of CYSL-
1, a homolog of sulfhydrylases/cysteine synthases, and CYSL-1
activity is in turn inhibited by the putative transmembrane O-
acyltransferase RHY-1, possibly by posttranslational modifica-
tions to CYSL-1 (25) (see Fig. 1).

Our reconstruction of the hypoxia pathway in C. elegans shows
that whole-animal transcriptome profiles can be used as pheno-
types for genetic analysis and that epistasis, a hallmark of genetic
interaction observed in double mutants, holds at the molecular
systems level. We demonstrate that transcriptomes can aid in
ordering genes in a pathway using only single mutants. We were
able to identify genes that appear to be downstream of vhl-1 but
not downstream of hif-1. Using a single set of transcriptome-
wide measurements, we observed most of the known transcrip-
tional effects of hif-1 as well as effects not described before in
C. elegans. Taken together, this analysis demonstrates that
whole-animal RNA-seq is a fast and powerful method for genetic
analyses in an area where phenotypic measurements are now the
rate-limiting step.

Results
The Hypoxia Pathway Controls Thousands of Genes in C. elegans. We
selected four null single mutants within the hypoxia pathway for
expression profiling: egl-9(sa307), rhy-1(ok1402), vhl-1(ok161),
and hif-1(ia4). We also sequenced the transcriptomes of two
double mutants, egl-9; vhl-1 and egl-9 hif-1 as well as wild type
(N2). Each genotype was sequenced in triplicate using mRNA
extracted from 30 worms at a depth of 15 million reads per sam-
ple. Of these 15 million reads, 50% of the reads mapped to
the C. elegans genome on average. All samples were analyzed
under normoxic conditions. We measured differential expression
of 19,676 isoforms across all replicates and genotypes (∼70% of
the protein coding isoforms in C. elegans; see SI Appendix, Basic
Statistics). We included in our analysis a fog-2(q71) mutant we
have previously studied (15), because fog-2 is not reported to
interact with the hypoxia pathway. We analyzed our data using a
general linear model (GLM) on logarithm-transformed counts.
Changes in gene expression are reflected in the regression coef-
ficient β, which is specific to each isoform within a genotype
(excluding wild type, which is used as baseline). Statistical sig-
nificance is achieved when the q value of a β coefficient (p values

adjusted for multiple testing) are less than 0.1. Transcripts that
are differentially expressed between the wild type and a given
mutant have β values that are statistically significantly different
from 0 (i.e., greater than 0 or less than 0). β coefficients are
analogous to the logarithm of the fold-change between the
mutant and the wild type. Larger magnitudes of β correspond to
larger perturbations (see Fig. 2). When we refer to β coefficients
and q values, it will always be in reference to isoforms. However,
we report the sizes of each gene set by the number of differen-
tially expressed genes (DEGs), not isoforms, they contain. For
the case of C. elegans, this difference is negligible since the great
majority of protein-coding genes have a single isoform. We have
opted for this method of referring to gene sets because it simpli-
fies the language considerably. A complete version of the code
used for this analysis with ample documentation is available at
https://wormlabcaltech.github.io/mprsq.

Transcriptome profiling of the hypoxia pathway revealed that
this pathway controls thousands of genes in C. elegans (see Table
1; see Dataset S1 for a complete list of DEGs). The egl-9(lf)
transcriptome showed differential expression of 2,549 genes. A
total of 3,005 genes were differentially expressed in rhy-1(lf)
mutants. The vhl-1(lf) transcriptome showed considerably fewer
DEGs (1,275), possibly because vhl-1 is a weaker inhibitor of hif-
1 than egl-9 (18). The egl-9(lf); vhl-1(lf) double mutant transcrip-
tome showed 3,654 DEGs. The hif-1(lf) mutant showed a tran-
scriptomic phenotype involving 1,075 genes. The egl-9(lf) hif-1(lf)
double mutant showed a similar number of genes with altered
expression (744 genes). We do not think that this transcriptional
response is the due to transiently induced hypoxia during har-
vesting. If the wild-type strain had become hypoxic, then the hif-
1(lf) genotype should show significantly lower levels of nhr-57, a
marker that increases during hypoxia. We do not observe altered
levels of nhr-57 when comparing the wild type and hif-1(lf)
mutant, nor between the wild type and egl-9(lf) hif-1(lf) double

Wild-typeMutant A

Read Sequencing

(Kallisto)

Differential Expression
(Sleuth)

Downstream Analyses

Principal Component
Analysis

Enrichment Analysis

Epistasis

Fig. 2. Analysis workflow. After sequencing, reads are quantified using
Kallisto. Bars show estimated counts for each isoform. Differential expres-
sion is calculated using Sleuth, which outputs one β coefficient per isoform
per genotype. β coefficients are analogous to the natural logarithm of the
fold-change relative to a wild-type control. Downstream analyses are per-
formed with β coefficients that are statistically significantly different from
0. q values less than 0.1 are considered statistically different from 0.
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Table 1. Number of DEGs in each mutant strain with respect to
the wild type (N2)

Genotype DEGs

egl-9(lf) 2,549
rhy-1(lf) 3,005
vhl-1(lf) 1,275
hif-1(lf) 1,075
egl-9(lf); vhl-1(lf) 3,654
egl-9(lf) hif-1(lf) 744
fog-2(lf) 2,840

mutant. Finally, the egl-9(lf), vhl-1(lf), rhy-1(lf) and egl-9(lf); vhl-
1(lf) mutants did show altered nhr-57 transcript levels (see SI
Appendix, Fig. S1). Of the DEGs in hif-1(lf) mutants, 161/1,075
were also differentially expressed in egl-9(lf) hif-1(lf) mutants,
which suggests these transcripts are hif-1–dependent under nor-
moxia. For the remaining genes, we cannot rule out cumulative
effects from loss of hif-1, strain-specific eQTLs present in the
strain background or that loss of egl-9 suppresses the mutant phe-
notype. We designed our experiments to probe the constitutive
hypoxia response, and not the effects of hif-1 under normoxia,
which we did not foresee. As a result, we have limited resolving
power to explain the transcriptome of hif-1(lf) mutants.

Principal Component Analysis Visualizes Epistatic Relationships
Between Genotypes. Principal component analysis (PCA) is used
to identify relationships between high-dimensional data points
(26). We used PCA to examine whether each genotype clus-
tered in a biologically relevant manner. PCA identifies the vector
that explains most of the variation in the data; this is called the
first principal component. PCA can identify the first n compo-
nents that explain more than 95% of the data variance. Cluster-
ing in these n dimensions can indicate biological relationships,
although interpreting principal components can be difficult. In
our analysis, the first principal component discriminated mutants
that have constitutive high levels of HIF-1 from mutants that
have no HIF-1, whereas the second component was able to dis-
criminate between mutants within the hypoxia pathway and out-
side the hypoxia pathway (see Fig. 3; fog-2 is not reported to
act in the hypoxia pathway and acts as a negative control; see
SI Appendix).

Reconstruction of the Hypoxia Pathway from First Genetic Principles.
To reconstruct a genetic pathway, we must assess whether two
genes act on the same phenotype. If they do not act on the
same phenotype (two mutations do not cause the same genes
to become differentially expressed relative to wild type), these
mutants are independent. Otherwise, we must measure whether
these genes act additively or epistatically on the phenotype of
interest; if there is epistasis, we must measure whether it is pos-
itive or negative, to assess whether the epistatic relationship is a
genetic suppression or a synthetic interaction. To allow coherent
comparisons of different mutant transcriptomes (the phenotype
we are studying here), we define the shared transcriptomic phe-
notype (STP) between two mutants as the shared set of genes
or isoforms whose expression in both mutants are different from
wild-type, regardless of the direction of change.
Genes in the Hypoxia Mutant Act on the Same Transcriptional
Phenotype. All of the hypoxia mutants had a significant STP: the
fraction of DEGs that was shared between mutants ranged from
a minimum of 10% between hif-1(lf) and egl-9(lf); vhl-1(lf) to a
maximum of 32% between egl-9(lf) and egl-9(lf); vhl-1(lf) (see SI
Appendix, Table S1 and https://wormlabcaltech.github.io/mprsq).
For comparison, we also analyzed a previously published fog-2(lf)
transcriptome (15). The fog-2 gene is involved in masculinization
of the C. elegans germline, which enables sperm formation, and

is not known to be involved in the hypoxia pathway. The hypoxia
pathway mutants and the fog-2(lf) mutant also had STPs (8.8%
to 14%).

Next, we analyzed pairwise correlations between all mutant
pairs. We rank-transformed the β coefficients of each isoform
between the STP of two mutants and plotted the transcript ranks
between genotypes (see Fig. 4). Although hif-1 is known to be
genetically repressed by egl-9, rhy-1, and vhl-1 (16, 17), all of the
correlations between mutants of these genes and hif-1(lf) were
positive (see SI Appendix). We reasoned that this apparent con-
tradiction could be due to either strain-specific effects in our N2
background (an artifactual signal) or that it could reflect a pre-
viously unrecognized aspect of HIF-1 biology. This motivated
us to look for genes that exhibited verifiable extreme patterns
of anomalous behavior and led us to propose a new model of
the hypoxia pathway (see Identification of Nonclassical Epistatic
Interactions).

Transcriptome-Wide Epistasis. Ideally, any measurement of tran-
scriptome-wide epistasis should conform to certain expectations.
First, it should make use of the regression coefficients of as many
genes as possible. Second, it should be summarizable in a single,
well-defined number. Third, it should have an intuitive behav-
ior, such that special values of the statistic have an unambiguous
interpretation.

We found an approach that satisfies all of the above condi-
tions and that can be graphed in an epistasis plot (see Fig. 5). In
an epistasis plot, the x axis represents the expected β coefficient
for a given gene in a double mutant a−b− if a and b interact
log-additively. In other words, each individual isoform’s x coor-
dinate is the sum of the regression coefficients from the single
mutants a− and b−. The y axis represents the deviations from
the log-additive (null) model and can be calculated as the dif-
ference between the predicted and the observed β coefficients.
Only isoforms that are differentially expressed in all three geno-
types are plotted. This attempts to ensure that the isoforms to
be examined are regulated by both genes. These plots will gener-
ate specific patterns that can be described through linear regres-
sions. The slope of these lines, to which we assign the math-
ematical notation s(a, b), is the transcriptome-wide epistasis
coefficient. Importantly, the transcriptome-wide epistasis coef-
ficient is fundamentally distinct from Pearson or Spearman cor-
relation coefficients and need not have a simple linear mapping.

Fig. 3. PCA of various C. elegans mutants. Genotypes that have a constitu-
tive hypoxia response [i.e., egl-9(lf)] cluster far from genotypes that do not
have a hypoxic response [i.e., hif-1(lf)] along the first principal component.
The second principal component separates genotypes that do not partici-
pate in the hypoxic response pathway.
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Fig. 4. Interacting genes have correlated transcriptional signatures. The
rank order of transcripts contained in the shared transcriptional pheno-
type is plotted for each pairwise combination of genotypes. Correlations
between in-pathway genotypes are strong, whereas comparisons with a
fog-2(lf) genotype are dominated by noise. Comparisons between some
genotypes show populations of transcripts that are anticorrelated, possi-
bly as a result of feedback loops. Plots are color-coded by row. Comparisons
with genotypes with a constitutive hypoxia response are in blue, compar-
isons with genotypes negative for hif-1(lf) are in black, and comparisons
involving fog-2(lf) are in red. The x and y axes show the rank of each tran-
script within each genotype.

In other words, negative correlation coefficients do not imply a
specific sign of the epistasis coefficient, and vice versa. For sup-
pression to occur, for example, the only requirement is that the
phenotype of the double mutant should match one, and only one,
of the two single mutants. The value of the correlation coefficient
is not relevant.

Transcriptome-wide epistasis coefficients can be understood
intuitively for simple cases of genetic interactions if complete
genetic nulls are used. If two genes act additively on the same
set of differentially expressed isoforms, then all of the plotted
points will fall along the line y =0. If two genes act positively
in an unbranched pathway, then all of the mutants should have
the same phenotype. It follows that data from this pathway will
form a line with a slope equal to − 1

2
. On the other hand, in the

limit of complete genetic inhibition of b by a in an unbranched
pathway (i.e., a is in great excess over b, such that under the con-
ditions measured b has no activity), the plots should show a line
of best fit with a slope equal to −1. Genes that interact synthet-
ically [i.e., through an odds ratio (OR)-gate] will fall along lines
with slopes> 0. When there is epistasis of one gene over another,
the points will fall along one of two possible slopes that must be
determined empirically from the single mutant data. We can use
both single mutant data to predict the distribution of slopes that
results for the cases stated above. Thus, the transcriptome-wide
epistasis coefficient integrates information from many different
isoforms into a single number (see Fig. 5).

In our experiment, we studied two double mutants, egl-9(lf)
hif-1(lf) and egl-9(lf); vhl-1(lf). We wanted to understand how
well an epistatic analysis based on transcriptome-wide coeffi-
cients agreed with the epistasis results reported in the literature,
which were based on qPCR of single genes. Therefore, we deter-
mined the epistasis coefficient of the two gene combinations we
studied (egl-9 and vhl-1, and egl-9 and hif-1). In addition to com-
puting an epistasis coefficient from these factors, we would like
to know which gene is suppressed in the double mutant. Sup-
pression means that the double mutant should have exactly the

phenotype of one and only one mutant; we can simulate the dou-
ble mutant by replacing the double mutant data with either of
the two single mutants and matching the simulated result to the
observed result. The result that most closely matches the real

A

Low S.E 

High S.E 

Low
Density

High
Density

B

C

Fig. 5. Quantification of epistasis transcriptome-wide. (A) Schematic dia-
gram of an epistasis plot. The x axis on an epistasis plot is the expected coef-
ficient for a double mutant under an log-additive model (null model). The
y axis plots deviations from this model. Double mutants that deviate in a
systematic manner from the null model exhibit transcriptome-wide epistasis
(s). To measure s, we find the line of best fit and determine its slope. Genes
that act log-additively on a phenotype (Ph) will have s = 0 (null hypothe-
sis, orange line), whereas genes that act along an unbranched pathway will
have s =−1/2 (blue line). Strong repression is reflected by s =−1 (red line),
whereas s> 0 correspond to synthetic interactions (purple line). (B) Epistasis
plot showing that the egl-9(lf); vhl-1(lf) transcriptome deviates significantly
from a null additive. Points are colored qualitatively according to density
(purple, low; yellow, high) and size is inversely proportional to the SE of the y
axis. The green line is the line of best fit from an orthogonal distance regres-
sion. (C) Comparison of simulated epistatic coefficients against the observed
coefficient. Green curve shows the bootstrapped observed transcriptome-
wide epistasis coefficient for egl-9 and vhl-1. Dashed green line shows the
mean value of the data. Simulations use only the single mutant data to ide-
alize what expression of the double mutant should look like. a> b means
that the phenotype of a is observed in a double mutant a−b−.
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data will reveal which gene is being suppressed, which in turn
allows us to order the genes along a pathway.

We measured the epistasis coefficient between egl-9 and vhl-1,
s(egl-9 vhl-1)=−0.41± 0.01 (see SI Appendix, Quantifying Epis-
tasis). Simulations using just the single mutant data showed that
the double mutant exhibited the egl-9(lf) phenotype (see Fig. 5).
We used Bayesian model selection to reject a linear pathway
(OR> 1092), which leads us to conclude egl-9 is upstream of vhl-
1 acting on a phenotype in a branched manner. We also mea-
sured epistasis between egl-9 and hif-1, s(egl-9, hif-1)=−0.80±
0.01 (see SI Appendix, Fig. S2), and we found that this behavior
could be predicted by modeling hif-1 downstream of egl-9. We
also rejected the null hypothesis that these two genes act in a
positive linear pathway (OR> 1093). Taken together, this leads
us to conclude that egl-9 strongly inhibits hif-1.
Epistasis Between Two Genes Can Be Predicted Using an Upstream
Component. Given our success in measuring epistasis coeffi-
cients, we wanted to know whether it would be possible to
predict the epistasis coefficient between egl-9 and vhl-1 in the
absence of the egl-9(lf) genotype. Since RHY-1 indirectly acti-
vates EGL-9, we reasoned that the rhy-1(lf) transcriptome should
contain almost equivalent information to the egl-9(lf) transcrip-
tome. Therefore, we generated predictions of the epistasis coeffi-
cient between egl-9 and vhl-1 by substituting in the rhy-1(lf) data,
predicting s(rhy-1, vhl-1)=−0.45. Similarly, we used the egl-9(lf);
vhl-1(lf) double mutant to measure the epistasis coefficient while
replacing the egl-9(lf) dataset with the rhy-1(lf) dataset. We found
that the epistasis coefficient using this substitution was −0.38±
0.01. This coefficient was different from −0.50 (OR > 10102),
reflecting the same qualitative conclusion that vhl-1 represents a
branch in the hypoxia pathway. We were able to obtain a close
prediction of the epistasis coefficient for two mutants using the
transcriptome of a related, upstream mutant.

Transcriptomic Decorrelation Can Be Used to Infer Functional Dis-
tance. So far, we have shown that RNA-seq can accurately mea-
sure genetic interactions. However, genetic interactions do not
require two gene products to interact biochemically, nor even
to be physically close to each other. RNA-seq cannot measure
physical interactions between genes, but we wondered whether
expression profiling contains sufficient information to order
genes along a pathway.

Single genes are often regulated by multiple independent
sources. The connection between two nodes can in theory be
characterized by the strength of the edges connecting them (the
thickness of the edge), the sources that regulate both nodes (the
fraction of inputs common to both nodes), and the genes that are
regulated by both nodes (the fraction of outputs that are com-
mon to both nodes). In other words, we expected that expression
profiles associated with a pathway would respond quantitatively
to quantitative changes in activity of the pathway. Targeting a
pathway at multiple points would lead to expression profile diver-
gence as we compare nodes that are separated by more degrees
of freedom, reflecting the flux in information between them.

We investigated this possibility by weighting the robust
Bayesian regression between each pair of genotypes by the size
of the STP of each pair divided by the total number of isoforms
differentially expressed in either mutant (NIntersection/NUnion).
We plotted the weighted correlation of each gene pair, ordered
by increasing functional distance (see Fig. 6). In every case, we
see that the weighted correlation decreases monotonically due
mainly, but not exclusively, to a smaller STP (see SI Appendix,
Decorrelation Within Pathways).

We believe that this result is not due to random noise or insuf-
ficiently deep sequencing. Instead, we propose a framework in
which every gene is regulated by multiple different molecular
species, which induces progressive decorrelation. This decorre-
lation in turn has two consequences. First, decorrelation within

a pathway implies that two nodes may be almost independent of
each other if the functional distance between them is large. Sec-
ond, it may be possible to use decorrelation dynamics to infer
gene order in a branching pathway, as we have done with the
hypoxia pathway.

Classical Epistasis Identifies a Core Hypoxic Response. We searched
for genes whose expression obeyed the two epistatic equality
relationships, hif-1(lf) = egl-9(lf) hif-1(lf) and egl-9(lf) = egl-9(lf);
vhl-1(lf), since these equalities define the hypoxia pathway. We
excluded genes whose expression deviated from this relationship
by more than 2 standard deviations or that had opposite changes
in direction. Using these criteria, we identified 1,258 genes in
the hypoxia response. Tissue enrichment analysis showed that
the intestine and epithelial system were enriched in this response
(q < 10−10 for both terms), consistent with previous reports (27).
Gene enrichment analysis (28) showed enrichment in the mito-
chondrion and in collagen trimers (q < 10−10) (see SI Appendix,
Enrichment Analysis of Hypoxia Pathway Data and SI Appendix,
Figs. S3 and S4). This response included 15 transcription factors.
Even though HIF-1 is an activator, not all of these genes were
up-regulated. We reasoned that only genes that are up-regulated
in HIF-1-inhibitor mutants are candidates for direct regulation
by HIF-1. We found 264 such genes.

Feedback Can Be Inferred. While some of the rank plots contained
a clear positive correlation, others showed a discernible cross-
pattern (see Fig. 4). In particular, this cross-pattern emerged
between vhl-1(lf) and rhy-1(lf) or between vhl-1(lf) and egl-9(lf),
even though vhl-1, rhy-1, and egl-9 are all inhibitors of hif-1(lf).
Such cross-patterns could be indicative of feedback loops or
other complex interaction patterns. If the above is correct, then
it should be possible to identify genes that are regulated by
rhy-1 in a logically consistent way: Since loss of egl-9 causes
rhy-1 mRNA levels to increase, if this increase leads to a sig-
nificant change in RHY-1 activity, then it follows that the egl-
9(lf) and rhy-1(lf) should show anticorrelation in a subset of
genes. Since we do not observe many genes that are anticor-
related, we conclude that is unlikely that the change in rhy-1
mRNA expression causes a significant change in RHY-1 activity
under normoxic conditions. We also searched for genes with hif-
1–independent, vhl-1–dependent gene expression and found 71
genes (Dataset S1).

Identification of Nonclassical Epistatic Interactions. hif-1(lf) has tra-
ditionally been viewed as existing in a genetic OFF state under
normoxic conditions. However, our dataset indicates that 1,075
genes show altered expression when hif-1 function is removed
in normoxic conditions. Moreover, we observed positive correla-
tions between hif-1(lf) β coefficients and egl-9(lf), vhl-1(lf), and
rhy-1(lf) β coefficients despite the negative regulatory relation-
ships between these genes and hif-1. Such positive correlations
could indicate a relationship between these genes that has not
been reported previously.

We identified genes that exhibited violations of the canoni-
cal genetic model of the hypoxia pathway (see Fig. 7; see also
SI Appendix). We searched for genes that changed in differ-
ent directions between egl-9(lf) and vhl-1(lf) or, equivalently,
between rhy-1(lf) and vhl-1(lf) [we assume that all results from
the rhy-1(lf) transcriptome reflect a complete loss of egl-9 activ-
ity] without specifying any further conditions. We found 56 that
satisfied this condition (see Fig. 7, Dataset S1). When we checked
expression of these genes in the double mutant, we found that
egl-9 remained epistatic over vhl-1 for this class of genes. This
class of genes may in fact be larger because it overlooks genes
that have wild-type expression in an egl-9(lf) background, altered
expression in a vhl-1(lf) background, and suppressed (wild-type)
expression in an egl-9(lf); vhl-1(lf) background. As a result, it
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Fig. 6. Transcriptomes can be used to order genes in a pathway under cer-
tain assumptions. Arrows in the diagrams above are intended to show the
direction of flow and do not indicate valence. (A) A linear pathway in which
rhy-1 is the only gene controlling egl-9, which in turn controls hif-1, does not
contain information to infer the order between genes. (B) If rhy-1 and egl-9
have transcriptomic effects that are separable from hif-1, then the rhy-1 tran-
scriptome should contain contributions from egl-9, hif-1 and egl-9– and hif-1–
independent pathways. This pathway contains enough information to infer
order. (C) If a pathway is branched both upstream and downstream, transcrip-
tomes will show even faster decorrelation. Nodes that are separated by many

could help explain why the hif-1(lf) mutant transcriptome is pos-
itively correlated with its inhibitors.

Although this entire class had similar behavior, we focused on
two genes, nlp-31 and ftn-1, which have representative expression
patterns. ftn-1 is described to be responsive to mutations in the
hypoxia pathway and has been reported to have aberrant behav-
iors; specifically, loss of function of egl-9 and vhl-1 have oppos-
ing effects on ftn-1 expression (29, 30). These studies showed the
same ftn-1 expression phenotypes using RNAi and alleles, allay-
ing concerns of strain-specific interference. We observed that hif-
1 was epistatic to egl-9 and that egl-9 and hif-1 both promoted
ftn-1 expression.

Analysis of ftn-1 expression reveals that egl-9 is epistatic to
hif-1, that vhl-1 has opposite effects to egl-9, and that vhl-1 is
epistatic to egl-9. Analysis of nlp-31 reveals similar relationships.
nlp-31 expression is decreased in hif-1(lf) and increased in egl-
9(lf). However, egl-9 is epistatic to hif-1. Like ftn-1, vhl-1 has the
opposite effect to egl-9 yet is epistatic to egl-9. We propose in
Discussion a model for how HIF-1 might regulate these targets.

Discussion
The C. elegans Hypoxia Pathway Can Be Reconstructed de Novo from
RNA-Seq Data. We have shown that whole-organism transcrip-
tomic phenotypes can be used to reconstruct genetic pathways
and to discern previously uncharacterized genetic interactions.
We successfully reconstructed the hypoxia pathway including the
order of action of the genetic components and its branching
pattern. These results highlight the potential of whole-animal
expression profiles for dissecting molecular pathways that are
expressed in a large number of cells within an organism. While
our results are promising, it remains to be seen whether our
approach will also work for pathways that act in a few cells. We
selected a previously characterized pathway because C. elegans
is less amenable to high-throughput screens compared with cul-
tured cells. That said, the striking nature of our results makes us
optimistic that this technique could be successfully used to recon-
struct unknown pathways.

Interpretation of the Nonclassical Epistasis in the Hypoxia Pathway.
The 56 genes that exhibit a striking pattern of nonclassical epis-
tasis suggest the existence of previously undescribed aspects of
the hypoxia pathway. Some of these nonclassical behaviors had
been observed previously (29–31), but no satisfactory mecha-
nism has been proposed to explain them. Previous studies (29,
30) suggested that HIF-1 integrates information on iron concen-
tration in the cell to determine its binding affinity to the ftn-
1 promoter but could not definitively establish a mechanism.
It is unclear why deletion of hif-1 and deletion of egl-9 both
cause induction of ftn-1 expression, but deletion of vhl-1 abol-
ishes this induction. Moreover, Luhachack et al. (31) have pre-
viously reported that certain genes important for the C. elegans
immune response against pathogens reflect similar noncanonical
expression patterns. Their interpretation was that swan-1, which
encodes a binding partner to EGL-9 (32), is important for mod-
ulating HIF-1 activity in some manner. The lack of a conclusive
double mutant analysis in this work means the role of SWAN-1 in
modulation of HIF-1 activity remains to be demonstrated. Other
mechanisms, such as tissue-specific differences in the pathway
(27), could also modulate expression, though it is worth pointing
out that ftn-1 expression appears restricted to a single tissue,

edges may begin to behave almost independently of each other with
marginal transcriptomic overlap or correlation. (D) The hypoxia pathway
can be ordered. We hypothesize the rapid decay in correlation is due to
a mixture of upstream and downstream branching that happens along this
pathway. Bars show the SE of the weighted coefficient from the Monte Carlo
Markov Chain computations.
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Fig. 7. Fifty-six hif-1–dependent genes show nonclassical antagonistic
effects of vhl-1 and egl-9. (A) A total of 56 genes in C. elegans exhibit non-
classical epistasis in the hypoxia pathway, characterized by opposite effects
on gene expression, relative to the wild type, of the vhl-1(lf) compared with
egl-9(lf) [or rhy-1(lf)] mutants. Shown are a random selection of 15 out of 56
genes for illustrative purposes. (B) Genes that behave noncanonically have a
consistent pattern. vhl-1(lf) mutants have an opposite effect to egl-9(lf), but
egl-9 remains epistatic to vhl-1 and loss-of-function mutations in hif-1 sup-
press the egl-9(lf) phenotype. Asterisks show β values significantly different
from 0 relative to wild type (q< 10−1).

the intestine (33). Another possibility is that egl-9 controls hif-
1 mRNA stability via other vhl-1–independent pathways, but we
did not see a decrease in hif-1 level in egl-9(lf), rhy-1(lf), or vhl-
1(lf) mutants. Another possibility, such as control of protein sta-
bility via egl-9 independently of vhl-1 (34), will not lead to split-
ting unless it happens in a tissue-specific manner.

One parsimonious solution is to consider HIF-1 as a protein
with both activating and inhibiting states. In fact, HIF-1 already
exists in two states in C. elegans: unmodified HIF-1 and HIF-1-
hydroxyl (HIF-1-OH). Under this model, the effects of HIF-1 for
certain genes like ftn-1 or nlp-31 are antagonized by HIF-1-OH,
which is present at only a low level in the cell in normoxia because
it is degraded in a vhl-1–dependent fashion. This means that loss
of vhl-1 stabilizes HIF-1-OH. If vhl-1 is inactivated, genes that
are sensitive to HIF-1-OH will be inhibited as a result of the
increase in HIF-1-OH, despite the increased levels of nonhy-
droxylated HIF-1. On the other hand, egl-9(lf) abrogates the gen-
eration of HIF-1-OH, stimulating accumulation of nonhydroxy-
lated HIF-1 and promoting gene expression. Whether deletion

of hif-1(lf) is overall activating or inhibiting will depend on the
relative activity of each protein state under normoxia (see Fig.
8). HIF-1-OH is challenging to study genetically, and if it does
have the activity suggested by our genetic evidence, this may have
prevented such a role from being detected. No mimetic muta-
tions are known with which to study the pure hydroxylated HIF-
1 species, and mutations in the Von Hippel–Lindau gene that
stabilize the hydroxyl species also increase the quantity of non-
hydroxylated HIF-1 by mass action.

Because HIF-1 is detected at low levels in cells under nor-
moxic conditions (35), total HIF-1 protein levels are assumed
to be so low as to be biologically inactive. However, our data
show 1,075 genes change expression in response to loss of hif-1
under normoxic conditions, which establishes that there is suffi-
cient total HIF-1 protein to be biologically active. Our analyses
also revealed that hif-1(lf) shares positive correlations with egl-
9(lf), rhy-1(lf), and vhl-1(lf) and that each of these genotypes also
shows a secondary negative rank-ordered expression correlation
with each other.

A homeostatic argument can be made in favor of the activ-
ity of HIF-1-OH. The cell must continuously monitor multiple
metabolite levels. The hif-1–dependent hypoxia response inte-
grates information from O2, α-ketoglutarate, and iron concen-
trations in the cell. One way to integrate this information is by
encoding it within the effective hydroxylation rate of HIF-1 by
EGL-9. Then the dynamics in this system will evolve exclusively
as a result of the total amount of HIF-1 in the cell. Such a sys-
tem can be sensitive to fluctuations in the absolute concentra-
tion of HIF-1 (36). Since the absolute levels of HIF-1 are low in
normoxic conditions, small fluctuations in protein copy number
can represent a large fold-change in HIF-1 levels. These fluctu-
ations might not be problematic for genes that must be turned
on only under conditions of severe hypoxia—presumably, these
genes would be activated only when HIF-1 levels increase far
beyond random fluctuations.

Genotype

egl-9 HIF-1

HIF-1

HIF-1 activates/
HIF-1-OH represses

wild type HIF-1 HIF-1-OH

egl-9; vhl-1
HIF-1 activates/
HIF-1-OH represses

hif-1 concentrations at S.S.

egl-9; hif-1 concentrations at S.S.

vhl-1 HIF-1 HIF-1-OH HIF-1-OH represses

Interpretation

ftn-1

ftn-1

ftn-1

ftn-1

ftn-1

ftn-1

degradation

HIF-1

HIF-1-OH

RHY-1 EGL-9

VHL-1

ftn-1

A

B

Fig. 8. A hypothetical model showing a mechanism where HIF-1-OH antag-
onizes HIF-1 in normoxia. (A) Diagram showing that RHY-1 activates EGL-9.
EGL-9 hydroxylates HIF-1 in an oxygen-dependent manner. HIF-1 is rapidly
hydroxylated, and the product, HIF-1-OH, is rapidly degraded in a VHL-1–
dependent fashion. EGL-9 can also inhibit HIF-1 in an oxygen-independent
fashion. In our model, HIF-1 and HIF-1-OH have opposing effects on tran-
scription. The width of the arrows represents rates in normoxic conditions.
(B) Table showing the effects of loss-of-function mutations on HIF-1 and HIF-
1-OH activity, showing how this can potentially explain the ftn-1 expression
levels in each case. S.S., steady state.
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For yet other sets of genes that must change expression in
response to the hypoxia pathway, it may not be sufficient to inte-
grate metabolite information exclusively via EGL-9–dependent
hydroxylation of HIF-1. In particular, genes that may function
to increase survival in mild hypoxia may benefit from regula-
tory mechanisms that can sense minor changes in environmen-
tal conditions and which therefore benefit from robustness to
transient changes in protein copy number. Likewise, genes that
are involved in iron or α-ketoglutarate metabolism (such as ftn-
1) may benefit from being able to sense, accurately, small and
consistent deviations from basal concentrations of these metabo-
lites. For these genes, the information may be better encoded
by using HIF-1 and HIF-1-OH as an activator/repressor pair.
Such circuits are known to possess distinct advantages for con-
trolling output robustly to transient fluctuations in the levels of
their components (37, 38).

Our RNA-seq data suggest that one of these atypical targets of
HIF-1 may be RHY-1. Although rhy-1 does not exhibit nonclas-
sical epistasis, all genotypes containing a hif-1(lf) mutation had
increased expression levels of rhy-1. We speculate that if rhy-1 is
controlled by both HIF-1 and HIF-1-OH, then this might imply
that HIF-1 autoregulates both positively and negatively.

Strengths and Weaknesses of the Methodology. We have described
a set of methods that can in principle be applied to any mul-
tidimensional phenotype. Although we have not applied these
methods to de novo pathway discovery, we believe that they
will be broadly applicable to a wide variety of genetic problems.
One aspect of our methodology is the use of whole-organism
expression data. Data collection from whole organisms can be
rapid with low technical barriers. On the other hand, a concern
is that whole-organism data will average signals across tissues,
which would limit the scope of this technology to the study of
genetic pathways that are systemic or expressed in large tissues.
In reality, our method may be applicable for pathways that are
expressed even in a small number of cells in an organism. If a
pathway is active in a single cell, this does not mean that it does
not have cell-nonautonomous effects that could be detected on
an organism-wide level. Thus, pathways that act in single cells
could still be characterized via whole-organism transcriptome
profiling. If the nonautonomous effects are long-lasting, then the
profiling could take place after the time-of-action of this path-
way. In fact, this is how the female-like state in C. elegans was
recently identified (15): fog-2 is involved in translation repres-
sion of tra-2 in the somatic gonad, thereby promoting sperm
formation in late larvae (39). Loss of this gene causes non–cell-
autonomous effects that can be detected well after the time-of-
action of fog-2 in the somatic gonad has ended. Therefore, we
believe that our methodology will be applicable to many genetic
cases, with the exception of pathways that act in complex, antag-
onistic manners depending on the cell type, or if the pathway
minimally affects gene expression.

Genetic analysis of transcriptomic data has proved chal-
lenging as a result of its complexity. Although dimensionality
reduction techniques such as PCA have emerged as powerful
methods with which to understand these data, these methods
generate reduced coordinates that are difficult or impossible to
interpret. As an example, the first principal component in this
paper (see Fig. 3) could be interpreted as HIF-1 pseudoabun-
dance (40). However, another equally reasonable yet potentially
completely different interpretation is as a pseudo–HIF-1/HIF-
1-OH ratio. Another way to analyze genetic interactions is via
GLMs that include interaction terms between two or more genes.
GLMs can quantify the genetic interactions on single transcripts.
We and others (14, 15) have used GLMs to perform epistasis
analyses of pathways using transcriptomic phenotypes. GLMs
are powerful, but they generate a different interaction coef-

ficient for each gene measured. The large number of coeffi-
cients makes interpretation of the genetic interaction between
two mutants difficult. Previous approaches (14) visualize these
coefficients via clustered heatmaps. However, two clusters can-
not be assumed to be evidence that two genes interact via entirely
distinct pathways. Indeed, the nonclassical epistasis examples we
described here might cluster separately even though a reasonable
model can be invoked that does not require any new molecular
players.

The epistasis plots shown here are a useful way to visualize
epistasis in vectorial phenotypes. We have shown how an epista-
sis plot can be used to identify interactions between two genes
by examining the transcriptional phenotypes of single and dou-
ble mutants. Epistasis plots can accumulate an arbitrary num-
ber of points within them, possess a rich structure that can be
visualized, and have straightforward interpretations for special
slope values. Epistasis plots and GLMs are not mutually exclu-
sive. A GLM could be used to quantify epistasis interactions at
single-transcript resolution and the results then analyzed using
an epistasis plot (for a nongenetic example, see ref. 15). A bene-
fit of epistasis plots is that they enable the computation of a sin-
gle, aggregate statistic that describes the ensemble behavior of
a set of genes. This aggregate statistic is not enough to describe
all possible behaviors in a system, but it can be used to establish
whether the genes under study are part of a single pathway. In the
case of the hypoxia pathway, phenotypes that are downstream
of the hypoxia pathway should conform to the genetic equali-
ties, egl-9(lf) hif-1(lf) = hif-1(lf) and egl-9(lf); vhl-1(lf) = egl-9(lf).
Genes whose expression levels behave strangely yet satisfy these
equalities are downstream of the hypoxia pathway. These anoma-
lous genes cannot be identified via the epistasis coefficient, but
the epistasis coefficient does provide a unifying framework with
which to analyze them by constraining the space of plausible
hypotheses.

Until relatively recently, the rapid generation and molecu-
lar characterization of null mutants was a major bottleneck for
genetic analyses. Advances in genomic engineering mean that,
for a number of organisms, production of mutants is now rapid
and efficient. As mutants become easier to produce, biologists
are realizing that phenotyping and characterizing the biologi-
cal functions of individual genes is challenging. This is particu-
larly true for whole organisms, where subtle phenotypes can go
undetected for long periods of time. We have shown that whole-
animal RNA-seq is a sensitive method that can be seamlessly
incorporated with genetic analyses of epistasis.

Materials and Methods
Nematode Strains and Culture. Strains used were N2 (Bristol), JT307 egl-
9(sa307), CB5602 vhl-1(ok161), ZG31 hif-1(ia4), RB1297 rhy-1(ok1402), and
CB6088 egl-9(sa307) hif-1(ia4) CB6116 egl-9(sa307); vhl-1(ok161). Lines were
grown on standard nematode growth media Petri plates seeded with OP50
E. coli at 20 ◦C (41).

RNA Isolation. Lines were synchronized by harvesting eggs via sodium
hypochlorite treatment and subsequently plating eggs on food. Worms
were staged and based on the time after plating, vulva morphology, and the
absence of eggs. Between 30 and 50 nongravid young adults were picked
and placed in 100 µL of TE pH 8.0 (Ambion AM9849) in 0.2 mL PCR tubes
on ice. Worms were allowed to settle or spun down by centrifugation and
∼ 80 µL of supernatant removed before flash-freezing in liquid N2. These
samples were digested with Recombinant Proteinase K PCR Grade (Roche
Lot No. 03115 838001) for 15 min at 60◦ in the presence of 1% SDS and
1.25 µL RNA Secure (Ambion AM7005). Five volumes of Trizol (Tri-Reagent
Zymo Research) were added to the RNA samples and treated with DNase I
using Zymo Research Quick-RNA MicroPrep R1050. Samples were analyzed
run on an Agilent 2100 BioAnalyzer (Agilent Technologies). Replicates were
selected that had RNA integrity numbers (RIN) equal to or greater than 9.0
and without bacterial ribosomal bands, except for the ZG31 mutant, where
one of three replicates had a RIN of 8.3.
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Library Preparation and Sequencing. We reverse-transcribed 10 ng of total
RNA from each sample into cDNA using the Clontech SMARTer Ultra Low
Input RNA for Sequencing v3 kit (catalog no. 634848) in the SMARTSeq2
protocol (42). RNA was denatured at 70 ◦C for 3 min in the presence of
dNTPs, oligo dT primer, and spiked-in quantitation standards (National Insti-
tute of Standards and Technology/External RNA Controls Consortium from
Ambion, catalog no. 4456740). After chilling to 4 ◦C, the first-strand reac-
tion was assembled using a LNA TSO primer (42) and run at 42 ◦C for
90 min, followed by denaturation at 70 ◦C for 10 min. The first-strand
reaction was used as a template for 13 cycles of PCR using the Clontech
v3 kit. Reactions were purified with Ampure XP SPRI beads (catalog no.
A63880). After quantification using the Qubit High Sensitivity DNA assay,
a 3 ng aliquot of the cDNA was run on the Agilent HS DNA chip to confirm
the length distribution of the amplified fragments. The median value for the
average cDNA lengths from all length distributions was 1,076 bp. Tagmenta-
tion of the full-length cDNA was performed using the Illumina/Nextera DNA
library prep kit (catalog no. FC-121–1030). Following Qubit quantitation and
Agilent BioAnalyzer profiling, the tagmented libraries were sequenced on
an Illumina HiSeq2500 machine in single-read mode with a read length of
50 nt to a depth of 15 million reads per sample. Base calls were performed
with RTA 1.13.48.0 followed by conversion to FASTQ with bcl2fastq 1.8.4.

Read Alignment and Differential Expression Analysis. We used Kallisto (43) to
perform read pseudoalignment and performed differential analysis using
Sleuth (44). We fit a GLM for an isoform t in sample i:

yt,i = βt,0 + βt, genotype ·Xt,i + βt, batch ·Yt,i + εt,i [1]

where yt,i was the logarithm transformed counts of isoform t in sample i;
βt,genotype and βt,batch were parameters of the model for the isoform t, which
could be interpreted as biased estimators of the log-fold change; Xt,i , Yt,i

were indicator variables describing the experimental conditions of the iso-
form t in sample i; and εt,i was the noise associated with a particular mea-
surement. After fitting the GLM, we tested isoforms for differential expres-
sion using the built-in Wald test in Sleuth (44), which outputs a q value that
has been corrected for multiple hypothesis testing.

Genetic Analysis, Overview. The processed data were analyzed using Python
3.5. We used the Pandas, Matplotlib, Scipy, Seaborn, Sklearn, Networkx,
PyMC3, and TEA libraries (45–52). Our analysis is available in Jupyter Note-
books (53). All code and processed data are available at https://github.
com/WormLabCaltech/mprsq along with version-control information. Our
Jupyter Notebook and interactive graphs for this project can be found at
https://wormlabcaltech.github.io/mprsq/ in html format, or in SI Appendix.
Raw reads were deposited in the Short Read Archive under the study acces-
sion no. SRP100886 and in the Gene Expression Omnibus (GEO) under acces-
sion no. GSE97355.

Weighted Correlations. Correlations between mutants were calculated by
identifying their STP. Transcripts were rank-ordered according to their
regression coefficient, β. Regressions were performed using a Student-
T distribution with the PyMC3 library (48) (pm.glm.families.StudenT in
Python). If the correlations had an average value > 1, the average cor-
relation coefficient was set to 1. Weights were calculated as the num-
ber of genes that were inliers divided by the number of DEGs present in
either mutant.

Epistatic Analysis. The epistasis coefficient between two null mutants a and
b was calculated as:

s(a, b) =
βa,b− βa− βb

βa + βb
[2]

Null models for various epistatic relationships were generated by sam-
pling the single mutants in an appropriate fashion. For example, to gen-
erate the distribution for two mutants that obey the epistatic relationship
a− = a−b−, we substituted βa,b with βa and bootstrapped the result.

To select between theoretical models, we implemented an approximate
Bayesian OR. We defined a free-fit model, M1, that found the line of best
fit for the data:

P(α |M1, D) ∝
∏

(xi ,yi ,σi )∈D

exp

[
(yi −α · xi)

2

2σ2
i

]
· (1 +α

2)
−3/2

, [3]

where α was the slope to be determined, xi , yi are the coordinates of
each point, and σi was the SE associated with the y value. We used Eq.
3 to obtain the most likely slope given the data, D, via minimization
(scipy.optimize.minimize in Python). Finally, we approximated the OR as:

OR =
P(D |α∗, M1) · (2π)1/2σα∗

P(D |Mi)
, [4]

where α∗ was the slope found after minimization, σ∗α was the SD of the
parameter at the point α∗, and P(D |Mi) was the probability of the data
given the parameter-free model, Mi .

Enrichment Analysis. Tissue, phenotype, and gene ontology enrichment
analyses were carried out using the WormBase Enrichment Suite for Python
(28, 51).
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