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We experimentally study the stability of a bosonic Mott insulator
against the formation of a density wave induced by long-range
interactions and characterize the intrinsic dynamics between these
two states. The Mott insulator is created in a quantum degener-
ate gas of 87-Rubidium atoms, trapped in a 3D optical lattice. The
gas is located inside and globally coupled to an optical cavity. This
causes interactions of global range, mediated by photons disper-
sively scattered between a transverse lattice and the cavity. The
scattering comes with an atomic density modulation, which is mea-
sured by the photon flux leaking from the cavity. We initialize the
system in a Mott-insulating state and then rapidly increase the
global coupling strength. We observe that the system falls into
either of two distinct final states. One is characterized by a low
photon flux, signaling a Mott insulator, and the other is charac-
terized by a high photon flux, which we associate with a density
wave. Ramping the global coupling slowly, we observe a hysteresis
loop between the two states—a further signature of metastability.
A comparison with a theoretical model confirms that the metasta-
bility originates in the competition between short- and global-
range interactions. From the increasing photon flux monitored dur-
ing the switching process, we find that several thousand atoms
tunnel to a neighboring site on the timescale of the single-particle
dynamics. We argue that a density modulation, initially forming in
the compressible surface of the trapped gas, triggers an avalanche
tunneling process in the Mott-insulating region.

quantum gas | metastability | avalanche dynamics | cavity QED |
extended Bose-Hubbard model

When found in a metastable state or phase, a system resides
in a condition differing from its state of least energy for

an extended period. Examples for long-lived metastable phases
are found in magnetized materials, glasses, and crystals like dia-
mond, as well as in macromolecules (1–3). In many solid-state
systems, metastability can be described by a first-order phase
transition (4), yet the less accessible switching dynamics and their
associated timescales are crucial to gain insights into the mecha-
nisms of structure formation.

Ultracold atoms emerge as a promising tool to study questions
related to metastability in quantum many-body systems, due to
the precise knowledge and high level of control over the underly-
ing Hamiltonian. Indeed, metastable states, many-body localiza-
tion, and first-order phase transitions have recently attracted the-
oretical (5–10) and experimental interest (11–16). The presence
of long-range interactions is of particular importance to induce
and influence metastability, since it makes decay processes like
nucleation and phase separation energetically costly, resulting in
increased lifetimes of higher-energy states, as recently observed
in Rydberg excitation clusters (17). The consequences are even
more severe in systems with long-range interactions decaying
slower than 1/rd , where r is the interparticle distance and d is
the dimensionality of the system, as a separation into indepen-
dent clusters is no longer possible. The lifetime of metastable
phases then scales with the system size and diverges in the ther-
modynamic limit (18, 19).

Here we study a trapped bosonic quantum gas with strong
short-range interactions in which all atoms are also coupled

to each other through global-range interactions. Increasing the
strength of the global coupling triggers a switching process that
results in a rearranged atomic distribution and self-consistent
potential. The timescale during which this process takes place
is intrinsically determined by the many-body dynamics of the gas
and is continuously monitored in the experiment.

In our experiment the global interactions arise from the cou-
pling of a Bose–Einstein condensate (BEC) to a single mode
of an optical high-finesse cavity (20, 21). With the atomic gas
trapped in a 3D optical lattice we can simultaneously control
short-range interactions and push the system into a strongly cor-
related regime (Fig. 1B). The phase diagram of the system is
schematically shown in Fig. 1C. It was recently determined exper-
imentally (22, 23) and studied theoretically (24–32). In the ther-
modynamic limit a first-order phase transition from a Mott insu-
lator (MI) (33, 34) to a charge-density wave (CDW) state has
been predicted (27, 28, 30, 32).

Toy Model
To achieve a basic understanding of our system we study a toy
model with Hamiltonian Ĥ= 1

2
Us
∑

i∈e,o n̂i (n̂i − 1)− 1
K
UlΘ̂

2,
i.e., an extended Bose-Hubbard model where we have neglected
tunneling for simplicity. We consider the situation of a fixed
number of atoms N in a box potential, with K =N lattice sites
and an average filling per lattice site of 〈n̂i〉= 1. Us and Ul denote
the strength of short- and global-range interactions, respectively.
The global-range interaction term favors a particle imbalance
between even and odd lattice sites. It is characterized by the
imbalance operator Θ̂ =

∑
i∈e n̂i −

∑
i∈o n̂i , where n̂i counts the

number of atoms on lattice site i and the subindexes e and o
denote even and odd lattice sites, respectively.

Significance

Most structured matter, whether in the form of solids or
macromolecules, is found in metastable states. Metastability,
as well as the transition processes between metastable states,
is ubiquitous in nature, but challenges our tools to describe
such complex quantum systems. Using a quantum gas, we
assemble a synthetic quantum many-body system featuring
metastability. The essential ingredient is a global interaction
that couples superfluid shells of the system with a metastable
Mott insulator in its core. We study in real time the self-
induced switching of the core to a different density config-
uration, a process reminiscent of the folding between discrete
structures encountered in the study of macromolecules.
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Fig. 1. Metastability and system overview. (A) Mean-field results from the
toy model. In the presence of short-range interactions Us and global-range
interactions Ul atoms placed in a lattice potential can show metastable
behavior. States (indicated by circles) can be protected by an energy bar-
rier and the present state of the system depends on its history, lead-
ing to hysteresis. The Mott insulator (orange line) and the charge den-
sity wave (green lines) are stable (solid), metastable (dashed), or unstable.
(B) Our system consists of a Bose–Einstein condensate coupled to a sin-
gle mode of an optical resonator in the presence of 3D optical lattices.
The atoms can create a particle imbalance Θ by arranging in a checker-
board pattern which maximizes scattering of photons from a z lattice (not
shown) into the resonator mode. (C) Schematic phase diagram of the sys-
tem with a superfluid (SF, gray), a lattice supersolid (SS, blue), a Mott insu-
lator (MI, orange), and a charge-density wave (CDW, green) phase. The
shaded region between the MI and CDW indicates a region of hysteresis
between the phases. The black arrow illustrates the experimental sequence:
We prepare the atoms in the SF phase and ramp up the 3D optical lat-
tices to increase Us, which brings the system into the MI phase. Subse-
quently, we carry out a detuning ramp toward cavity resonance which
increases Ul.

We obtain the average ground-state energy per particle ε=〈
Ĥ
〉
/N as a function of the imbalance Θ =

〈
Θ̂
〉

for varying
Ul/Us (Fig. 1A and Derivation of the Extended Bose–Hubbard
Toy Model). When global-range interactions are weak (Ul/Us <
0.25), the free-energy landscape has a single global minimum at
imbalance Θ = 0 corresponding to an MI with exactly one atom
on every lattice site. For Ul/Us > 0.5 global-range interactions
dominate and we find an insulating ground state with a mod-
ulated density distribution which we denote CDW. Since the
discrete even-odd symmetry of the lattice is broken, the energy
landscape shows two global minima at Θ/N =±1. In the region
around Ul/Us≈ 0.5 this model shows metastable behavior (31,
32). Here the MI state is a local minimum in the free-energy
landscape, separated from the CDW states by an energy barrier,
which results from the competition between strong interactions
of short- and global-range character.

System Description
We load a BEC of (15−25)× 103 87Rb atoms into a harmonic
potential centered at the position of the cavity mode. The cloud
is split into about 70 weakly coupled 2D layers using an opti-
cal lattice of (26.2–30.7) E 671

R depth along the y axis at wave-
length λy = 671.0 nm (Calculation of Atomic Density Distribu-
tions). We specify lattice depths in units of the recoil energy
Eλ

R = h2/(2mλ2) for the wavelength λ, where h denotes Planck’s
constant and m is the atomic mass of 87Rb. The 2D layers are
exposed to a square lattice composed of a free-space lattice in
the z direction and an intracavity optical standing wave along the
x direction which is externally applied through the cavity mir-
rors (Fig. 1B) at wavelengths λx =λz = 784.7 nm. In all exper-

iments, the depths of these lattices are tuned simultaneously
such that Vx≈Vz (Lattice Calibrations), but due to the special
role of the z lattice we refer to Vz throughout the paper. The z
lattice mediates global-range atom-atom interactions of tunable
strength Ul ∝Vz/∆c via off-resonant scattering into the optical
resonator mode (21) (Strength of Effective Atom–Atom Interac-
tions of Global Range). Here ∆c is the detuning of the frequency
of the laser forming the z lattice from cavity resonance. We esti-
mate a final filling of at most two atoms per lattice site at the
center of the cloud in the MI phase. We monitor in real time
the flux of photons leaking out of the cavity, using a heterodyne
detector (35). The flux is converted into an imbalance Θ∝

√
nph,

where nph represents the mean intracavity photon number. For
further information on the system see ref. 23 and Supporting
Information.

Metastability and Hysteresis
A common method to probe a system for the presence of
metastable states is to prepare it in a well-defined state, to pro-
vide excess energy, and to observe which states it relaxes to. We
accordingly implement such a metastability measurement where
we prepare the cloud in an MI state by slowly ramping up the lat-
tices at an initial detuning ∆c/2π=−50 MHz that corresponds
to a negligible strength of global-range interactions Ul. Subse-
quently, to provide energy to the system, we quench the initial
detuning within 20 ms to a variable endpoint of ∆f

c closer to cav-
ity resonance. The quench increases Ul while Us stays unchanged.
Following the quench the system evolves while all experimental
parameters are kept constant. A schematic of this sequence is
shown in Fig. 1C. We observe that the imbalance Θ rises dur-
ing or after the quench until it settles at a steady-state level Θ,
defined as an average over 10 ms taken 30 ms after finishing the
quench (Fig. 2D).

Repeating the experiment, we measure the imbalance Θ as a
function of the final detuning ∆f

c (Fig. 2 A–C). Far from reso-
nance (∆f

c/2π<−24 MHz), where the strength of global-range
interactions is weak, the system consistently ends up at low imbal-
ances (orange) in an interval of 0<Θ< 7× 103 atoms. Quench-
ing the detuning closer to resonance (∆f

c/2π≥−19.5 MHz),
where the strength of global-range interactions is higher, the
system is never found to end up within this imbalance inter-
val. We now observe consistently higher imbalances (green) of
Θ> 7× 103 atoms. The two well-separated imbalance intervals
(Fig. 2A) coexist for final detunings in an intermediate region
(−24 MHz≤∆f

c/2π≤−19.5 MHz) where the system ends up in
a state either of low or of large average imbalance Θ (Evaluation
of the Metastability Measurement).

We attribute the observation of two distinct imbalance distribu-
tions in our system to the existence of two metastable states. Their
separation signals the presence of an energy barrier between the
states which does not allow for a continuous connection between
them. Our observation of a constant imbalance level after equili-
bration (Fig. 2D) shows that the final state is long-lived and hence
can be either metastable or stable. Monte Carlo simulations for
the closed version of the system indeed predict metastable states
(32). We observe that this metastability is preserved in our sys-
tem despite its open character due to the dissipative cavity, which
could lead to a fast decay of metastable states.

Metastable behavior in a many-body system is usually associ-
ated with hysteresis at phase transitions. When a control param-
eter is slowly varied back and forth across a critical point, the
final state of the system depends on its history. The direct obser-
vation of hysteresis provides an indication for the stability of
metastable states with respect to parameter changes. We per-
form such a hysteresis measurement by preparing our system in
the MI phase at a lattice depth of Vz = 12.9 E 785

R and again at
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Fig. 2. Metastability measurement. Shown is the observation of two dis-
tinct steady-state imbalances Θ, shown in orange and green, and exemplary
time traces. We prepare an MI and then quench the detuning from ∆c/2π=

−50 MHz to ∆f
c closer to resonance within 20 ms, increasing Ul. (A) Mean

values of the imbalance Θ. Errors are SD. The imbalance Θ is separated by a
gap of 5.2(1.4)× 103 atoms into two levels. (B) Histogram as a function of
Θ and ∆f

c with bin sizes of 700 atoms in Θ and 0.5 MHz in ∆f
c. (C) Histogram

of the normalized sum of all counts with respect to Θ. For the normaliza-
tion see Evaluation of the Metastability Measurement. (D) Exemplary time
traces for quenches ending at ∆f

c/2π=−28 MHz (Left) and ∆f
c/2π=−18

MHz (Right). The shaded regions indicate where the averaged imbalance
Θ is extracted. This experiment was performed with 25(2)× 103 atoms at
maximum lattice depths of (Vx, Vy, Vz) = (17.3 E785

R , 30.7 E671
R , 11.1 E785

R ).

a detuning where global-range interactions are negligible. After-
ward, the detuning is swept during 80 ms across the phase tran-
sition toward resonance (Fig. 3A, ramp I) and subsequently back
to the starting point, again within 80 ms (Fig. 3A, ramp II).
We choose a detuning ramp which varies Ul linearly in time,
starting from ∆c/2π=−53 MHz to ∆c/2π=−13 MHz and
back to ∆c/2π=−53 MHz, while Us is kept constant (Hysteresis
Measurement: Lattice and Detuning Ramps and Fig. S2). During
ramp I an imbalance is created that increases with increasing Ul
(orange line in Fig. 3A). During ramp II the imbalance decreases
again until it fully vanishes (green line in Fig. 3A). The observed
evolution of the imbalance is path dependent and describes a
hysteresis loop across the phase transition.

A natural question in our system is the connection between
the strength of short-range interactions and the emergence of a
hysteresis loop. We therefore repeat the experiment at different
Vz to vary Us/t , where t is tunneling. Sample traces are shown in
Fig. 3C. We quantify the amount of hysteresis by integrating the
area of imbalance with respect to Ul (gray area in Fig. 3 A and
C). The hysteresis area is growing with increasing Vz (solid line
in Fig. 3B), indicating that the metastable states become increas-
ingly robust against a change in Ul. In the case where we repeat
the experiment with the y lattice switched off, such as to signifi-

cantly reduce Us, we, however, observe barely any hysteresis area
(dashed line in Fig. 3B); an exemplary trace is shown in Fig. 3D.
Our findings suggest that the emergence of a hysteresis loop is
linked to the system being in a regime where both interactions
are strong.

So far we have neglected the influence of nonadiabaticity when
crossing the phase transition point as well as heating effects.
Nonadiabaticity which stems from short ramp times leads to
a delayed reaction of the system with respect to a change of
the detuning (36). Consequently, during ramp I, the imbalance
buildup is delayed while during ramp II the imbalance van-
ishes at a later point, leading to an increase in the observed
hysteresis area. Heating on the other hand leads to a reduc-
tion of the imbalance over time, resulting in a decreased hys-
teresis area which can thus also become negative (Fig. 3B).
The full comparison between the hysteresis area and thermo-
dynamic states is challenging due to these effects. A detailed
study of the dependence of the observed hysteresis on the
ramp time is provided in Hysteresis Loops: Data Evaluation
and Comparison of Different Ramp Times and Fig. S3. Inde-
pendent of the ramp time, we always observe a larger hystere-
sis area when Us is high compared with the case where Us is
reduced by switching off the y lattice. Reverting the order of
ramps I and II to start in a CDW state would have the effect
that both heating and nonadiabaticity increase the observed
hysteresis area.

A

C D

B

Fig. 3. Hysteresis measurement. (A) We prepare an MI and then sweep
the detuning toward cavity resonance and subsequently back to the start-
ing point. The imbalance created during ramp I is shown in orange and
the imbalance during ramp II is shown in green. Arrows indicate the
ramp directions. We quantify the amount of hysteresis created by the
area highlighted in gray. Diamonds signal where we deduce the thresh-
old for the creation (orange) and the disappearance (green) of an imbal-
ance Θ and where the center of an imbalance jump is located (blue) (Hys-
teresis Loops: Data Evaluation and Comparison of Different Ramp Times).
(B) We study the hysteresis area (Hysteresis Loops: Data Evaluation and
Comparison of Different Ramp Times) as a function of the final lat-
tice depth Vz; the data are shown by the solid line. The dashed line
represents the case where the y lattice is switched off to reduce Us.
(C) Exemplary traces of the imbalance Θ as a function of Ul for different lat-
tice depths Vz. These experiments were performed with 17(2)× 103 atoms
at maximum lattice depths of (Vx, Vy, Vz) = (14.5 E785

R , 26.2 E671
R , 12.9 E785

R ).
(D) Exemplary trace with the y lattice switched off. Here we prepare
15(1)× 103 atoms at Vx = 12.4 E785

R and Vz = 12.0 E785
R (Lattice Calibrations).

Error bars are SD (Hysteresis Loops: Data Evaluation and Comparison of Dif-
ferent Ramp Times).
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Fig. 4. Time traces of the dynamics of the system. (A–C, Left) Data from
the metastability measurement. (A–C, Right) Data from the hysteresis mea-
surement. (A) Ramps in the detuning ∆c. (B) Imbalance dynamics. Starting
from a state with almost zero imbalance Θ, we first observe a slow increase
in Θ (i) followed by a sudden jump (ii). (A–C, Left) After quenching the
detuning ∆c in the MI phase toward cavity resonance, we hold all experi-
mental parameters constant. We observe dynamics in the imbalance Θ dur-
ing and after the detuning quench. The exemplary trace of Θ as a func-
tion of time at a final detuning of ∆f

c/2π=−21 MHz is shown in blue,
while several repetitions of the experiment at ∆f

c/2π=−23 to − 20 MHz
are shown in gray. (A–C, Right) We sweep the detuning ∆c within 80 ms
from the MI phase toward cavity resonance. An exemplary trace of Θ as
a function of time is shown in blue where we observe dynamics in the
imbalance during the sweep. Multiple repetitions of the experiment with
the same parameters are shown in gray, here Vz = 12.9 E785

R . Diamonds
signal where we deduce the threshold for the creation of an imbalance
Θ (orange) and where the center of the imbalance jump (ii) is located
(blue) (Hysteresis Loops: Data Evaluation and Comparison of Different Ramp
Times). (C) Phase of the light field indicating a broken Z2 symmetry. We
observe a constant phase after an imbalance is created throughout the slow
increase (i) and jump (ii) in Θ (Imbalance Dynamics: Data Evaluation). In
the shaded region, the signal is dominated by technical noise due to low
photon flux.

Imbalance Dynamics
Our findings in the previous two experiments, the metastabil-
ity measurement and the hysteresis measurement, are based on
changes of the imbalance Θ when varying the detuning ∆c in
time. Such a change in the imbalance corresponds to a reorder-
ing of the atomic density distribution via tunneling in the lat-
tice potential. Our real-time access unveils nontrivial dynam-
ics of the imbalance in the same data. We observe an initial
imbalance buildup (i) followed by a fast jump (ii) (Fig. 4B).
Both features are present in the case of a detuning quench and
the case of a slow detuning ramp. To be independent of the
quench time, we postselect the quench data based on the con-
dition that the imbalance jump (ii) happens after experimental
parameters are kept constant (Imbalance Dynamics: Data Eval-
uation). From these data we measure a height of the jump of
∆Θ = 3.5(9)× 103 atoms and an upper bound of the duration
∆T of 4.3(6) ms (Imbalance Dynamics: Data Evaluation). It is
comparable to the tunneling time in a double well along the x [z ]

direction of 11.8[3.1] ms, defined as π/(2
√

2 tx [z ]) (Imbalance
Dynamics: Data Evaluation). We interpret this jump as a collec-
tive tunneling of several thousand atoms, and a possible micro-
scopic description of this process is given in the following section.
The timescale of the initial imbalance buildup (i) depends on the

ramp time, while the jump (ii) has a comparable duration in all
datasets.

In contrast to our toy model, the experimental system is at
nonzero tunneling, at finite temperature, and exposed to a har-
monic trapping potential. Accordingly we expect the MI, in which
we initially prepare the system, to form a wedding-cake struc-
ture consisting of an insulating bulk surrounded by superfluid
shells at the surface. Such an inhomogeneous finite-size system
can exhibit a first-order phase transition of the bulk material
(the MI), which is triggered by a second-order phase transition
that took place previously on the system’s surface (37, 38). The
superfluid surface atoms possess a higher mobility than the insu-
lating bulk (39). When the detuning ∆c is swept toward cav-
ity resonance, these atoms break the underlying Z2 symmetry
once global-range interactions overcome kinetic energy and the
trapping potential. This emerging imbalance then determines

A B

C

Fig. 5. Microscopic dynamics and energy redistribution of the system.
(A) Microscopic description of the system dynamics following the detun-
ing quench, in terms of a Landau–Zener transition. One-dimensional lat-
tice potentials are shown for a normal lattice (Top), a dynamic superlattice
with site offset δoff generated by superfluid surface atoms (Middle), and a
tilted dynamic superlattice with spatially varying site offset δoff + δtrap as
encountered at the edge of the harmonic trap (Bottom). Colored circles rep-
resent atoms in the states |1, 1〉 (orange) or |2, 0〉 (green). Resonant nearest-
neighbor tunneling is allowed when the site offset δoff + δtrap equals
the short-range interaction strength Us. (B) Dynamics of the site offset δoff

in the metastability measurement. (C, Top) Sketch of the excitation energy
of the bulk atoms. Superfluid surface atoms add a symmetry-breaking field
to the toy model. During the imbalance jump (ii), the highly excited sys-
tem reduces the initial excitation energy E1 via an avalanche of inherently
nonadiabatic Landau-Zener transitions by an amount of ∆E. Colored circles
represent the state of the system, where the MI state (orange) results from
all bulk atoms in the |1, 1〉 state and the CDW state (green) from atoms
being in a superposition of |1, 1〉 and |2, 0〉 states. Accordingly, the relative
imbalance saturates at Θ/N< 1, indicated by the dashed line. (C, Bottom)
Reduction of ∆E as a function of time τs during the imbalance jump (ii). (B
and C) Exemplary traces use the same data as shown in Fig. 4. δoff and ∆E
are inferred from the photon flux leaking from the cavity.
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Fig. 6. Previously extracted transition points superimposed on a phase
diagram of the system. Results from the hysteresis measurement: Orange
and green diamonds indicate the thresholds where an imbalance is cre-
ated and where it vanishes during detuning ramps, respectively. The cen-
ter of the imbalance jump is shown in blue, where transparency indicates
the probability of occurrence of the jump. For details on the measurement
of the phase diagram, see Phase Diagram Measurement: Data Evaluation.
White data points and the associated black dashed line indicated the loss of
coherence, from left to right, which we infer from the measured BEC frac-
tion, and green tiles indicate states with nonzero imbalance. We identify a
superfluid (SF), a lattice supersolid (SS), an MI, and a CDW phase. This exper-
iment was performed with 16(1)× 103 atoms at maximum lattice depths of
(Vx, Vy, Vz) = (15.7 E785

R , 26.2 E671
R , 12.9 E785

R ). For further details see ref. 23
and Phase Diagram Measurement: Data Evaluation. Error bars are SD (Phase
Diagram Measurement: Data Evaluation and Fig. S4).

the parity of the CDW state, indicated by a well-defined and
constant phase of the measured light field (40), shown in Fig.
4C. We attribute the initial imbalance increase (i) to a rear-
rangement of surface atoms. From the experimental parameters
of the metastability measurement, we theoretically estimate a
number of surface atoms of Nsurf≈ (4−8)× 103 (Calculation of
Atomic Density Distributions), which is in agreement with the ini-
tial imbalance increase (i). Photons scattered at these atoms into
the cavity mode generate an energy offset δoff between even and
odd sites (Fig. 5B). This offset eventually drives the bulk system
from a metastable MI to a CDW state, which we link to the fast
imbalance jump (ii). However, we do not observe an imbalance
jump when ramping the detuning back to the starting value in
ramp II (Fig. 3), which we mainly attribute to the cloud being
heated.

Microscopic Dynamics and Energy Redistribution During the
Imbalance Jump
A simplified microscopic picture of the imbalance dynamics fol-
lowing the detuning quench is sketched in Fig. 5A, where the
system is broken into a collection of coupled double wells. In
the initial MI state, bulk atoms occupy both sites of each double
well. This state is labeled |1, 1〉, where |ne,no〉 denotes the fill-
ing on the even and odd sites, respectively. Here, on-site interac-
tions of strength Us/2π= 2.2(1) kHz provide an energy barrier
for neighboring atoms, thus suppressing tunneling into a |2, 0〉
state. The barrier softens but persists as surface atoms gener-
ate an imbalance Θ and a site offset δoff. Monitoring the flux
of photons leaking from the cavity, we observe δoff/2π= 1.6(2)

kHz just before the imbalance jump (ii) happens (Extraction of
the Even–Odd Particle Imbalance Θ and Site Offset δoff from the
Measured Photon Flux). The harmonic trapping potential causes
an additional site offset of 0 kHz≤ δtrap/2π≤ δmax

trap/2π= 0.6 kHz,
increasing from the center outward. When δoff + δmax

trap ≈Us, the
outermost bulk atoms start resonantly tunneling to their neigh-
boring lattice sites. They further increase Θ and δoff, succes-
sively allowing more and more atoms to resonantly tunnel. The
imbalance jump (ii) thus results from an avalanche of resonant
tunneling processes of bulk atoms which stops only once δoff−
δmax

trap >Us. Indeed, we find δoff/2π= 2.7(3) kHz at the end of
the jump.

We describe each resonant tunneling process by a Landau–
Zener transition, shown in Fig. 5A. The |1, 1〉 and |2, 0〉 states
are coupled with strength

√
2t , where the tunneling t is bosoni-

cally enhanced by a factor of
√

2. We find an upper bound for the
probability of adiabatic Landau-Zener transfer of about 60%,
which is determined by the measured rate of change of δoff dur-
ing the imbalance jump, shown in Fig. 5B. As all experimental
parameters are held constant after the quench, the site offset
δoff is solely tuned by the reordering atoms. The timescale and
(non)adiabaticity of the Landau–Zener transitions is thus inher-
ently determined by the system evolving nonlinearly due to the
presence of the global-range interactions.

At the beginning of the imbalance jump (ii), the ground state
of the system is the CDW state. The bulk is, however, still in the
MI state, which is now a highly excited state of energy E1. During
the imbalance jump (ii) each double well in the bulk evolves via
nonadiabatic Landau–Zener transfers to a superposition of |1, 1〉
and |2, 0〉 states. On top of the imbalance created previously by
superfluid surface atoms, the redistributing bulk increases the
imbalance further, allowing the system to lower the excitation
energy by ∆E. We infer ∆E = 7.7(2.1) MHz from the imbal-
ance jump (ii) in the metastability measurement (Extraction of
the Change in Excitation Energy ∆E from the Measured Photon
Flux) (Fig. 5C). This process is sketched using our toy model,
where a symmetry-breaking field is present due to the imbalance
created by superfluid surface atoms.

To study the energy budget of the system we consider two
scenarios. If the system was closed, the total energy could not
change, and the reduction in excitation energy ∆E would be
balanced by an increase in kinetic energy of the system. Since
our system is inherently open, the energy could also be dis-
sipated by leaking cavity photons. We make use of the spec-
trum of these photons to distinguish the two cases. We esti-
mate the number of scattered photons during the imbalance
jump (ii) to be about 12(3)× 103 (Number of Photons Scattered
During the Imbalance Jump), where each photon would have
to dissipate at least 0.6(3) kHz of energy. This would leave a
notable signature in the photon spectrum, which is not observed.
While our heterodyne detection cannot rule out processes where
only few photons dissipate all of the energy, such a collective
scattering process seems unlikely. Hence we conclude that the
excitation energy released during the jump (ii) remains in the
system and is transformed into kinetic and interaction energy
(Energy Stored in the Superfluid Surface and the Insulating Bulk
During the Imbalance Jump).

Phase Diagram
The observation of metastable states, a coexistence of phases,
and a jump in the order parameter are typical features of first-
order phase transitions. We thus want to relate our observations
to a phase diagram of the system measured as in ref. 23 (Fig. 6).
Here, we superimpose the thresholds extracted in the hysteresis
measurement on the phase diagram.

The threshold for the creation of an imbalance (orange dia-
monds in Fig. 6) coincides with the appearance of an imbalance
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in the phase diagram (green tiles in Fig. 6). The center position
of the fast jump (blue diamonds in Fig. 6) is located within a
region of intermediate imbalance present in the phase diagram
at ∆c/2π≈−20 MHz (light green tiles in Fig. 6). The threshold
for the disappearance of an imbalance (green diamonds in Fig. 6)
extends deep into the MI region (white tiles in Fig. 6). The asso-
ciated blue and green lines enclose an area where the MI and
the CDW phases can coexist and where hysteresis is observed. In
addition, we find the parameter regime where the system can fall
into either of the two final states in the metastability measure-
ment (Fig. 2A) to lie close to the blue line (Fig. 6).

Conclusion and Outlook
Using the unique real-time access of our experiment, we observed
long-lived metastable phases and hysteretic behavior at a first-
order quantum phase transition between an MI and a CDW
phase. Owing to the nonlinearity stemming from the global-
range interactions, the system develops its own timescale when

quenched across the phase transition. The resulting dynamics of
spatially reordering atoms point to an avalanche of resonant tun-
neling processes taking place, which render the transition out
of the metastable state inherently nonadiabatic. The observed
lack of energy dissipation during the transition poses questions
about the thermalization of the final state. Our work provides a
unique approach to study dynamics and thermalization processes
in open quantum many-body systems.
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